1,922 research outputs found

    Graph Regularized Non-negative Matrix Factorization By Maximizing Correntropy

    Full text link
    Non-negative matrix factorization (NMF) has proved effective in many clustering and classification tasks. The classic ways to measure the errors between the original and the reconstructed matrix are l2l_2 distance or Kullback-Leibler (KL) divergence. However, nonlinear cases are not properly handled when we use these error measures. As a consequence, alternative measures based on nonlinear kernels, such as correntropy, are proposed. However, the current correntropy-based NMF only targets on the low-level features without considering the intrinsic geometrical distribution of data. In this paper, we propose a new NMF algorithm that preserves local invariance by adding graph regularization into the process of max-correntropy-based matrix factorization. Meanwhile, each feature can learn corresponding kernel from the data. The experiment results of Caltech101 and Caltech256 show the benefits of such combination against other NMF algorithms for the unsupervised image clustering

    Semi-supervised cross-entropy clustering with information bottleneck constraint

    Full text link
    In this paper, we propose a semi-supervised clustering method, CEC-IB, that models data with a set of Gaussian distributions and that retrieves clusters based on a partial labeling provided by the user (partition-level side information). By combining the ideas from cross-entropy clustering (CEC) with those from the information bottleneck method (IB), our method trades between three conflicting goals: the accuracy with which the data set is modeled, the simplicity of the model, and the consistency of the clustering with side information. Experiments demonstrate that CEC-IB has a performance comparable to Gaussian mixture models (GMM) in a classical semi-supervised scenario, but is faster, more robust to noisy labels, automatically determines the optimal number of clusters, and performs well when not all classes are present in the side information. Moreover, in contrast to other semi-supervised models, it can be successfully applied in discovering natural subgroups if the partition-level side information is derived from the top levels of a hierarchical clustering

    Karakterizacija predkliničnega tumorskega ksenograftnega modela z uporabo multiparametrične MR

    Full text link
    Introduction: In small animal studies multiple imaging modalities can be combined to complement each other in providing information on anatomical structure and function. Non-invasive imaging studies on animal models are used to monitor progressive tumor development. This helps to better understand the efficacy of new medicines and prediction of the clinical outcome. The aim was to construct a framework based on longitudinal multi-modal parametric in vivo imaging approach to perform tumor tissue characterization in mice. Materials and Methods: Multi-parametric in vivo MRI dataset consisted of T1-, T2-, diffusion and perfusion weighted images. Image set of mice (n=3) imaged weekly for 6 weeks was used. Multimodal image registration was performed based on maximizing mutual information. Tumor region of interested was delineated in weeks 2 to 6. These regions were stacked together, and all modalities combined were used in unsupervised segmentation. Clustering methods, such as K-means and Fuzzy C-means together with blind source separation technique of non-negative matrix factorization were tested. Results were visually compared with histopathological findings. Results: Clusters obtained with K-means and Fuzzy C-means algorithm coincided with T2 and ADC maps per levels of intensity observed. Fuzzy C-means clusters and NMF abundance maps reported most promising results compared to histological findings and seem as a complementary way to asses tumor microenvironment. Conclusions: A workflow for multimodal MR parametric map generation, image registration and unsupervised tumor segmentation was constructed. Good segmentation results were achieved, but need further extensive histological validation.Uvod Eden izmed pomembnih stebrov znanstvenih raziskav v medicinski diagnostiki predstavljajo eksperimenti na živalih v sklopu predkliničnih študij. V teh študijah so eksperimenti izvedeni za namene odkrivanja in preskušanja novih terapevtskih metod za zdravljenje človeških bolezni. Rak jajčnikov je eden izmed glavnih vzrokov smrti kot posledica rakavih obolenj. Potreben je razvoj novih, učinkovitejših metod, da bi lahko uspešneje kljubovali tej bolezni. Časovno okno aplikacije novih terapevtikov je ključni dejavnik uspeha raziskovane terapije. Tumorska fiziologija se namreč razvija med napredovanjem bolezni. Eden izmed ciljev predkliničnih študij je spremljanje razvoja tumorskega mikro-okolja in tako določiti optimalno časovno okno za apliciranje razvitega terapevtika z namenom doseganja maksimalne učinkovitosti. Slikovne modalitete so kot raziskovalno orodje postale izjemno popularne v biomedicinskih in farmakoloških raziskavah zaradi svoje neinvazivne narave. Predklinične slikovne modalitete imajo nemalo prednosti pred tradicionalnim pristopom. Skladno z raziskovalno regulativo, tako za spremljanje razvoja tumorja skozi daljši čas ni potrebno žrtvovati živali v vmesnih časovnih točkah. Sočasno lahko namreč s svojim nedestruktivnim in neinvazivnim pristopom poleg anatomskih informacij podajo tudi molekularni in funkcionalni opis preučevanega subjekta. Za dosego slednjega so običajno uporabljene različne slikovne modalitete. Pogosto se uporablja kombinacija več slikovnih modalitet, saj so medsebojno komplementarne v podajanju željenih informacij. V sklopu te naloge je predstavljeno ogrodje za procesiranje različnih modalitet magnetno resonančnih predkliničnih modelov z namenom karakterizacije tumorskega tkiva. Metodologija V študiji Belderbos, Govaerts, Croitor Sava in sod. [1] so z uporabo magnetne resonance preučevali določitev optimalnega časovnega okna za uspešno aplikacijo novo razvitega terapevtika. Poleg konvencionalnih magnetno resonančnih slikovnih metod (T1 in T2 uteženo slikanje) sta bili uporabljeni tudi perfuzijsko in difuzijsko uteženi tehniki. Zajem slik je potekal tedensko v obdobju šest tednov. Podatkovni seti, uporabljeni v predstavljenem delu, so bili pridobljeni v sklopu omenjene raziskave. Ogrodje za procesiranje je narejeno v okolju Matlab (MathWorks, verzija R2019b) in omogoča tako samodejno kot ročno procesiranje slikovnih podatkov. V prvem koraku je pred generiranjem parametričnih map uporabljenih modalitet, potrebno izluščiti parametre uporabljenih protokolov iz priloženih tekstovnih datotek in zajete slike pravilno razvrstiti glede na podano anatomijo. Na tem mestu so slike tudi filtrirane in maskirane. Filtriranje je koristno za izboljšanje razmerja med koristnim signalom (slikanim živalskim modelom) in ozadjem, saj je skener za zajem slik navadno podvržen različnim izvorom slikovnega šuma. Uporabljen je bil filter ne-lokalnih povprečij Matlab knjižnice za procesiranje slik. Prednost maskiranja se potrdi v naslednjem koraku pri generiranju parametričnih map, saj se ob primerno maskiranem subjektu postopek bistveno pospeši z mapiranjem le na želenem področju. Za izdelavo parametričnih map je uporabljena metoda nelinearnih najmanjših kvadratov. Z modeliranjem fizikalnih pojavov uporabljenih modalitet tako predstavimo preiskovan živalski model z biološkimi parametri. Le-ti se komplementarno dopolnjujejo v opisu fizioloških lastnosti preučevanega modela na ravni posameznih slikovnih elementov. Ključen gradnik v uspešnem dopolnjevanju informacij posameznih modalitet je ustrezna poravnava parametričnih map. Posamezne modalitete so zajete zaporedno, ob različnih časih. Skeniranje vseh modalitet posamezne živali skupno traja več kot eno uro. Med zajemom slik tako navkljub uporabi anestetikov prihaja do majhnih premikov živali. V kolikor ti premiki niso pravilno upoštevani, prihaja do napačnih interpretacij skupnih informacij večih modalitet. Premiki živali znotraj modalitet so bili modelirani kot toge, med različnimi modalitetami pa kot afine preslikave. Poravnava slik je izvedena z lastnimi Matlab funkcijami ali z uporabo funkcij iz odprtokodnega ogrodja za procesiranje slik Elastix. Z namenom karakterizacije tumorskega tkiva so bile uporabljene metode nenadzorovanega razčlenjevanja. Bistvo razčlenjevanja je v združevanju posameznih slikovnih elementov v segmente. Elementi si morajo biti po izbranem kriteriju dovolj medsebojno podobni in se hkrati razlikovati od elementov drugih segmentov. Za razgradnjo so bile izbrane tri metode: metoda K-tih povprečij, kot ena izmed enostavnejšihmetoda mehkih C-tih povprečij, s prednostjo mehke razčlenitvein kot zadnja, nenegativna matrična faktorizacija. Slednja ponuja pogled na razčlenitev tkiva kot produkt tipičnih več-modalnih značilk in njihove obilice za vsak posamezni slikovni element. Za potrditev izvedenega razčlenjevanja z omenjenimi metodami je bila izvedena vizualna primerjava z rezultati histopatološke analize. Rezultati Na ustvarjene parametrične mape je imela poravnava slik znotraj posameznih modalitet velik vpliv. Zaradi dolgotrajnega zajema T1 uteženih slik nemalokrat prihaja do premikov živali, kar brez pravilne poravnave slik negativno vpliva na mapiranje modalitet in kasnejšo segmentacijo slik. Generirane mape imajo majhno odstopanje od tistih, narejenih s standardno uporabljenimi odprtokodnimi programi. Klastri pridobljeni z metodama K-tih in mehkih C-tih povprečij dobro sovpadajo z razčlenbami glede na njihovo inteziteto pri T2 in ADC mapah. Najobetavnejše rezultate po primerjavi s histološkimi izsledki podajata metoda mehkih C-povprečij in nenegativna matrična faktorizacija. Njuni segmentaciji se dopolnjujeta v razlagi tumorskega mikro-okolja. Zaključek Z izgradnjo ogrodja za procesiranje slik magnetne resonance in segmentacijo tumorskega tkiva je bil cilj magistrske naloge dosežen. Zasnova ogrodja omogoča poljubno dodajanje drugih modalitet in uporabo drugih živalskih modelov. Rezultati razčlenitve tumorskega tkiva so obetavni, vendar je potrebna nadaljna primerjava z rezultati histopatološke analize. Možna nadgradnja je izboljšanje robustnosti poravnave slik z uporabo modela netoge (elastične) preslikave. Prav tako je smiselno preizkusiti dodatne metode nenadzorovane segmentacije in dobljene rezultate primerjati s tukaj predstavljenimi

    Generative-Discriminative Low Rank Decomposition for Medical Imaging Applications

    Get PDF
    In this thesis, we propose a method that can be used to extract biomarkers from medical images toward early diagnosis of abnormalities. Surge of demand for biomarkers and availability of medical images in the recent years call for accurate, repeatable, and interpretable approaches for extracting meaningful imaging features. However, extracting such information from medical images is a challenging task because the number of pixels (voxels) in a typical image is in order of millions while even a large sample-size in medical image dataset does not usually exceed a few hundred. Nevertheless, depending on the nature of an abnormality, only a parsimonious subset of voxels is typically relevant to the disease; therefore various notions of sparsity are exploited in this thesis to improve the generalization performance of the prediction task. We propose a novel discriminative dimensionality reduction method that yields good classification performance on various datasets without compromising the clinical interpretability of the results. This is achieved by combining the modelling strength of generative learning framework and the classification performance of discriminative learning paradigm. Clinical interpretability can be viewed as an additional measure of evaluation and is also helpful in designing methods that account for the clinical prior such as association of certain areas in a brain to a particular cognitive task or connectivity of some brain regions via neural fibres. We formulate our method as a large-scale optimization problem to solve a constrained matrix factorization. Finding an optimal solution of the large-scale matrix factorization renders off-the-shelf solver computationally prohibitive; therefore, we designed an efficient algorithm based on the proximal method to address the computational bottle-neck of the optimization problem. Our formulation is readily extended for different scenarios such as cases where a large cohort of subjects has uncertain or no class labels (semi-supervised learning) or a case where each subject has a battery of imaging channels (multi-channel), \etc. We show that by using various notions of sparsity as feasible sets of the optimization problem, we can encode different forms of prior knowledge ranging from brain parcellation to brain connectivity
    corecore