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Generative-Discriminative Low Rank Decomposition for Medical
Imaging Applications

Abstract
In this thesis, we propose a method that can be used to extract biomarkers from medical images toward early
diagnosis of abnormalities. Surge of demand for biomarkers and availability of medical images in the recent
years call for accurate, repeatable, and interpretable approaches for extracting meaningful imaging features.
However, extracting such information from medical images is a challenging task because the number of pixels
(voxels) in a typical image is in order of millions while even a large sample-size in medical image dataset does
not usually exceed a few hundred. Nevertheless, depending on the nature of an abnormality, only a
parsimonious subset of voxels is typically relevant to the disease; therefore various notions of sparsity are
exploited in this thesis to improve the generalization performance of the prediction task.

We propose a novel discriminative dimensionality reduction method that yields good classification
performance on various datasets without compromising the clinical interpretability of the results. This is
achieved by combining the modelling strength of generative learning framework and the classification
performance of discriminative learning paradigm. Clinical interpretability can be viewed as an additional
measure of evaluation and is also helpful in designing methods that account for the clinical prior such as
association of certain areas in a brain to a particular cognitive task or connectivity of some brain regions via
neural fibres.

We formulate our method as a large-scale optimization problem to solve a constrained matrix factorization.
Finding an optimal solution of the large-scale matrix factorization renders off-the-shelf solver computationally
prohibitive; therefore, we designed an efficient algorithm based on the proximal method to address the
computational bottle-neck of the optimization problem. Our formulation is readily extended for different
scenarios such as cases where a large cohort of subjects has uncertain or no class labels (semi-supervised
learning) or a case where each subject has a battery of imaging channels (multi-channel), \etc. We show that
by using various notions of sparsity as feasible sets of the optimization problem, we can encode different
forms of prior knowledge ranging from brain parcellation to brain connectivity.
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ABSTRACT

GENERATIVE-DISCRIMINATIVE LOW RANK DECOMPOSITION FOR MEDICAL IMAGING

APPLICATIONS

Nematollah Kayhan Batmanghelich

Christos Davatzikos

Ben Taskar

In this thesis, we propose a method that can be used to extract biomarkers from medical

images toward early diagnosis of abnormalities. Surge of demand for biomarkers and availability

of medical images in the recent years call for accurate, repeatable, and interpretable approaches

for extracting meaningful imaging features. However, extracting such information from medical

images is a challenging task because the number of pixels (voxels) in a typical image is in order of

millions while even a large sample-size in medical image dataset does not usually exceed a few

hundred. Nevertheless, depending on the nature of an abnormality, only a parsimonious subset

of voxels is typically relevant to the disease; therefore various notions of sparsity are exploited in

this thesis to improve the generalization performance of the prediction task.

We propose a novel discriminative dimensionality reduction method that yields good classifi-

cation performance on various datasets without compromising the clinical interpretability of the

results. This is achieved by combining the modelling strength of generative learning framework

and the classification performance of discriminative learning paradigm. Clinical interpretability

can be viewed as an additional measure of evaluation and is also helpful in designing methods

that account for the clinical prior such as association of certain areas in a brain to a particular

cognitive task or connectivity of some brain regions via neural fibres.

We formulate our method as a large-scale optimization problem to solve a constrained matrix

factorization. Finding an optimal solution of the large-scale matrix factorization renders off-
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the-shelf solver computationally prohibitive; therefore, we designed an efficient algorithm based

on the proximal method to address the computational bottle-neck of the optimization problem.

Our formulation is readily extended for different scenarios such as cases where a large cohort of

subjects has uncertain or no class labels (semi-supervised learning) or a case where each subject

has a battery of imaging channels (multi-channel), etc.. We show that by using various notions

of sparsity as feasible sets of the optimization problem, we can encode different forms of prior

knowledge ranging from brain parcellation to brain connectivity.

vi



Contents

1 Overview 1

1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background 15

2.1 Notations and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Pre-Processing of Medical Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Medical Image Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Optimization with Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Sparsity-Inducing Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Convex Relaxation for Sparse Algorithm . . . . . . . . . . . . . . . . . . . . 30

2.4 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 Generative vs Discriminative Approaches . . . . . . . . . . . . . . . . . . . . 33

2.4.2 Graphical Model: An Approach to Model a Distribution . . . . . . . . . . . 36

2.4.3 Generative Model: Matrix Factorization . . . . . . . . . . . . . . . . . . . . . 39

2.4.4 Discriminative Model: Support Vector Machine . . . . . . . . . . . . . . . . 42

2.5 Toward the Proposed Method: Generative-Discriminative Learning . . . . . . . . . 45

vii



2.5.1 An Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.2 Merge Some Rows, Classify All Columns . . . . . . . . . . . . . . . . . . . . 47

I General Framework 50

3 Generative Discriminative Matrix Factorization 51

3.1 General Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Generative Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Discriminative Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6.1 Synthetic Data: Effect Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6.2 Experiment on a Benchmark Data: Handwritten Digits . . . . . . . . . . . . 71

3.6.3 Generative versus Discriminative Trade-Off . . . . . . . . . . . . . . . . . . 75

3.7 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Regularizers and Optimizers 82

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Boxed-Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.1 Efficient Projections on the Boxed-Sparsity Balls . . . . . . . . . . . . . . . . 85

4.3 Group-Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.1 Efficient Projection on Group-Sparsity Ball . . . . . . . . . . . . . . . . . . . 90

4.4 Other Possibilities for the Feasible Set . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 On Selection of the Regularization Parameters . . . . . . . . . . . . . . . . . . . . . 93

4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.6.1 Sparsity and Detecting Discriminative Area . . . . . . . . . . . . . . . . . . . 95

viii



4.6.2 Sparsity and Classification Accuracy . . . . . . . . . . . . . . . . . . . . . . . 96

4.6.3 Comparison with Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.6.4 Sensitivity Analysis of the Parameters . . . . . . . . . . . . . . . . . . . . . . 101

4.7 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

II Extensions 104

5 Application for Multi-Channel Imaging 105

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.1 General Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.2 Extension to Multi-Modality: Classification Problem . . . . . . . . . . . . . 110

5.2.3 Resting-state fMRI: Network Detection . . . . . . . . . . . . . . . . . . . . . 114

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.1 Classification with Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.2 Network Recovery: Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3.3 Network Recovery: fMRI Data . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6 Semi-Supervised Learning 133

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.3.1 Experiment with Benchmark Datasets . . . . . . . . . . . . . . . . . . . . . . 138

6.3.2 Semi-Supervised Learning on a Brain Image Dataset . . . . . . . . . . . . . 140

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

ix



7 Conclusion and Future Research 145

Bibliography 149

x



List of Tables

2.1 Examples of some popular regularization functions and their corresponding prox-

imal operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Examples of well-known methods that can be viewed as matrix factorization. . . . 41

4.1 Comparison of the classification accuracy rate of the proposed method with other

methods on real brain dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2 Applying the proposed method using two different constraints, i.e., the Boxed-(Bx)

and Group-(Grp) Sparsity with other methods with a different setting. . . . . . . . 101

5.1 Comparison of different setting on the multi-parametric method against state-of-

the-art methods on real data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.2 List of the groups defined for fMRI experiment. . . . . . . . . . . . . . . . . . . . . 131

6.1 Comparison of classification error rates on a semi-supervised benchmark. . . . . . 139

6.2 This table shows application of the algorithm in a semi-supervised setting on the

ADNI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

xi



List of Figures

1.1 Examples of basis vectors of three different methods for brain dataset. . . . . . . . 7

1.2 Examples of feature selection for a few methods. . . . . . . . . . . . . . . . . . . . . 9

2.1 A diagram for TV -semi-norm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Overlapping and non-overlapping Group Norms. . . . . . . . . . . . . . . . . . . . 18

2.3 Examples of medical image modalities for human brain. . . . . . . . . . . . . . . . 21

2.4 A general diagram representing pre-processing in medical imaging for group-

analysis and classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Example of brain tissue and structural segmentation. . . . . . . . . . . . . . . . . . 24

2.6 General idea of image registration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Effect of choice of a norm to induce sparsity. . . . . . . . . . . . . . . . . . . . . . . 29

2.8 Examples of graphical models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.9 Figures representing various choices for the loss function, margin, and multi-class

of a SVM classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.10 Illustration of k−means algorithm as matrix factorization. In this figure, each voxel

coordinate is a sample and features are signature of voxels. . . . . . . . . . . . . . . 47

3.1 Graphical model representing the proposed algorithm. . . . . . . . . . . . . . . . . 53

3.2 Representation of the proposed algorithm as matrix factorization: Generative block,

and Discriminative block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

xii



3.3 An illustrative figure showing why non-negativity encourages part-based repre-

sentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 An example of objective function for which Block-wise Coordinate Descent (BCD)

fails to converge to local minimum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Basis vectors used to generate simulated images. . . . . . . . . . . . . . . . . . . . . 69

3.6 Performance of the algorithm to recover the effect on the simulated images for dif-

ferent magnitudes of effects and different ratios of λ2/λ1. . . . . . . . . . . . . . . . 72

3.7 Samples of USPS dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.8 Examples of B|w| for different ratios of λ2/λ1 showing how well the algorithm can

delineate discriminative areas between two USPS digit: “6” vs “8”. . . . . . . . . . 74

3.9 Examples of features used for classification: RAVENS maps for three different

brain tissue types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.10 Examples of basis vectors of three different methods for brain dataset. . . . . . . . 77

3.11 Average classification accuracy rates for brain dataset (AD vs NC) for various λ2/λ1. 79

3.12 Average classification accuracy rates for brain dataset (AD vs NC) for various

λ2/λ1 and longer range of K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1 Graphical representation of Boxed-Sparsity ball for a hypothetical image consisting

three voxels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Presentation of a feasible set in R2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 An illustrative example of groups for group-sparsity norm and corresponding def-

inition in medical imaging application. . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 An example of applications of overlapping groups. . . . . . . . . . . . . . . . . . . 93

4.5 The figure shows how λ3 can influence B|w| as a qualitative example of how well

the algorithm can delineate areas of difference between two groups; here “6” and

“8”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xiii



4.6 Comparision of sparsity parameter on basis vectors on brain dataset . . . . . . . . 97

4.7 Influence of sparsity on classification accuracy rate of AD vs NC dateset when

Boxed-Sparsity is used as a feasible set. . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.8 Examples of basis vectors when group-sparsity is used on real brain image dataset. 98

4.9 Influence of sparsity on classification accuracy rate of AD vs NC dateset when

Group-Sparsity is used as a feasible set. . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1 Extension of the Generative-Discriminative to multi-channel imaging via tensor

factorization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 The proposed methods for multi-channels imaging are represented as Multi-task

learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4 An example of fiber in a human brain between three regions. . . . . . . . . . . . . . 117

5.5 An example of human brain tractography and brain region connection. . . . . . . . 118

5.6 Difference between imposing sparsity on overlapping group norm and overlap-

ping union norm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.7 Three examples of group norms for non-overlapping groups, overlapping groups,

and overlapping groups with union properties. . . . . . . . . . . . . . . . . . . . . . 120

5.8 An example of basis vector denoting relevant parts of brain to the abnormality

using multi-parametric method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.9 Sensitivity analysis of different setting of the multi-parametric method on real data. 124

5.10 Basis used for simulation and definition of group sparsity priors. . . . . . . . . . . 126

5.11 Results of the simulation experiments in detecting the default network for various

definitions of prior and correlation coefficients. . . . . . . . . . . . . . . . . . . . . . 127

5.12 Summary of groups and basis vectors on fMRI dataset to discover default-mode

brain network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.1 Curves comparing performance of supervised and semi-supervised basis learning. 144

xiv



DW-MRI diffusion weighted MRI

WM White Matter

GM Grey Matter

CSF Cerebrospinal Fluid

ROI Region of Interest

VBA Voxel-Based Analysis

rs-FC Resting State Functional Connectivity

RSH Real Spherical Harmonic

DTI Diffusion Tenor Imaging

FA Fractional Anistophy

fMRI functional Magnetic Resonance Imaging

rs-fMRI resting-state fMRI

FLAIR Fluid Attenuated Inversion Recovery

T1WI T1 Weighted Imaging

PET Positron emission tomography

SPECT Single-photon Emission Computed Tomography

BOLD Blood Oxygen Level-Dependent signal

NMF non-Negative Matrix Factorization

SVD Singular Value Decomposition

BB Barzilai Borwein

xv



MP Matching Persuit

OMP Orthogonal Matching Persuit

QP Quadratic Programming

SOCP Second-Order Cone Programming

SDP Semi-Definite Programming

LP Linear Programming

DAG Directed Acyclic Graph

HMM Hidden Markov Model

BN Bayesian Network

SVM Support Vector Machine

GLM General Linear Model

PCA Principal Component Analysis

LDA Linear Discriminant Analysis

ICA Independent Component Analysis

RFE-SVM Recursive Feature Elimination Support Vector Machine

COMPARE Classification Of Morphological Patterns using Adaptive Regional Elements [80]

TV Total Variation

xvi



Chapter 1

Overview

Over recent years, there has been an increase in using medical imaging data for extracting biomark-

ers1 used in several pathologies. Imaging biomarkers are also useful in clinical trials because they

can detect subtle changes in physiology and anatomy very early, therefore assisting in the guided

evaluation of a treatment’s efficiency. Biomarkers are also important early diagnostic tools; for

example, brain degeneration occurs years before clinical symptoms can be observed. In some

diseases such as the Alzheimer disease (AD), 33 percent of patients with mild signs may not be

diagnosed during their life spans and the diagnosis may not be confirmed completely without

a direct examination of brain tissue at autopsy after the person has died [3]. Therefore nonin-

vasive biomarkers can potentially improve early diagnosis of AD and early diagnosis can make

treatment more effective.

Surge of demand for biomarkers and increasing amount of medical image available today

call for accurate, repeatable, and interpretable approaches for extracting useful and meaningful

imaging biomarkers. In this thesis, we developed a general computerized framework that can be

used for variety of applications in imaging biomarker extraction. The method showed promising

1An imaging biomarker is a feature derived from image that represents a particular aspect of the anatomy or physi-
ology of the organ (e.g., brain) being imaged.
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results on various scenarios such as supervised, semi-supervised (in presence of unlabelled data),

and unsupervised tasks for uni- and multi-modal imaging, on different datasets such as neuro-

degenerative brain diseases such as Alzheimer’s, mental skill degradation (e.g., verbal skill), etc..

We showed that not only it yields accurate predictions but also produces clinically interpretable

results that corroborates with what is reported in clinical literature.

Extracting biomarkers from medical imaging is a challenging task because the number of

pixels (voxels) in a typical medical image is on the order of millions while even a large sample-

size in medical image datasets does not usually exceed a few hundred or at most thousands (curse

of dimensionality). Therefore, dimensionality reduction is required to improve the generalization

of the classification task. Nevertheless, there are a lot of correlations between voxels and only a

parsimonious subset of voxels is typically relevant to the abnormality. We have used different

notions of sparsity through this thesis which are inspired by recent literature in Compressed

Sensing [15], [69] and machine learning [175], [224]. We have shown that various notions of

sparsity can be used to encode different types of prior knowledge about images.

One of the aims of the proposed method is to classify subjects as normal or patient (or perhaps

into sub-categories of a disease); this problem falls into the discriminative learning paradigm in

machine learning literature. In addition to achieving good generalization performance in term of

classification, we desire a method that is clinically interpretable. Clinical interpretability serves

two goals:

1. Extra Validation: If the areas delineated by the method corroborate clinical findings about

the disease, it can provide additional level of qualitative confidence in addition to the

quantitative measure (i.e., classification accuracy). For example, for some abnormalities

such as Alzheimer’s, areas related to memory are usually affected; thus this qualitative

measure can be used in tandem with the quantitative measure (e.g., classification between

normal and patient subjects).

2. Incorporating Clinical Prior: If the clinical interpretability is also considered in the design

2



of the algorithm, it allows clinical knowledge to be incorporated into the model as a prior.

For example, a pathology may only affect gray-matter parts of brain; this prior knowledge

can be instrumental to alleviate the curse of dimensionality of the original problem.

A generative framework (e.g., Bayesian) is more appropriate to satisfy the “clinical interpretabil-

ity” criterion.

In this thesis, we combine those two learning paradigms, generative and discriminative, and

address related challenges for medical image classification applications. The proposed method is

formulated as a large-scale matrix factorization problem. We use the matrix factorization frame-

work for both modelling our assumptions and for dimensionality reduction in a discriminative

way. Large dimensionality of the problem is rooted in the fact that medical images have usually

very large dimension. Large-scale matrix factorization also received a lot of attention over the re-

cent years due to its application in learning optimal dictionaries in Compressed-Sensing commu-

nity [11] or recommendation systems such as Netflix in machine learning community [133], [175].

Finding optimal parameters is usually cast as an optimization problem which can be challenging

for large-scale applications.

Our formulation has a few blocks of parameters; some of them are small- to mid-size blocks

of variables that can be found via generic or specialized second-order solvers. However, there

are also large-size blocks of variables that cannot be found via off-the-shelf solvers; an efficient

fast solver is proposed to address this problem which is one of the contributions of this thesis.

The optimization method proposed here is an instance of Forward-Backward schemes which

have been re-discovered from optimization literature of 80’s [158] because of their applicability

to solve large-scale inverse problems [23], [168].

In the Section 1.1, after a brief introduction of a few notions and common approaches in

medical image classification, we discuss the contributions of this thesis in the Section 1.2. More

in depth literature review will be provided in each chapter depending on the topic of the chapter.
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1.1 Literature Review

One of the fundamental limitations in medical image classification is the lack of sufficient training

samples relative to the high dimensionality of the data. Therefore, a critical step underlying the

success of methods that use high-dimensional pattern classification is effective feature extraction

and selection, i.e., dimensionality reduction. The main objective of dimensionality reduction is

to find or construct a set of image features for a better representation of group difference, to

best differentiate between two or more groups, and to improve generalization of a classification

problem.

In this section, we first review dimensionality reduction methods for medical image classi-

fication applications. Since a choice of feature reduction method also depends on the type of

features, most of our focus is on methods that use features that are similar in nature to what

we have used in this thesis; i.e., volumetric features rather than shape [92], [34], [233] or cortical

thickness [143], [6] features. Dimensionality reduction methods can be categorized into unsuper-

vised and supervised methods. Unsupervised approaches in which class labels are ignored are

vaguely similar to generative methods2 (see Chapter 2, Section 2.4.1 for discussion). Supervised

methods take class labels into account and similar to the “discriminative” approach; they try to

approximate a map that best approximates or correlates with the class labels. We avoided using

the word “discriminative” because they may not explicitly find a map from input features to the

class labels. There are also few methods that combine ideas from both ends of the spectrum either

from supervised-unsupervised or generative-discriminative point of view.

Voxel-based analysis (VBA) has been widely used in the medical imaging community for

group analysis. It typically consists of mapping image data to a standard template space and

then applying voxel-wise linear statistical tests on voxel values. General Linear Model (GLM) is

used to identify regions of an anatomy (e.g., brain) that are significantly related to the particular

effects under study [84]. Standard parametric statistical procedures (t−tests and F−tests) can
2The reason, we avoid to use the term “generative” is that they may not have any generative assumption.
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be used to test the hypotheses within the framework of GLM, whereby a vector of observations

is modeled by a linear combination of user specified regressors [84]. GLM can be viewed as a

generative method that assumes a linear model between response variable (xi say determinant

of Jacobian at i’th voxel) and set of exploratory variables (yj say levels of experiment):

xi = βi1y1 + βi2y2 + · · ·+ βiLyL + εi

where βj (1 ≤ j ≤ L and L < D where D number of voxels) are unknown parameters cor-

responding to exploratory variables. εi are i.i.d normal random variables εi ∼ N (0, σ2). Two-

sample t−test is a special case of GLM that assumes xqj ∼ N (µq, σ
2), for q’th group; it evaluates

the null hypothesis H0 : µ1 = µ2. In a typical approach [10, 61, 197, 225], t−test is performed

at each voxel that results in many statistical tests; hence if no correction is done, the number of

false-positives is proportional to the number of independent tests. A False discovery rate (FDR)

correction is usually applied to order to compensate for number of tests, but this correction nor-

mally does not take spatial smoothness into account. On the whole, VBA identifies regions in

which two groups differ (e.g., patients and controls [111]) or regions in which other variables

(e.g., disease severity [182]) correlate with imaging measurements. VBA can also be viewed as

a correlation-based feature selection [100]. However, VBA has limited ability to identify com-

plex population differences because it does not take into account multivariate relationships in

the data [20, 40, 54, 62].

Another popular assumption is that significant brain regions would more likely occur in clus-

ters than in a single voxel [107]. A popular approach is to identify a small number of regions of

interest (ROIs) in the brain and aggregate data within these ROIs [89], [86]. Usually data aggre-

gation is done by simply averaging voxel values inside an ROI; with the underlying assumption

that the mean of the ROI is a good representation for the whole ROI i.e., xi ∼ N (µk, σk) for all i

belonging to the k’th ROI region. This is why ROI based methods can be viewed as instances of
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the generative methods. To define ROIs, an image segmentation is usually done on an atlas space

and the atlas is registered to the subjects in order to define corresponding areas on the subjects

(see Figure 2.5b for examples of ROIs). ROI-based methods usually ignore class labels therefore

they can be categorized as unsupervised methods. Plus, ROI’s are usually defined based on some

cognitive function of a region of brain and do not necessarily follow the boundaries of regions

affected by the abnormality; incorrectly defined ROI can cause sever artifacts on the results [87].

Another approach is to use clustering [67], [22] to group voxels into smaller sets. However, a

short-coming of the clustering approach is that the clusters cannot overlap: e.g., region A cannot

belong to cluster 1 and cluster 2 at the same time. This can be limiting, for example, in fMRI net-

work discovery because a region of a brain may be involved in multiple networks. In addition,

derived clusters might not be optimal for classification. Clustering methods can be viewed as

unsupervised generative methods.

Different variations of matrix factorization approaches have been proposed for medical im-

age classification and group analysis purpose. Since the whole image is considered as a high-

dimensional sample; such methods are used to reduce the dimensionality. One of the most

well-known unsupervised dimensionality reduction method is Principal Component Analysis

(PCA) [37,44,105]. PCA can also be combined with ROI analysis, for example [44], first used VBA

to identify brain regions with significant difference between two groups of subjects, then applied

PCA to the voxels within each ROI. Other variants of matrix factorization such as ICA [25]3 have

been also applied particularly for fMRI application [39, 144, 194]. PCA and ICA results are often

hard to interpret since they do not specifically attempt to identify localized brain regions, instead,

they capture global correlations (see Figure 1.1 for an example). Non-negative Matrix Factoriza-

tion (NMF) (see Table 2.2) usually improves the representation because of its additive properties

that yield part-based representations [146, 235]. Another idea to improve the representation of

matrix factorization is to incorporate a sparseness prior. For example, sparse PCA [238], [60] has

3Adopting the notation in Eq.2.4.4, ICA approximates the data matrix X as X ≈ BC s.t. ‖ck‖2 ≤ 1. KL-divergence
and negative entropy for D(·; ·) are among common for the divergence terms [114].
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(a)

(b)

Figure 1.1: The first and the second rows show examples of applying NMF and SVD on GM RAVEN maps
[61] (see Section 2.2.3 for explanation of RAVENS) of brain images. While NMF basis is more localized, SVD
eigen basis has non-zero values all over the brain which renders its interpretation very difficult. (a) One of
the basis vectors learned by the NMF method on sagittal and coronal cuts and, (b) one of the basis vectors
learned by the SVD method on sagittal and coronal cuts.

been applied for modeling anatomical shape variation [191]. However, PCA, ICA, and NMF as

unsupervised methods often focus on variations in the data that are irrelevant to the class labels

and do not yield the best performance if the main objective is discrimination.

There are also few more formal Bayesian methods particularly applied for fMRI task local-

ization purposes. Lashkari et al. [139] proposed a generative Bayesian model using Hierarchical

Dirichlet Process [196] as the prior to learn patterns of functional specificity to tasks from fMRI

data in a group of subjects. The approach does not need spatial alignment of the subjects to an

atlas. It consists of two layers: at the first layer, the functional brain response to each stimulus

is modeled as a binary activation variable; and the second layer specifies a prior over sets of ac-

tivation variables in all subjects. Chen et al. [43] proposed a graphical model based method to

identify morphological abnormalities automatically, and to find probabilistic associations among

voxels in MR images and clinical variables. However, if the objective of a study is classification,

such approaches may not perform as well as discriminative methods (see Section 2.4.1).
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On the other hand, supervised methods like Linear Discriminant Analysis (LDA) and feature

selection methods have been recently applied for medical image analysis [80, 198, 232]. LDA is

closely related to ANOVA (analysis of variance) and it approaches the problem by assuming

the conditional probability density functions P(x|y = −1) and P(x|y = 1) are both normally

distributed and have the same covariance. Under such assumptions, Bayes optimal solution is to

find a threshold c such that for all xi in the first class:

wTxi < c, w = Σ−1(µ1 − µ2)

where µ1 and µ2 are the means of the first and the second classes respectively and Σ is the co-

variance matrix. LDA is a simple method that can be viewed as a supervised generative method.

Similar to PCA, LDA may not be able to identify localized abnormal brain regions; in the med-

ical imaging context, the ability of a method to provide an interpretable model is important. In

addition, both methods are linear methods and due to the curse of dimensionality, the number

of derived basis are limited by the number of subjects which is far smaller than the number of

features.

Feature selection methods, on the other hand, output regions that are potentially interpretable.

The Recursive Feature Elimination Support Vector Machine (RFE-SVM) ( [100], Chapter 5) is an

example of feature selection methods. For linear SVM, i.e., f(x) = wTx + b, the method boils

down to removing the features with the smallest weight in absolute value |wi|. The method is

slow for high-dimensional problems such as medical imaging problems. Fan et al. [80] proposed

a method called COMPARE which is a state-of-the-art algorithm for medical image classifica-

tion. They suggested first to group pixels into so-called “super-pixels” via applying a watershed

segmentation algorithm [209]. The watershed algorithm is used for generating regions accord-

ing to a discrimination of each local morphological feature. The authors used this measure to

improve the robustness of their method against noise and inaccuracy in the registration process.
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(a) (b)

(c)

Figure 1.2: This figure shows examples of feature selection for a few methods: (a) shows maps of Anova
(F-score) for the a task prediction in fMRI [156]. (b) shows areas selected by COMPARE [80]; in spite of
heuristic used in [80] some areas are too tiny for clinical interpretation. (c) represents voxels picked up
by [179] as discriminative ones. In spite of spatial smoothing priors, features tend to be isolated voxels.

The method is a discriminative method that combines a VBM approach with ROI heuristics. In

Chapters 3,4 and 5, we compared our method with COMPARE. Vemuri et al. [207] proposed an

approach called STAND in which the dimensionality is reduced by a sequence of heuristic fea-

ture aggregation and selection steps. The heuristic is mostly designed for one kind of features

and may fail for other types of features in medical imaging. One of the drawbacks of most fea-

ture selection methods is that they are computationally expensive; this is why they mostly rely

on some heuristic pre-processing to trim a large portion of the features at the beginning. Another

disadvantage of methods using feature selection is that they may produce isolated voxels as rel-

evant features. Voxels are more likely relevant to the class labels as groups rather than isolated

voxels and picking isolated voxels as discriminative features may cause over-fitting.

Many machine learning methods with sparsity constraints have been applied to fMRI acti-

vation images: Lasso [145], elastic net regression [40], sparse logistic regression [171, 178], or

Bayesian regularization [85,227]. Those methods are mostly discriminative methods and usually
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have the same problem as feature selection methods, i.e., choosing isolated voxels that render

interpretablity hard and they are prone to over-fitting. In the context of regression, [156] sug-

gested to use TV-norm (Eq.2.1) to incorporate spatial smoothing into objective function; adding

such regularization improves spatial contiguity of the detected voxels but since the discrimina-

tive methods, in general, ignore the correlation between input features (xi’s), the detected areas

may not correspond to any anatomically reasonable region. Sabuncu et al. [179] proposed a con-

ditional generating method based on Relevant Vector Machine (RVM4) [199]. Unlike RVM, where

sparseness is realized by discarding many samples, their approach removes most voxels, retain-

ing only those voxels that are relevant for prediction.

There are few methods that fuse the modeling power of generative approaches with dis-

criminative methods. Argyriou et al. [9] used a convex formulation for multi-task classification

problems while an orthogonal linear transform of input features is jointly learned with a clas-

sifier. In neural networks literature, there are some works on learning compact features with

convolutional neural networks [138, 142, 172]. In a different context, a supervised topic model

is proposed [32] for movie ratings predicted from reviews, and web page popularity predicted

from text descriptions. Very recently, Mairal et al. [151] introduced a supervised formulation for

learning dictionaries adapted to various tasks instead of dictionaries only adapted to data recon-

struction. [151] is very similar in spirit to the work presented in this thesis although in a different

context (computer vision) and with a different formulation. In term of formulation, they used

different regularization terms than ours and they were used in the objective function rather than

as constraints which renders the optimization method significantly different.

1.2 Contributions

Contributions of this thesis can be summarized as follows:
4Relevance vector machine (RVM) is a technique that uses Bayesian inference to obtain sparse solutions for regression

and classification. The RVM has an identical functional form to the SVM, but provides probabilistic classification.
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• Novel Regularized Matrix Factorization to Extract Informative Features: As explained

in the Section 1.1, most of the existing methods separate feature extraction from classifica-

tion problem (e.g., [80]). Such separation serves two purposes: 1) feature extraction which

is usually done via ROI delineation [89], clustering [67], or segmentation [80] reduces the

original dimension (i.e., number of voxels in the training images) significantly, 2) final re-

sults are interpretable. In this thesis, we combine those two steps into one framework.

We propose a novel formulation that casts the problem as a large-scale constrained matrix

factorization which in effect clusters rows (voxels of the images) and classifies columns

(subjects) yielding interpretable results. The method finds the clusters that are optimal

for a task of interest (e.g., classification or regression) unlike traditional methods in which

the feature extraction is done in an unsupervised way and as a pre-processing step. The

method allows us to address the curse of dimensionality without compromising classifica-

tion or producing clinically meaningless results (see Chapters 3,4).

• Straightforward Extension to Semi-Supervised Learning: Schematically, the proposed

method consists of three building blocks: 1) a generative term in the objective function, 2) a

discriminative term in the objective function, and 3) a feasible set. The generative term en-

courages concise (in our case low-rank and non-negative) reconstruction of the data while

the discriminative term encourages good prediction for a task (e.g., class labels in classifica-

tion). The feasible set encodes prior knowledge by including the set of all acceptable solu-

tions. The modular nature of the method makes it readily extensible for different learning

scenarios such supervised, semi-supervised, and unsupervised learning cases. For exam-

ple, the semi-supervised is useful in medical imaging datasets where there are large sets of

subjects not classified as normal but lacking a fully confident disease label5. In such cases,

a semi-supervised variant of the method can be used to predict future follow-up labels (see

Chapter 6). Most of the existing work for semi-supervised learning methods for medical

5This is the case for subjects diagnosed as Mild Cognitive Impairment (MCI) who show some impairment in their
cognitive scores and have high risk to develop Alzheimer’s disease.
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imaging does not address which parts of an organ (i.e., brain) undergo changes because

they encode only similarities between subjects in which the underlying structure of the

image is lost (e.g., [31]).

• Incorporating Various Clinical Prior as Regularization: The modular nature of the algo-

rithm also allows various prior knowledge to be encoded in the form of the feasible set. The

definition of our feasible set is derived from our generative modeling of the data. Sparsity

plays an important role in the definition of the feasible set. We showed how various no-

tions of sparsity can encode which voxels of an image are correlated. Those correlations can

be specified by our anatomical understanding about an organ (e.g., connectivity between

different regions of a brain). See Chapters 4 and 5 for more details.

• Discriminative yet Interpretable for Clinical Application: Unlike feature selection meth-

ods that produce good classification accuracy rates in the expense of meaningful anatomi-

cal results [80], [179] (see Figure 1.2), our method holds promising good classification rates

without compromising anatomical interpretability. This is due to the fact that the gen-

erative terms encourages good reconstruction of the data; in fact, our novel formulation

chooses a subset of voxels that is optimal for the task (e.g., classification) and also con-

tributes in the reconstruction of the images.

• Efficient Algorithm for the Large-Scale Optimization: The algorithm is formulated as a

large-scale matrix factorization problem. Finding an optimal solution requires an itera-

tive solution of a few convex optimization problems in order to converge to a local mini-

mum (the formulation is not convex but block-wise convex). The large-scale nature of the

problem renders off-the-shelf solver computationally prohibitive; therefore, we proposed

a novel solver based on proximal first methods [49]. The technical novelty of the method

lies in an almost closed-form solution of a projection sub-problem that is the computational

bottle-neck of the algorithm. It turns out even other extensions of the algorithm which are

based on different notions of sparsity can exploit the projection algorithm as a module and
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inherit its efficiency (see Chapters 4 and 5).

The chapters of this thesis are organized as follows:

Chapter 1: Overview of the thesis and literature review are covered in this chapter.

Chapter 2: Preliminaries and notation are presented in the beginning of the Chapter 2. Due

to the multi-disciplinary nature of the problem we address in this thesis, we need to briefly

introduce different terms and steps ranging from different modalities of medical imaging

used in this thesis to pre-processing steps, various learning paradigms and a few optimiza-

tion techniques that can be used to solve large-scale optimization problems. Finally, an

illustrative example is presented to show the gist of the idea.

Chapter 3: Our novel formulation is detailed in this chapter. We show how the discrimi-

native objective and generative criterion can be cast as a matrix factorization problem. The

trade-off between the generative versus discriminative aspects of the formulation is inves-

tigated through experiments with synthetic and real data.

Chapter 4: This chapter discusses how different priors can be incorporated as a feasible

set of the optimization problem discussed in Chapter 3. It turns out that various notions of

sparsity can encode different priors. This chapter also focuses on computational bottle-neck

of the large-scale optimization problem and proposes an efficient algorithm for solving it.

The algorithm can be extended for other types of applications addressed in this thesis. We

also compare classification performance of the algorithm with various choices of the prior

with other common or state-of-the-art methods in the literature.

Chapter 5: We extend the basic algorithm proposed in Chapter 3 and 4 in which every

subject has one channel image to the case that every subject has a multi-channel image. We

view the fMRI time series as an instance of multi-modal image and show how a new notion

of sparsity can be defined to incorporate brain connectivity as a prior to guide the inference

of functional connectivity.

Chapter 6: The proposed generative-discriminative approach can be readily extended to
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semi-supervised learning where a subset of subjects has labels and a large cohort of subjects

are unlabeled but they do contribute in the learning. We showed the applicability of such

setting for a medical imaging application.

Chapter 7: Finally, this chapter summarizes what is presented in this thesis and suggests

possible avenues for future extensions.
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Chapter 2

Background

2.1 Notations and Preliminaries

First, we introduce a few notations that will be used throughout this thesis. We use non-capital

letters x,y, etc.to represent scalar variables. Greek letters (e.g., α,λ) are usually used to represent

constants unless stated otherwise; for example relative weights between terms in an optimization

problem. Bold lowercase letters denote vectors, e.g., x ∈ RN , and bold uppercase ones represent

matrices, e.g., X ∈ RN×M . Subscript and superscript are used to address a column and row of a

matrix respectively: e.g., xm ∈ RN×1 and xn ∈ R1×M . Superscript may also indicate an iteration

of a variable in an algorithm. Distinction between, say k’th row of a matrix or k’th iteration of a

vector variable, is obvious from the context. Blackboard bold font is used to represent a tensor

except the letter R which is reserved for the set of real values: e.g., X ∈ RN×M×K , and the letter

P to denote a probability distribution. Calligraphic letters (e.g., A,B) are used sporadically in the

text either to denote a set (e.g., A = {x ∈ Rn : x ≥ 0}) or a special function such N representing

normal distribution. We also use {·} to denote a sequence, for example {xt}Nt=1, is a sequence

of N variables x1 · · ·xN ; if the upper-bound is not given, it means that it is an infinite set (e.g.,

{xt}t=1 ). We use 〈·, ·〉 and ‖ · ‖p to refer to inner product and norm respectively; the subscript of
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the norm defines types of the norm.

A few different types of norm have been used in this thesis for vectors and matrices. p-norm

(p ≥ 1) of a vector is defined as follows:

‖x‖p = (

N∑
n=1

|xi|p)1/p (2.1.1)

where |x| is the absolute value of x. Three common examples of such norm are: 1) `2 norm:

‖x‖2 =
√

xTx =
√
〈x,x〉 where 〈·, ·〉 denotes inner product; 2) `1 norm: ‖x‖1 =

∑N
n=1 |xn|; 3) `∞

norm: ‖x‖∞ = maxi{|xi|}. If p < 1, ‖x‖p does not satisfy properties of a norm, however with

abuse of notation, we still call it norm with the same formulation as Eq.2.1.1. Perhaps the most

interesting example of such a norm is the so-called `0 norm that counts the number of non-zeros

entries of a vector. It is also conceivable to rotate and rescale the vector x before feeding it to the

norm. Namely, for a given semi-definite matrix Q, Mahalanobis (semi)norm ‖x‖Q is defined by

‖x‖Q =
√

xTQx (2.1.2)

Since Q is positive semidefinite, it can be written as Q = UDUT where U is orthogonal and D is

diagonal with non-negative entries. Thus the positive semidefinite root P = U
√

DUT is unique.

Therefore, ‖x‖2Q = xTQx = (Px)T (Px) = ‖(Px)‖22. Hence, computing ‖x‖Q is equivalent to

replace x with Px under `2-norm; i.e., a rotation and shrinking/stretching of the original x. An

interesting example of such a norm for image processing purposes is Total Variation (TV) semi-

norm. Assuming that an image is concatenated into a vector x, TV 1/2
2 -norm can be defined as

follows:

TV
1/2
2 (x) =

N∑
j=1

(
∑

i∈N (j)

(xj − xi)2)1/2 (2.1.3)

where N (j) is the set of neighbors of the j’th pixel in an image domain. The idea is illustrated
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Figure 2.1: TV -norm calculation: the image is concatenated to a vector x. The top figure shows neighbors
of the j’th pixel in the image domain: N (j) = {i1, i2, i3, i4} and corresponding coordinates in the vector x
(bottom) .

in Figure 2.1. In fact, TV -norm measures smoothness of x; the smoother the image, the smaller

its gradient; hence the smaller TV -norm. In this case Q is the Laplacian of a graph representing

the image grid. With abuse of the notation, we can define TV qp -norm, which may not be even a

semi-norm

TV qp (x) =

N∑
j=1

(
∑

i∈N (j)

(|xj − xi|)p)q (2.1.4)

For some applications, the indices of the coordinates of a vector may be grouped into a few

predefined subsets. We call each subset a group (gi) and G denotes the set of all groups (i.e.,

G = {g1, g2, · · · , gN}). The coordinates of x within each group are represented as x|g . p, q−

group-norm can be defined as follows: 1) q-norm is used to combine entries of each group to

a single value (‖x|g‖q). This results in a |G|-dimensional tuple (or |G|-dimensional vector). 2)

Group-Norm is defined as the p-norm of the tuple:

‖x‖p,q = (
∑
g∈G
‖x|g‖pq)1/p (2.1.5)

Groups in G may or may not overlap (see for examples Figure 2.2). Four common examples
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Figure 2.2: Example of overlapping and non-overlapping groups for x ∈ R8 and G = {g1, g2, g3}. Top: the
non-overlapping group; bottom: overlapping groups.

of group-norms are given:

‖x‖1,2 =
∑
g∈G

ηg‖x|g‖2, ‖x‖∞,2 = max
g∈G

ηg‖x|g‖2

‖x‖1,∞ =
∑
g∈G

ηg‖x|g‖∞, ‖x‖∞,1 = max
g∈G

ηg‖x|g‖1 (2.1.6)

where ηg are constants that can compensate for discrepancy between sizes of the groups.

Similar to Eq.2.1.1, we can define p-norm for a matrix X:

‖X‖p = (

r∑
n=1

(σn(X))p)1/p (2.1.7)

where r is the rank of X and σn is its n’th singular value. This norm is also called Schatten-

norm. An example of Schatten norm is the Frobenius norm: ‖X‖F := ‖X‖2 =
√
〈X,X〉, where

〈X,Y〉 = trace(XTY). Another example is nuclear norm: ‖X‖1 =
∑r
n=1 σn(X) which is simply

the sum of the singular values of X.

There is a type of norm for matrices which is similar to the group norm for vectors. This norm

is defined on rows or columns of matrix X ∈ RN×M as follows (p, q ≥ 1):

‖X‖p,q = (

M∑
m=1

‖xm‖pq)1/p (2.1.8)
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where xm is the m’th column of the matrix. Unlike the schatten-norm, the norm in Eq.2.1.8 is not

rotation invariant except the special case ‖X‖2,2 = ‖X‖F .

2.2 Pre-Processing of Medical Images

2.2.1 Medical Image Modalities

Many medical image modalities have been developed over the recent decades to quantify various

aspects of anatomy and function of tissues. Introducing all medical image modalities and related

applications is beyond the scope of this thesis, nevertheless, we briefly present a few modali-

ties used in different applications in this thesis. One may categorize medical image modalities

into two general classes: Structural imaging and Functional imaging. Structural imaging reveals

anatomical characteristics of underlying tissues, and functional imaging centers on visualizing

physiological activities within a certain tissue or organ by measuring changes in metabolism,

blood flow, or absorption of different substances (so-called “tracers”). Each modality is generally

sensitive toward a particular material hence it provides good contrast for a particular tissue. For

example, Magnetic Resonance Imaging (MRI) provides good contrast between the different soft

tissues of the body, which makes it especially useful in imaging the brain, muscle, and heart.

Even within a modality (e.g., MRI), there are several sub-types specialized for particular tissue

types; for example,

• T1 Weighted Imaging (T1WI): Water molecules which largely compose the body have two

protons. When a person goes inside of a powerful magnetic field, average magnetic mo-

ment of those protons becomes aligned with the direction of the field. T1-weighted scans

are a standard basic scans designed to differentiate fat from water in a tissue. It is one of the

basic pulse sequences in MRI and demonstrates the differences in the T1 relaxation time of

tissues [218]. The T1 relaxation time (also known as the spin-lattice relaxation time) is a

measure of how quickly the net magnetization vector (NMV) recovers in the direction of
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the main magnetic field [217] after a perturbation by the pulse.

• Fluid Attenuated Inversion Recovery (FLAIR): Fluid attenuated inversion recovery (FLAIR)

is a pulse sequence used in magnetic resonance imaging. The pulse sequence is an inver-

sion recovery technique that nulls fluids. For example, it can be used in brain imaging

to suppress signals from cerebrospinal fluid (CSF) in the image, so as to bring out hyper-

intense lesions, such as multiple sclerosis (MS) plaques [220], [13].

• Diffusion Tensor Imaging (DTI): Diffusion MRI is a magnetic resonance imaging (MRI)

method that produces in vivo images of biological tissues weighted with the local micro-

structural characteristics of water diffusion, which is capable of showing connections be-

tween brain regions [101], [219]. Diffusion tensor imaging (DTI) is important when a tissue

such as the neural axons of white matter in the brain has an internal fibrous structure anal-

ogous to the anisotropy of some crystals [219].

A few examples of structural medical image modalities for human brain are shown in Figure

2.3.

Functional imaging usually employs tracers or probes to reflect spatial distribution of metabolism

within the body. Amount of these tracers are often proportional to some chemical compounds,

like glucose, within the body. As examples of functional imaging we can name:

• PET: Positron emission tomography (PET) is a nuclear medicine imaging technique that

produces a three-dimensional image of functional processes in the body. First, a tracer is

introduced into the body on a biologically active molecule, then, the system detects pairs

of gamma rays emitted indirectly by a positron-emitting radionuclide. Three-dimensional

images of tracer concentration within the body are then constructed by computer analysis.

For example, if the biologically active molecule chosen for PET is 18F -Fluorodeoxyglucose

(known as FDG), which is an analogue of glucose, the concentrations of tracer give tissue

metabolic activity, in terms of regional glucose uptake [221].

• SPECT: Single-photon emission computed tomography (SPECT) is a nuclear medicine to-
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Figure 2.3: Figures on the bottom row are examples of structural image modalities of brain image. Each
voxel of DTI represents diffusion properties in that voxel which is represented as a 3 × 3 matrix. A 3 × 3
matrix can be represented as a 3-dimensional ellipsoid axes of which are aligned with the eigen vectors of
the diffusion matrix; radii of the ellipsoid are proportional to eigen values of the matrix. Figures on the top
row show examples of functional image modalities of brain: SPECT, PET and fMRI. fMRI image is basically
4D image (i.e., three dimensions to index location and one to index time); therefore, each voxel contains a
time series. PET and SPECT figures are courtesy of [221] and [48] respectively.

mographic imaging technique using gamma rays. The basic technique requires injection

of a gamma-emitting radioisotope (called radionuclide) into the bloodstream of the pa-

tient [222].

• fMRI: Functional magnetic resonance imaging or functional MRI (fMRI) is an MRI pro-

cedure which measures brain activity by detecting associated changes in blood flow. The

primary form of fMRI uses the blood-oxygen-level-dependent (BOLD) contrast. fMRI is

used to map neural activity in the brain or spinal cord of humans or animals by imaging

the change in blood flow (hemodynamic response) related to energy use by brain cells [223].

A few examples of medical image modalities for human brain are shown in Figure 2.3.
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2.2.2 Pre-Processing

Pre-processing steps is required before applying any algorithm but the actual steps may vary

significantly depending on image modalities, anatomy that is being studied, and obviously the

application of interest. Here, we limit ourself to brain imaging modalities, which were introduced

on the previous section and focus on applications directly related to the purpose of this these, i.e.,

image classification and group analysis. We only mention common pre-processing steps that

might be necessary for understanding other section of the thesis. Discussing details of each step

or any extra steps are beyond the scope of this chapter and will be mentioned in each chapter if

it is necessary.

The diagram showed in Figure 2.4 represents a typical pre-processing pipeline used for group

analysis and classification purposes in brain imaging. There are many other blocks that can be

added to the diagram but we only mentioned the most general ones:

• Image Enhancement: A common step in a pre-processing pipeline is image enhancement.

We use this step in a broad sense; i.e., any step that improves image quality can be a part of

this block. For example, denoising or bias field correction1, or histogram equalization2 or

motion correction3 can be viewed as an image enhancement step. There might be several

of such blocks in a typical pre-processing pipeline; it can be done before or after image

registration.

• Tissue Segmentation: This step can be viewed as a part of feature extraction step. Since

it is very common step particularly for brain image analysis, we introduce it as a separate

step. The fundamental task in tissue segmentation is to classify the voxels in the volumetric

MR data into subclasses of tissue types, e.g., gray matter (GM), white matter (WM), and

cerebrospinal fluid (CSF) tissue types [12], [234] (see Figure 2.5a for an example).

1Bias field signal is a low-frequency and very smooth signal that corrupts MRI images [210], [36].
2Histogram equalization is a method in image processing to adjust contrast using the image’s histogram [103], [5].
3One of the major sources of error in the analysis of functional Magnetic Resonance images is the presence of spurious

activation arising due to patient head movement at the time of image acquisition. Motion correction algorithms are
designed to remove this artifact [161].
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Figure 2.4: The figure shows a general pre-Processing pipeline in medical imaging application for group-
analysis and classification purpose: to establish voxel-wise correspondence, volumetric image of the i’th
subject (Ii) should be aligned (warped) to a template (T ). This normalization process is called registration
and produces a mapping (ϕi) for the i’th subject. The map (ϕi), the warped subject (Ii ◦ ϕi), the template
image (T ), and the corresponding label image (L) are feed to a black-box for feature extraction. The warped
image (Ii ◦ ϕi) can also be used by many other blocks two of the most common of which are shown here:
Image enhancement and Tissue segmentation. The image enhancement block may include histogram equal-
ization, bias field correction, or any other procedure to enhance the quality of an input image. Enhanced
image may be used for tissue segmentation (or any other block). This tissue segmentation block classifies
voxels of the image into various tissue sub-types: White matter, Gray matter, etc.. All results are optionally
provided to the feature extraction block that in turn produces the feature vector xi.

• Registration: In order to compare images of different subjects, one may need to maintain

voxel-wise correspondence. For example, to compare subject i with subject j, we need to

know which coordinate of, say the i’th subject, corresponds to, say coordinate (z1, z2, z3)

of the j’th subject. Therefore, a one-to-one mapping (ϕ) representing the correspondence

is computed during the registration process. Instead of having pair-wise maps between

all pairs of subjects, it is common to find a map to a common image called Template or
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(a) (b)

Figure 2.5: (a) shows an example of tissue segmentation (courtesy of [14]). (b) shows an example of structural
segmentation; each color denotes a structure. Each segment can be used as a region of interest (ROI) for
feature extraction step.

Atlas. Image registration is a topic of research on its own right and here we only give a

brief introduction (see [192], [237], [149], [57], [129] and references therein for a survey on

medical image registration methods).

A subject image (I) and the template (T ) are viewed as a function that maps compact

domains (i.e., Ω1 and Ω2 respectively) to a set of real values, namely: I : Ω1 → R and

T : Ω2 → R where Ω1,Ω2 ⊂ R3 (assuming that the image is a volumetric image). A regis-

tration algorithm solves the following optimization problem:

min
θ∈Θ
D(Ii ◦ ϕ(θ);T ) (2.2.1)

where ϕ(θ) : Ω2 → Ω1 is the one-to-one mapping4 parametrized by θ and Θ is the set of

all possible parameters and D(·; ·) is a measure of distance (a divergence function); e.g.,

D(·; ·) =
∫

Ω2
‖T (z)− (I ◦ ϕ(θ))(z)‖2dz. I ◦ ϕ(θ) means composition (warping) the subject

image according to the mapping function. The idea is pictorially represented in Figure 2.6a.
4One-to-one mapping is usually not enough and ϕ needs to be smooth too. Mathematically speaking, ϕ should be a

Diffeomorphic map: it is a bijection map that is differentiable and its inverse is also differentiable.
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(a) (b)

Figure 2.6: (a) show registration concept: ϕ and ϕ−1 map the box to the circle and vice-versa respectively.
Warped grids show local deformation. (b) shows the idea of determinant of Jacobian; the template object T
is mapped to the three objects (I1,I2 and I3). The color encodes logarithm of the determinant of the Jacobian
of the transformations. If T is expanded, the determinant of the Jacobian is greater than one (its logarithm
is positive), and it is less than one if the template object is shrunk.

2.2.3 Feature Extraction

There are abundant feature extraction methods for medical imaging application. Choice of the

features and the algorithm depends on the modality and the application. Giving an exhaustive

list of algorithms and features is beyond the scope of this chapter; therefore, we limit ourselves

to features mentioned in this thesis.

• Intensity: In some modalities intensity value of an image is informative. For example,

in Positron emission tomography (PET) voxel intensity encodes concentration of a tracer

(e.g., Fluorodeoxyglucose, an analogous of glucose) in a particular location of a tissue (e.g.,

brain). Sometimes, intensity value should be mapped to a meaningful value. For example,

in Diffusion Tensor Imaging (DTI) (see Figure 2.3), each voxel is not a scalar but a positive

semi-definite matrix (diffusion tensor). From a DTI image, one can compute fractional
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anisotropy5 (FA) [115], [212] or trace6 maps that measure relative degree of anisotropy and

total diffusivity in a voxel respectively. Many other features can be extracted from DTI

images [216].

• Deformation Features: For some aims, voxel intensity itself may not be directly informa-

tive. For example, measuring deformation (e.g., shrinkage or expansion) of a brain structure

with respect to population average might be meaningful for detecting neurodegenerative

diseases. There are various approaches to quantify deformation of a structure. One ap-

proach is to segment structures of interest and study them as independent objects using

shape analysis methods [93], [124], [41], [167]. Figure 2.5b shows examples of brain seg-

mentation into cortical and sub-cortical regions. One can study deformation of each region

separably or together.

Volumetric approaches suggest another way to address the problem [46], [94], [10]. In a

volumetric approach, the images in a dataset are registered to a template7 and determinant

of Jacobian of the deformation fields are extracted as informative features. Determinant

of Jacobian is a non-negative value for a diffeomorphic map (e.g., deformation field of a

registration map) that quantifies local shrinkage or expansion of tissues [61], [80]. The idea

is shown in Figure 2.6b. If a part of a tissue undergoes shrinkage, the determinant of the

Jacobian of deformation for voxels inside of that part are less than one (their logarithm

are negative) and vice-versa for areas undergoing expansion. Alternatively in this thesis,

we use a feature, so-called RAVEN map, that uses both deformation field and tissue seg-

mentation to quantify local expansion and shrinkage of the tissue types. RAVEN has the

advantage of accounting for imperfect registration by taking residual (error) of the imper-

fect registration into account [61].

5Each voxel in DTI is a positive semi-definite matrix. Assuming that λ1, λ2, λ3 are eigen values, FA =√
(λ1−λ2)2+(λ1−λ3)2+(λ2−λ3)2

4(λ2
1+λ2

2+λ2
3)

. The idea is that spherical diffusion voxel takes FA value close to 0. Elongated dif-

fusion voxel FA takes value close to 1.
6Assuming λ1, λ2, λ3 are eigen values of the diffusion tensor, the Trace = λ1 + λ2 + λ3.
7The template image is either chosen or estimated from the database in a unbiased way [147].
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• Features extracted from time series: In fMRI, each voxel contains a time series. There are

various approaches to extract features from such datasets; obviously a design of features

depends on the application. A popular approach is to fit a general linear model (GLM) to

find correlated voxels with a task and use the parameters of the regressions (β-map) as fea-

tures [84], [72] [157]. Alternatively, parameters of time series models (e.g., autoregressive

model [176]) or even time series itself [104] can be used to extract features. Another alterna-

tive is to apply a spatio-/temporal transformation on the data first, and use its coefficient

as features [195].

2.3 Optimization with Sparsity

In this section, we provide some background material related to optimization and sparsity meth-

ods used in this thesis. First in Section2.3.1, the relationship between norm for regularization and

sparsity is introduced; we illustrate why they yield sparse solutions. Specific focus of this thesis is

on medical imaging applications that call for usually large-scale optimization problems; Section

2.3.2 briefly presents an efficient first-order optimization framework for such applications.

2.3.1 Sparsity-Inducing Norms

Finding a subset of covariates that correlates with a quantitative response has been a staple of

statistical analysis for a long time [81]. In machine learning, this problem is usually referred

as Feature Selection [100]. Feature selection is usually performed to select relevant features to 1)

gain predictive accuracy, 2) gain knowledge about the process that generated the data or simply

visualize the data, 3) limit storage requirements and increase algorithm speed [81]. Reviewing

feature selection methods is beyond the scope of this section (see [81] and references therein).

Here, we only focus on an optimization point of view of feature selection. The optimization

problem usually consists of fitting some model parameters w ∈ Rp to training data while using
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few parameters of w:

min
w

1

N

N∑
i=1

`(fw(xi); yi) + λΩ(w) (2.3.1)

where ({(xi, yi}Ni=1)) is pair of training features (xi) and observations (e.g., class labels) respec-

tively. fw(x) is the model parametrized by w and `(·; ·) is a loss function measuring mismatch

between the model and the observations. Ω(w) is a regularizer designed to control the complex-

ity of fw(·). λ controls the trade-off between the loss function and the regularizer. In order to

promote sparsity, a natural choice for Ω(w) is `0 norm but it renders solving Eq.2.3.1 computa-

tionally intractable. Therefore, one needs to approximate the solution using greedy methods or

`1 convex relaxation methods (Section 2.3.2). To understand why `1 relaxation yields a sparse

solution, consider the following optimization problem

min
w

‖y −Aw‖22

subject to: ‖w‖1 ≤ α (2.3.2)

where α and A are a parameter and a constant matrix respectively. To compare Eq.2.3.2 with

Eq.2.3.1, notice that the loss function is `2 norm and Ω(w) = {0, if ‖w‖1 ≤ α;∞, otherwise}. In

fact, even if `1 is used as a regularizer (i.e., Ω(w) = ‖w‖1) rather than a constraint, Eq.2.3.1 and

Eq.2.3.2 follow the same regularization path8. From convex optimization [35], we know that at

the optimal solution, w∗, the level-set9 of the objective function corresponding to w∗ is tangent

to `1 ball of radius α. The idea is pictorially represented in Figure 2.7. The figure shows this

tangency on the balls of `0-, `q-(0 < q < 1) and `1- and `2-norms in the two dimensional case.

Due to the anisotropic behavior of `q-norms (0 ≤ q ≤ 1), they encourage solutions to be on one of

8Two optimization problems: 1) w∗ = arg minw f(w) + λΩ(w), and 2)w∗∗ = arg minw f(w) s.t. Ω(w) ≤ α,
follow the same regularization path if ∀λ > 0, ∃α > 0 such that w∗ = w∗∗.

9Level set of a function f : Rn → R corresponding to w is: C(w) = {x ∈ dom(f) : f(x) ≤ f(w)} [35]; where C(w)
is a set parametrized by w and dom(f) denoted domain of f .

28



(a) (b) (c) (d)

Figure 2.7: The figure shows balls of radius α for different norms. The green dots represent the optimal
points and the green dashed lines are tangent lines to level sets of the objective function (f(x)). `0, `q
(0 < q < 1), and `1 encourage sparse solutions because it is more “likely” for a tangent line to touch on the
α-balls on the corners.

the axis which corresponds to a sparse solution (because the value of the variable corresponding

to the other axes are zero). However, `2-norm is isotropic and does not enjoy the same property.

If Ω(w) is replaced with `0-norm, the resultant optimization problem is NP-hard in gen-

eral; however some greedy procedures have been proposed for a sub-class of Eq.2.3.1, namely

minw ‖y−Aw‖22 s.t. ‖w‖0 ≤ α. Forward selection technique in statistics [214], Matching Pursuit

(MP) [155], and Orthogonal Matching Pursuit [154] are examples of such algorithms; some opti-

mality guarantees have been shown for a few cases [201]. While greedy algorithms are the right

choice for small dimensional problems, they may not be applicable for medical imaging appli-

cations. In fact, the dimensionality of medical imaging problems inflicts a high computational

cost. In addition, it is not easy to incorporate constraints such as non-negativity or complicated

group-norm regularizations10 into the optimization problem.

Next, we focus on methods that solve convex relaxation for large-scale optimization problems

with a sparsity term which are specifically useful in the problems presented in this thesis.

10Recently Lozano et al. [148] proposed an algorithm for group-sparsity norm with `0-norm.
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2.3.2 Convex Relaxation for Sparse Algorithm

We mentioned in Section 2.3.1 that variants of `1 regularization can be used as a surrogate for

`0 norm. Due to its anisotropic behavior, it encourages sparsity while being computationally

tractable for small- and medium-scale problems. The computational complexity of the convex

relaxation depends on the exact form of the optimization problem. There are several generic

solvers such as Linear Programming (LP), Quadratic Programming (QP), Second-Order Cone

Programming (SOCP), etc. [35] that can address various forms of the objective function and con-

straints. Most of such methods are based on the barrier method to handle constraints [35] and

need to solve a system of linear equations (Newton system) to incorporate second order informa-

tion11. However, except in cases where the Newton system is low-rank, memory requirements

and computational complexity are cost prohibitive for large-scale problems. Therefore, a first

order method needs to be employed for the optimization.

Naive first order methods (i.e., gradient descent) yield very slow convergence rate. To im-

prove convergence rate, we use the Proximal method [49] that generalizes the first order de-

scent algorithm and can handle non-smooth components in the objective. To introduce proximal

method, let us assume that we want to solve the following optimization problem:

min
w

f(w) + λΩ(w) (2.3.3)

where both f(·) and Ω(·) are convex functions and f(w) is smooth and ∇f(w) is L-Lipschitz 12.

Notice that Ω(w) does not need to be smooth; it may be a non-smooth function or a representation

11For a non-constrained problem: minx f(x), Newton method computes the descent direction (∆xnt) as follow:
∇2f(x)∆xnt = −∇f(x). In a constrained case, this equation is replaced with the KKT equations [35].

12A function f(x) is called L-Lipschitz if: ∀x1,x2 ∈ dom(f), |f(x1)− f(x2)| ≤ L‖x1 − x2‖2.
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of a feasible set (e.g.,W),

Ω(w) =


∞ if w /∈ W;

0 if w ∈ W.

(2.3.4)

which maintains the following equivalence: minw f(w) + Ω(w) ≡ minw∈W f(w).

The most basic Proximal method for solving Eq.2.3.3 generates a sequence of iterates {wt}t=1

element of which solves the following subproblem

wt+1 ∈ arg min
z
f(wt) + (z−wt)T∇f(w) +

ηt
2
‖z−wt‖22 + λΩ(wt) (2.3.5)

where f(wt) + (z − wt)T∇f(w) is a linear approximation of f around the current estimate wk.

To keep the linear approximation correct, the quadratic term ‖z − wt‖22 keeps the update of w

in a vicinity of current solution wk. In fact, f(wt) + ηt
2 ‖z − wt‖22 can be viewed as a quadratic

approximation of f around wt assuming a simple diagonal Hessian approximation ηtI; we come

back to this in the sequel.

Removing all terms irrelevant to the optimization in Eq.2.3.5 (e.g., f(wt)) and absorbing the

linear term into the quadratic term, Eq.2.3.5 is equivalent to

wt+1 ∈ arg min
z

1

2
‖z− ut‖22 +

λ

ηt
Ω(z)

where ut = wt − 1

ηt
∇f(wt) (2.3.6)

Therefore in every iteration of the algorithm, a sub-problem called Proximal operator needs to

be solved. More formally, proximal operator or proximity operator for Ω is

PλΩ(u) = arg min
z

1

2
‖z− u‖22 + λΩ(z) (2.3.7)
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where λ > 0.

In fact, the subproblem in Eq.2.3.6 is proximal operator for λ
ηt

Ω. Proximal operators are gen-

eralizations of the orthogonal projection operator13; Table 2.1 shows examples of proximal op-

erators for a few popular regularization functions; see [159], [49], [226], [23], and [150] for more

discussion and applications.

Table 2.1: The table shows a few examples of popular regularization functions and corresponding proximal
operators. The entries of the first column are the functions and the entries of the second column are PλΩ. λ
is a positive constant and

∏
C(x) denotes the orthogonal projection of x on the set C.

λΩ(x) PλΩ(x) Description
λ‖x‖1 Known as “soft-thresholding operator”

max {|x|−λ}
max {|x|−λ}+λx (|x| indicates element-wise absolute value)

λ‖x‖2

{
0 if ‖x‖2 ≤ λ;
‖x‖2−λ
‖x‖2 x if ‖x‖2 > λ.

Zero if it is inside λ-ball of `2, otherwise rescaling

λ‖x‖∞ x−
∏
‖x‖1≤λ Notice the relationship with the dual norm{

∞ if x /∈ C;
0 if x ∈ C.

∏
C(x) Orthogonal projection on the set C∏

φ∗(·)≤λ(x) is the orthogonal projector onto
λφ(x) x−

∏
φ∗(·)≤λ(x) the ball of radius λ of the dual function φ∗

(proof in [50])

Choosing ηt can also be done automatically. One approach is to use the method proposed by

Nestrov et al. [159], or Beck et al. [23] (FISTA) that uses a practical line search. Another approach is

to use the Barzilai-Borwein (BB) spectral method [16]. Remember in Eq.2.3.5, f(wt)+ ηt
2 ‖z−wt‖22

can be viewed as a quadratic approximation of f around wt assuming simple diagonal Hessian

approximation ηtI. BB method suggests to optimally estimate ηt. Assuming st = wt −wt−1 and

rt = ∇f(wt)−∇f(wt−1)

If the diagonal approximation is a good approximation, ηtst ≈ rt. In least-square sense:

ηt = arg min
η
‖ηst − rt‖22 =

(st)T rt

(st)T st
(2.3.8)

13Orthogonal projection of given parameter u on a set C solves the following optimization problem:
∏
C(u) =

arg minx ‖u− x‖2 s.t. x ∈ C
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This is not the only way to approximate the Hessian as a diagonal matrix and there are other

variants of the BB method (see [16], [59], [226]). The BB method is usually a non-monotone

method (i.e., it is not a descent method), occasional increase in the objective appears to be essential

in good the performance of BB method. Similar to SpaRSA [226], we use a safeguard method to

ensure that ηt ∈ [ηmin, ηmax]. Our acceptance criteria for a step wt is also similar to [226], namely

φ(wt+1) ≤ max
i=max(t−M,0),··· ,t

φ(wi)− σ

2
ηt‖xt+1 − xt‖2, (2.3.9)

where φ is the objective function we want to minimize and M is a constant. The meaning of

Eq.2.3.9 is that φt+1 must be decreasing with respect to maximum of the last M objective values

but increase with respect to the φt is allowed. Notice that if M = 1, it is a descent method. The

convergence behavior of Eq.2.3.9 is studied in [97] and [226]. Its good performance is also shown

empirically in this thesis and also in SpaRSA [226] and many other studies [213], [215].

2.4 Learning

This section reviews different learning paradigms in machine learning community. Section 2.4.1

compares generative and discriminative learning approaches. Section 2.4.2 briefly introduces

graphical models as a modeling approach for distributions. Section 2.4.3 presents matrix factor-

ization as an instance of generative framework and Section 2.4.4 lays out Support Vector Machine

as a discriminative framework.

2.4.1 Generative vs Discriminative Approaches

For this section, we assume thatN samples (xi) and corresponding class labels (yi) are given; each

sample is potentially in multi-dimensional space (xi ∈ RD). We represent this setting as a set of

N pairs: Z = {zi ≡ (xi, yi)}Ni=1. An example of such a setting could be xi representing an image
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acquired from the MR scan of a subject and yi, a label denoting normal or abnormal status of the

same subject. In order to learn a relationship between x and y, one can choose a method from

two schools of thought in machine learning [119]: generative and discriminative approaches14.

Providing a comprehensive survey over generative or discriminative approaches is beyond the

scope of this chapter; therefore, we supply sufficient background for methods used in this thesis

(see [119] for more in depth discussion). In this section, we give a brief introduction to generative

and discriminative methods. Section 2.4.2 is devoted to a short introduction to graphical models

as a modeling approach for generative models; section 2.4.3 presents the matrix factorization

framework as a model to represent data in a generative manner. Section 2.4.4 introduces Support

Vector Machine (SVM) as one of the most popular discriminative methods.

Assuming generative and discriminative methods lay on two ends of a spectrum, genera-

tive models at one end attempt to estimate a distribution over all variables; for example in our

setting for both x and y. In a generative approach, covariates (x) and the observation (y) and

potentially hidden variables are modeled by a joint probability distribution: P(z) = P(x, y). Ex-

amples of such approaches are mixture of Gaussians [29], hidden Markov Models (HMM) [169],

naive Bayes and, Markov random fields [230]. These models are usually parametrized by a set

of parameters Θ. Given the training dataset (Z), the parameters should be estimated. Generative

learning has different varieties [119], ranging from local estimation that only considers perfor-

mance on the given training data (maximum likelihood): Θ∗ = arg maxΘ P(Θ|Z), to combina-

tion of a fitness term and a prior term (maximum a posteriori): Θ∗ = arg maxΘ P(Θ|Z)P(Θ), to

fully weighted averaging over all possible hypothesis in a hypothesis space (Bayesian inference):

P(z|Z) =
∫
dP(z,Θ|Z). There are several ways to constrain the joint distribution and reduce

degrees of freedom: ranging from identifying conditional independence and encoding it into

a graph structure (see Section 2.4.2), to parametrically constraining the distribution by assum-

ing a prior distribution over parameters and hyper-parameters (see Section 2.4.3). Generative

14The two competing formalisms have also been called discriminative versus informative approaches [177].
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models handle classification or regression by manipulating variables using standard basic ax-

ioms of probability using marginalization, conditioning and Bayes rules. Generative models can

be viewed as one extreme of learning spectrum that attempt to estimate a distribution over all

variables (x and y). Although the completeness of generative models might be appealing, they

might be inefficient particularly if the conditional distribution of output given input is needed

(i.e., P(y|x)). Thus, in this case, more reductionist approaches such as conditional learning15 or

even more minimalist methods as discriminative learning may be more appropriate.

Unlike generative methods, discriminative approaches do not attempt explicitly to model the

underlying distribution between input (x) and output (y). Instead, they focus on finding a map-

ping from inputs to output (e.g., given features, finding optimal classifier) [177], [119]. Thus,

such techniques only consider distance from a decision boundary or goodness of approximation

of the regression function as evaluation measures to find optimal parameters. Since discrimi-

native methods do not spend computational resources on the intermediate steps of computing

conditional distributions and such, they are potentially more efficient. Examples of discrimina-

tive methods are Support Vector Machine (SVM) [204], Gaussian Processes [88], logistic regres-

sion [122]. The discriminative models usually lack the elegant probabilistic concept of priors,

structure and such concepts are usually replaced with the notions of regularization and loss

function [119]. Therefore, it is difficult to incorporate our prior knowledge into such methods

and they are not as explicit or visualizable as generative models [119].

It motivates fusing flexibility and diversity of the generative models with efficiency and

power of discriminative framework. Several approaches have been proposed to combine these

two frameworks. One technique is to combine generative modeling with a subsequent SVM

classifier using Fisher kernels [117]. However in such an approach, there is no iteration between

generative and discriminative phases and there is a chance that discriminative information is

15Unlike Generative methods that learn P(x, y), conditional methods focus on P(y|x) assuming that one is only in-
terested in input (x) and output (y) relationship. They are potentially more efficient than generative settings. This is not
quite discriminative learning because we have a generative model of P(y|x) as compared to a discriminative setting in
which we are only interested in a mapping from x to y [119].
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lost during generative modeling. Another approach is proposed by Jebara et al. [116], [119] so-

called “maximum entropy discrimination (MED)”. The model that we proposed in this thesis

( [20], [17], [21] and [19]) is rather different. It learns two maximum posteriori models for gener-

ative and discriminative models simultaneously.

2.4.2 Graphical Model: An Approach to Model a Distribution

Graphical models have been a very popular tool over the last decade [165], [53], [140], [131]. They

allow to handle complicated dependencies between variables of a multi-variate distribution us-

ing a graph representation. Nodes of the graph represent random variables and edges between

nodes symbolize dependencies between the variables. Exploiting independence between vari-

ables allows compact representation. The graph provides a modeling language to incorporate

those independencies. Graphical model is a wide research topic on its own and here we only

provide very brief introduction to some notions we have used in this thesis; for more in depth

introduction see [131], [140].

In a graphical model, some nodes correspond to the observed variables and others denote

latent (hidden) missing variables. There might be also nodes representing parameters (Θ) and

hyper-parameters16. As a convention in this thesis, we represent observed variables with gray

circles and latent ones with white circles (see Figure 2.8a,2.8c,2.8d for examples). The two most

common classes of graphical models are Bayesian Networks (BN) which are based on directed

acyclic graphs (DAG) and Markov networks which are based on undirected graph17.

Let us assume that we have defined a Bayesian network with a DAG (G) on D variables,

[x1, · · · , xD] = x ∈ X ⊂ RD, the distribution over all variables in BN can be factorized as a

16Hyper-parameters describe distributions over parameters.
17It is less common to use a mixed directed and undirected graph.
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product

P(x) = P(x1, · · · , xD) =

D∏
i

P(xi|π(xi)) (2.4.1)

where P(xi|π(xi)) is the conditional probability of xi conditioned on its parents nodes π(xi)
18.

Examples of BN are shown in Figure 2.8a,2.8c.

For the Markovian network (i.e., undirected edges and cycle is allowed), the distribution can

be factorized according to the product of non-negative potential functions:

P(x) = P(x1, · · · , xD) =
1

Z

∏
C∈C

ψ(xC), Z =

∫
X

1

Z

∏
C∈C

ψ(xC) (2.4.2)

where C is the largest set of fully connected sub-graph (maximal cliques), Z is just a normalizer

to produce a proper distribution, and xC is the set of all random variables in a clique C (see

Figure 2.8b for an example). In order to apply a graphical model, one needs to know how to

perform Learning and Inference algorithms over the graph. Giving a comprehensive survey over

learning and inference algorithms is beyond scope of this chapter. Here, we provide very brief

explanation for each.

Inference is about computing queries from the model. Both directed and undirected graphs are

full joint probability of all variables. However, one might want to have a specific query from

the model. The most common queries are conditional probability query and most probable query.

In conditional probability query, we have some observations over a subset of random variables

and we would like to compute the conditional probability over another set of variables, namely

P(xC1 |xC2 = z) where C2 is the set of observed group, z is the observed value, and C1 is the set of

variables we are interested in. In “most probable query”, we are interested in finding the most

probable value given an observation. An obvious example of such query is maximum a posterior

(MAP) which is mentioned earlier in Section 2.4.1, namely arg maxxC1 P(xC1 |xC2 = z). Computing

18Remember that G is a directed acyclic graph
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(a) (b)

(c) (d)

Figure 2.8: This figure shows a few examples of graphical models. Figures (a), (c), and (d) are examples
of Bayesian Network constructed with a Directed Acyclic Graph (DAG); more specifically (a) represents a
Hidden Markov Model (HMM) [169]. (c) and (d) are equivalent, (d) is more compact representation; the box
in (c) denotes repetition of N variables. (b) represents an example of Markov network constructed with an
undirected graph. All gray nodes (yi’s) are observed variables and the white notes are the latent variables.

an exact inference for a general graph is intractable for large number of models; for this reason,

we resort to approximations. In general, there are two frameworks for approximate inference:

optimization-based and sampling-based. In optimization-based approach, a class of “easy” dis-

tributions is defined, and then the objective of the optimization is to best approximate the query

within that class. KL-divergence19 is usually used to measure distance between distributions. In

sampling-based algorithms, the joint distribution is approximated as a set of instantiations to all

or some of the variables in the graph. The instantiations (i.e., samples) represent part of the prob-

ability mass. The query function can usually be presented as an expectation. The approximation

is done via generating M samples20 and computing empirical expectation (see [131] for more in

19Recall that relative entropy between P1 and P2 is defined as D(P2|P2) = EP1 [ln
P1(x)
P2(x)

]
20For example Markov chain Monte Carlo (MCMC) is an approach for generating samples from the posterior distri-

bution.
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depth discussion).

Learning in graphical models includes two aspects: parameter estimation and structure learn-

ing. In parameter estimation, it is assumed that general structure of the graph is given (i.e.,

dependencies between variables) and the task is to find the parameters given a training data Z ,

In structure estimation, the objective is to extract both structure as well as parameters of Bayesian

network or Markov network given the training data. In this thesis, whenever we use a graph-

ical model, the structure is given and rationalized through a few arguments; see [131] for dis-

cussion about structure learning in graphical models. Parameter estimation can be done with

maximum likelihood estimation (MLE) or Bayesian approaches. The difference between the two

approaches is that in Bayesian approach, a prior distribution is assumed over parameters to im-

prove robustness against over-fitting. Nevertheless, the key ingredient for both is the likelihood

function: the probability of the data given the model. Assuming that there are m independent

training samples, MLE maximizes J(Θ;Z) =
∏m
i=1 P(zi|Θ) and Bayesian objective is to maximize

P(Θ)
∏m
i=1 P(zi|Θ). The factorization formulations in Eq.2.4.1 and Eq.2.4.2 can now be exploited

to decompose P(zi|Θ) further. While estimation of the parameters in BN can be solved efficiently

thanks to decomposability of parents and children random variables in Eq.2.4.1, estimation of pa-

rameters in Markov network usually involves iterative inference and local parameter estimation;

therefore it is more expensive than parameter estimation in BN (see [131] for more details).

2.4.3 Generative Model: Matrix Factorization

“A” generative approach to model for high dimensional samples (xi ∈ RD) is to arrange them

as columns (or rows) of a matrix (say X ∈ RD×N ) and derive a decomposition as an abstract

summarization of the data. In the mathematical discipline of linear algebra, matrix factorization

is decomposition of a matrix to a canonical form, e.g.,

X = BC + E
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B ∈ B, C ∈ C, E ∈ E (2.4.3)

whereB, C, and E denote the sets of feasible choices for B, C, and E respectively. Different choices

for B, C, and E yield various decomposition methods. For example assuming E = 0 (i.e., Eq.2.4.3

is an exact decomposition): 1) if B is the set of all “orthogonal” matrices and C is the set of all

“orthonormal” ones, Eq.2.4.3 is the Singular Value Decomposition (SVD) method21; 2) If B is set of

lower triangular matrices and C is set of upper triangular ones, then Eq.2.4.3 is LU decomposition;

etc.. There are many flavors of matrix factorization and here we only focus on low-rank matrix

approximation. By low-rank matrix approximation, we mean: rank(X) > rank(BC) and E

denotes error or noise matrix entries of which should be close to zero; hence X ≈ BC. We need a

measure of distance (D(·; ·)) (a divergence) to measure the quality of the approximation; therefore

Eq.2.4.3 can be written as an optimization problem

min
B,C

D(X; BC)

subject to:B ∈ B, C ∈ C (2.4.4)

Here we show a few examples of popular algorithms that can be cast out as low-rank matrix

approximation. Most of the dictionary learning methods can be viewed as variations of Eq.2.4.4,

k-SVD [7], Non-negative Matrix Factorization [141], Independent Component Analysis (ICA)

[25], etc. [75], [190]. Table 2.2 represents some other examples of popular methods that can be

described by X ≈ BC (for more examples see [190]). Just for illustration purposes, we derive

a matrix factorization for k-means clustering which is widely known as a straightforward and

fairly efficient method for solving unsupervised learning problems:

Example 1: k−means clustering is a method of cluster analysis which aims to partition N

observations into K clusters, in which each observation belongs to the cluster with the nearest

21Typically SVD is represented as X = UΣVT , where U ∈ RD×r and V ∈ RN×r are orthonormal matrices and Σ is
a r × r diagonal matrix with positive diagonal entries. Σ can be absorbed into U which make it just orthogonal.
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Table 2.2: This table shows examples of well-known methods that can be viewed as matrix factorization:
Singular Value Decomposition (SVD), k-means/medians, Probabilistic Latent Semantic Indexing (pLSI),
Non-negative Matrix Factorization (NMF). In the table, ‖ · ‖2F denotes Frobenius norm and Λ is a diagonal
matrix and KL denotes Kullback-Leibler divergence [65].

Method D(X; BC) B C
SVD ‖X−BC‖2F BTB = I CCI = Λ
k-means ‖X−BC‖2F - CCT = I,

cij = {0, 1}
k-medians ‖X−BC‖1 - CCT = I,

cij = {0, 1}
pLSI [109] KL(X; BC) 1TB1 = 1 1TC = 1

bij ≥ 0 cij ≥ 0
NMF [141] KL(X; BC) bij ≥ 0 cij ≥ 0

mean. Difference between the k−means algorithm and its soft version is that the variable de-

scribing how data points belong to clusters takes “degree” values instead of binary (0 and 1)

values. Assuming that each of the N observations (xi) belongs to a D-dimensional feature space

(xi ∈ RD):

hard k-means: soft k-means:

min
cki,bk

N∑
i=1

‖xi −
K∑
k=1

bkcki‖22 min
cki,bk

N∑
i=1

‖xi −
K∑
k=1

bkcki‖22

s.t.:
K∑
k=1

cki = 1, cki ∈ {0, 1} s.t.:
K∑
k=1

cki = 1, cki ≥ 0 (2.4.5)

where bk are the centroids of the clusters, cki are cluster membership values. Because of the

constraint, {cki}Kk=1 can be viewed as the probability or membership values.

Alternatively, one can view Eq.2.4.5 as a constrained matrix factorization problem:

min
C,B

‖X−BC‖2F

subject to C ∈ C (2.4.6)

where C := {ck : ck ≥ 0, 1T ck = 1, 1 ≤ k ≤ K} for soft k−means and C ∈ {0, 1}K×N for

hard k−means; X ∈ RD×N is matrix holding the observations; each column of the X is a sample.
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(a) (b) (c)

Figure 2.9: (a) shows some of common choices for the discriminative loss function. Notice that zero-one loss
function is a sign function. (b) shows maximum margin hyperplane and margins for an SVM trained with
samples of the two classes. (c) shows an example of loss function for multi-class classification.

Similarly, the columns of B ∈ RD×K are cluster centroids and the columns of C ∈ RK×N hold

the membership values. For brevity of notation, C encodes the feasible set for the columns of C

that was shown earlier in Eq.2.4.5; ck are columns of the matrix C. In matrix nomenclature, B

and C can be called basis matrix and coefficient matrix respectively. Notice that from the matrix

factorization point of view, Eq.2.4.6 clusters the columns of X and the constraints are defined

on the columns on C. If the constraint is defined on rows of B instead, the matrix factorization

clusters the rows of the X instead of the columns, and the rows of C play the role of centroids

while the rows of B hold membership values.

2.4.4 Discriminative Model: Support Vector Machine

One of the most popular discrimination methods is Support Vector Machine (SVM) [204]. SVM

is a minimalist (non-probabilistic, see Section 2.4.1) classifier that maps given input features to

a class label. It can be used for classification, regression, or other tasks. Intuitively, a good sep-

aration in a classification problem is achieved by the hyperplane that has the largest distance

to the nearest training data points of any class; therefore, the larger the margin the lower the

generalization error of the classifier (see Figure 2.9b).
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For illustration, we study linear binary classification. Let us assume we are given some train-

ing data Z = {zi = (xi, yi)|xi ∈ RD, yi ∈ {−1, 1}}Ni=1 where xi are features and yi are the class

labels. The objective is to find a linear classifier parametrized by w and b (h(x) = 〈w,x〉 + b )

with the least number of mis-classification. We can define a so-called a loss function to measure

goodness of fit between h(xi) and corresponding yi, i.e., `(yi;h(xi)):

min
w,b

1

N

N∑
i=1

`(yi;h(xi)) (2.4.7)

For a binary classification, the loss can be written as a function number of disagreement be-

tween yi and h((xi)), i.e., `(yi;h(xi)) = `(yih(xi)). Several possible choices for the loss function

are given in Figure 2.9a. The loss function that actually counts the number of disagreements

is the sign function but it renders Eq.2.4.7 computationally inefficient even for small number of

samples22. Other choices for the loss function in Figure 2.9a approximate the sign function. They

inflict penalties that are bigger or equal to the sign function (they upper bound the sign function;

see Figure 2.9a). Let us study one of the surrogates which is called hinge loss function, namely

`(yi;h(xi)) = [1−yih(xi)]+. Choosing the hinge loss function, we can write the SVM optimization

problem as:

min
w,b

1

N

N∑
i=1

[1− yi(〈w,xi〉+ b)]+ + λ‖w‖22 (2.4.8)

where [a]+ = max{0, a} and ‖w‖22 is a regularizer added to the objective function to improve

the generalization and λ balances between the loss function and the regularization. To see why

‖w‖22 improves generalization, notice that b
‖w‖2 determines the offset of the hyperplane from the

origin along the normal vector w and we want to choose w and b to maximize the margin line

(distance between the parallel hyperplanes) that are as far apart as possible while still separating

22If the sign function is chosen as the loss function, one may resort to algorithms to solve the mixed integer pro-
gramming in Eq.2.4.7(e.g., Cutting-Plane [120]), but the integer programming algorithms do not scale well to medium- or
large-scale optimization problems.
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the data. If two classes are separable, the first term in Eq.2.4.8 is zero and the optimization in

Eq.2.4.8 minimizes ‖w‖2 which is equivalent to maximizing the margin (see Figure 2.9b).

SVM can be extended beyond the binary classification. For multi-class case (i.e., yi ∈ {1, 2, · · · , L}),

the most common approach is to reduce the problem into several binary classifications (e.g., one-

vs-one or one-vs-all [70], [110]). Nevertheless, we prefer the method proposed by Crammer et

al. [55] that casts multi-class classification into a single optimization rather than multiple binary

ones. In [55], for each class (say l’th class) there is a set of parameters (say wl); therefore in-

stead of a vector parameterizing a classifier, we have a matrix W = [w1 · · ·wL] ∈ RD×L holding

parameters of a multi-class classifier. The class label is decided by finding the maximum value

classifier, namely h(x) = arg maxl=1,··· ,L {wT
l x + bl} (see Figure 2.9c). Before casting it as a single

optimization, let us re-write Eq.2.4.8 slightly differently:

min
ξi,b,w

1

N

N∑
i=1

ξi + λ‖w‖22

s.t.: 1− yi(wTxi + b) ≤ ξi, ξi ≥ 0 (2.4.9)

Eq.2.4.9 and Eq.2.4.8 are equivalent. In effect, ξi’s account for samples that are on the wrong

side of the separating hyperplane (miss-classification) or within the margin (sample classified

correctly but fell within the margin area). Crammer et al. [55] suggest to modify Eq.2.4.9 with:

min
ξi,b,W

1

N

N∑
i=1

ξi + λ‖W‖2F

s.t.: 1 + wT
l xi + bi −wT

yixi − byi ≤ δil + ξi, ξi ≥ 0 (2.4.10)

δil is 1 if i = l and 0 otherwise. wl and wyi are the l and yi’th columns of W. If there areN samples

and L class label, the number of constraints on Eq.2.4.10 in N × L. In Eq.2.4.10, if i’th sample is

classified as ŷi 6= yi, it means wT
ŷi

xi + bŷi > wT
yixi + byi , hence ξi = 1 + wT

ŷi
xi + bŷi −wT

yixi − byi

is inflicted to the objective of Eq.2.4.10.
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2.5 Toward the Proposed Method: Generative-Discriminative

Learning

One of the aims of the proposed method is classification; this problem falls into the discriminative

learning paradigm. In addition to the generalization performance in term of classification, we

desire a method that is expressive for clinical purposes. Expressiveness serves two goals: 1) it

allows us to validate and compare what is found to be important by our model to that of clinical

knowledge23 thus this qualitative measure can be used in tandem with the quantitative measure

(i.e., classification accuracy). 2) it allows clinical knowledge to be incorporated into the model

as a prior24; this prior knowledge can be instrumental to alleviate the curse of dimensionality of

the original problem. A generative framework (e.g., Bayesian) is more appropriate to satisfy the

“expressiveness” criterion. In this thesis, we combine those two learning paradigms, generative

and discriminative, and address related challenges for medical image classification applications.

One of the fundamental limitations in medical image classification is the lack of sufficient

training samples relative to the high dimensionality of the data. Therefore, a dimensionality re-

duction is required to achieve a good generalization performance for the classification task. We

adopted a matrix factorization framework to reduce the dimensionality in both the discrimina-

tive and the generative tasks. Section 2.5.1 provides a simple illustrative example showing a

generative application of matrix factorization for a medical imaging task. In light of that exam-

ple, Section 2.5.2, briefly discusses the general idea behind the proposed method.

2.5.1 An Illustrative Example

In this example, let us assume that we are given an ensemble of N brain images with a common

pathology. All brain images are registered to a common template. Let us assume that the pathol-

23For example, for some abnormalities such as AD, areas related to memory are usually affected.
24For example, a pathology may only affect the gray-matter part of brain
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ogy we are interested in, affects similar areas in patients’ brains25 and we are asked to segment

regions where the pathology is mostly observed. Since we may not have a priori information

about the location of the pathology, an appropriate solution would be to apply a data-driven

approach, for example k−means clustering, to segment voxels of the same type. Signatures of

voxels across subjects 26 can be used as features. Recall Example 1 in Section 2.4.3, we can cast

the k−means algorithm as matrix factorization. Let us assume that each column of matrix X

holds all voxels of a subject. The only difference is that we want to cluster the voxels but not

the subjects. We can simply transpose data matrix (X) and try to factorize it into centroids and

membership values. However, for the sake of this example, we do not transpose the data ma-

trix. Instead, we change our interpretation of the basis and the coefficient matrices by moving

the constraint which was defined earlier on C in Eq.2.4.6 to B. The idea is shown in Figure 2.10.

New formulation would be as follows:

min
C,B

‖X−BC‖2F

subject to B ∈ B := {bd : bd ≥ 0, 1Tbd = 1, 1 ≤ d ≤ D} (2.5.1)

in which bd denotes rows of the basis matrix. Notice that in Eq.2.5.1, each row of the X is one

sample while in Eq.2.4.6, each column is one sample; in other words, columns of X in Eq.2.5.1

index features while rows of X denote features in Eq.2.4.6. Therefore, the constraint in Eq.2.4.6

moves from columns of the C to rows of B. In Eq.2.5.1, rows of B are membership values. In

fact the formulation in Eq.2.5.1 segments or clusters voxels into groups in a generative (unsuper-

vised) way. Observe that changing the feasible set changes the meaning of the algorithm and

consequently alters the roles of its blocks (B and C).

25An example of such a pathology is vascular lesions in elderly patients which occur mostly around ventricles.
26Here by signature, we mean features extracted for each voxel; for example, simply intensity of the voxel. By signa-

tures of the voxel across subjects, we mean, for each voxel location, features extracted from every subject are concatenated
into a vector to build a feature vector for that voxel location. We call this feature vector, signature of the voxel across
subjects for that location.
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Figure 2.10: In this figure, each row in the data matrix (X ∈ RD×N ) is one observation which is an N
dimensional row vector representing the signature of a voxel across N subjects. This figure shows how
k−means clustering of the voxels can be viewed as matrix factorization. Therefore, the rows of C are
centroids of the clusters and rows of B are membership values. Hence, the rows of B (i.e., bk) belong to
K-dimensional simplex (bk ∈ ∆), i.e., it is positive and sums to one. This algorithm clusters rows of the X
into clusters (regions).

2.5.2 Merge Some Rows, Classify All Columns

As we saw in the previous example, matrix factorization can be used to formulate a data-driven

approach for pathology localization. However, the problem we address in this thesis is more

challenging than clustering or segmentation:

• Not only we are interested in localization but also we would like to find regions that can

be used to extract discriminative features.

• Not all voxels (i.e., rows of the data matrix) are relevant to the abnormality (e.g., background

voxels). Therefore, it calls for a different formulation than clustering or segmentation (i.e.,

set partitioning); the problem rather falls into the category of subset selection. It renders

the simplex constraint on rows of the B irrelevant (see Chapter 3 for details).

Nevertheless, the example in the previous section can give us an insight. In effect, we would

like to merge some of the rows (voxels) but not all them because only some are relevant.
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Notice the formulation in Eq.2.5.1, leads to cluster the rows. If the simplex constraint is de-

fined on the columns of the C instead of row of B, it leads to cluster subjects (columns) into

homogeneous groups. However, we would like our cluster assignment to be consistent with

the class labels. In other words, we would like subjects of the same class to be clustered together.

Therefore from this point of view, it is a classification problem not unsupervised clustering. More

specifically, we adopt a discriminative approach rather than the generative approach and we

would like to make as few misclassification as possible. Consequently, since our objective is dif-

ferent than that of the first example, we do not use the definition of the feasible set in Eq.2.4.6.

Feasible sets will be discussed in Section 3.4 and more elaborately in Chapter 4.

In a similar theme to this thesis, various formulations of matrix factorization have already

been proposed for collaborative filtering [132], [181], [231], and [173], multi-way clustering [185],

[74]. However, they serve different purposes than what we are interested in this thesis. The

collaborative filtering method has mostly been used for recommendation system, for example,

to recommend movies to customers27 or people with similar interests in dating websites28 [132].

In recommendation systems, the objective is to fill unknown entries of a matrix and the low-

rank assumption (rank(X) < min(D,K)) is imposed for regularization purposes or to improve

robustness of the algorithm. In some of them [193], there is no direct access to the basis and

coefficient matrix but they are implicitly regularized.

In the context of dictionary learning, there has been similar matrix factorization problems.

Duarte et al. [71] have learned dictionaries for compressive sensing purpose. Most of the dictio-

nary learning methods [98], [76], [152] are used for denoising or restoration of signals or images.

Some authors [170], [98], [228] used learned dictionaries for classification tasks but atoms of the

dictionaries were not learned for the specific task (i.e., classification). In addition, it is not proper

for our purpose because: first, they mostly focus on the large-sample size problem while in our

case, number of samples is much smaller than the dimensionality; second, the resultant dictio-

27Netflix: www.netflix.com
28eHarmony: www.eharmony.com
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nary atoms cannot be used to illustrate differences between the classes.

To the best of our knowledge, the closest publication that exploits matrix factorization with

a relatively similar approach is a paper by Mairel et al. [151]. Nevertheless, there are significant

differences between our formulation and that of Mariel both in the term of the objective function,

the constraints and the optimization approach. In addition, the main goal in [151] is to apply the

method in the cases that the number of samples is large; while in medical imaging applications

the number of features are much larger than the number of samples.
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Part I

General Framework
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Chapter 3

Generative Discriminative Matrix

Factorization

3.1 General Framework

We adopt a regularized matrix factorization framework for our purposes. In regularized ma-

trix factorization, the objective is to decompose a matrix into two or more matrices subjected

to some constraints or priors such that the decomposition describes the matrix as accurately as

possible. Assuming that each column of X = [x1 · · ·xi · · ·xN ] represents an observation (i.e., a

sample image that is vectorized), the columns of matrix B can be viewed as basis vectors and

the i’th column of C contains corresponding loading coefficients of the basis vectors for the i’th

observation:

X ≈ BC B ∈ B, C ∈ C, (3.1.1)

in which X is decomposed into two matrices B and C, each of which has its own feasible set, B

and C respectively.

In order to define the feasible sets in Eq.(3.1.1), we need to elaborate the requirements that our
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model should satisfy:

1) The basis vectors must be anatomically meaningful. This means that a constructed basis

vector should correspond to contiguous anatomical regions preferably in areas which are biologi-

cally related to a pathology of interest. Remember our example in Section 2.5.1 where we wanted

to cluster voxels into regions. There are similarities between our formulation and that of the sec-

ond example in a sense that we want to have local spatial support; nevertheless we use different

constraints than those of Eq.2.5.1. Constraints in Eq.2.5.1 enforce voxels to be exclusively member

of one cluster. This enforcement is applied hardly or softly depending on whether hard or soft

k-mean is used. However in our application, there might be two or more overlapping clusters of

voxels that are relevant to an abnormality. In addition, parts of an image may not be relevant to

the abnormality at all (e.g., background). Therefore, we would like to allow each voxel to belong

to none or more than one cluster of voxels.

We do not use the same definition of the feasible set as Eq.2.5.1 but we still want to have local

spatial support.

2) The basis must be discriminative: we are interested in finding features, i.e., projections

onto the basis vectors, that construct spatial patterns which best differentiate between groups,

e.g., patients and controls or activation and baseline.

3) The basis vectors must be representative of the data as much as possible, while maintaining

their discriminatory ability.

In subsequent sections, we will introduce appropriate priors that encourage the aforemen-

tioned properties, but we first lay out our framework. This framework is represented pictorially

in Figure3.2 and as a graphical model in Figure3.1. Let us assume that we collect images into

columns of matrix X, therefore a column xi represents one sample image whose label (class) is

represented by yi. Entries of each column of X (xi) are image features based on which we can

define regions. For example, it can be the determinant of Jacobian of a deformation field that

warps a subject to a common template (see Section 3.6), a tissue density map representing region
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Figure 3.1: Graphical model representing our model: xi is the i’th sample (out of N samples) and yi is the
corresponding class label. bj is the j’th basis vector (out of K basis vectors) and ci is the loading coefficient
for the i’th sample; w parametrizes the class-likelihood, i.e., pw(y|·); in other words, it parametrizes the
classifier. Since samples and corresponding labels are observed variables, they are shaded with gray while
unobserved variables (i.e., bj , ci, and w) are white.

Figure 3.2: It shows the idea of general framework a matrix factorization. The objective function consists of
Generative term that approximate X ≈ BC; and Discriminative term that approximate labels (y). In order to
measure goodness of fit for each term, we define the generative loss function D(·; ·) and discriminative loss
`(·; ·).

volume (see [90] and [61]), or fMRI of an activation task.

Assuming that each image consists of D voxels that are concatenated in lexicographical or-

der, each column of X is a D-dimensional vector. If the dataset includes N samples, matrix X is

a D ×N matrix. In this part of the thesis, we assume that xi’s reside in the positive quadrant (in

most cases, images, or determinants of Jacobian of diffeomorphic transformations derived from

them, are non-negative). The goal is to decompose the data, X, into a matrix B, whose columns
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are optimized basis vectors, and a loadings matrix C, which holds corresponding loadings of

the basis vectors, namely X ≈ BC. At the same time the projections on the basis, B, are used

to predict the labels y using w as we describe below, thus trading off generative and discrimi-

native criteria. Without additional constraints, the decomposition is ill-posed and has infinitely

many solutions; hence regularization is necessary. Given conditional independence depicted in

Figure3.1, we formulate the problem as a MAP (Maximum a Posteriori) estimation problem as

follows:

bk ∈ RD, ci ∈ RK , w ∈ RK (3.1.2)

B = [b1 · · ·bK ],C = [c1 · · · cN ], w = [w1 · · ·wK ]

(B∗,C∗,w∗) = arg max
B,C,w

log p(B,C,w|X,y) =arg max
B,C,w

[log p(X|B,C) + log p(y|X,B,w)

+ log p(B) + log p(C) + log p(w)]

in which w is a vector that parametrizes class-likelihood (p(y|X,B,w)), or, in other words, it

parametrizes a classifier that will be explained later (Section3.3). Instead of maximizing the loga-

rithm of the posterior, we can minimize the negative of the logarithm of the posterior that yields:

(B∗,C∗,w∗) = arg min
B,C,w

D(X; B,C) + `(y; X,B,w) +R(B,C,w)

subject to: B ∈ B C ∈ C w ∈ W, (3.1.3)

in which the first term is a divergence term that encourages good data approximation, which

will be referred to as the generative term. This idea is represented in Figure3.2. The second term

is a loss function that encourages good classification, which will be referred to as the discrimi-

native term. The last term in the objective of Eq.(3.1.3) is a combination of prior terms on B, C,

and w. Due to conditional independence assumed in our model (Figure 3.1), this term can be
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decomposed into addition of priors over each of the terms. Observe that in Eq.(3.1.3), the regu-

larization terms are redundantly added only for future references. This perspective is consistent

with Eq.(3.1.2) because every constraint can be transformed to a prior by imposing an infinite

cost for points outside the feasible set and zero for points inside the feasible set. For example:

B ∈ B ≡ R(B) =


∞ if B /∈ B;

0 if B ∈ B.
(3.1.4)

Some examples of well-known methods in Table 2.2 that can be viewed as regularized matrix

decomposition and can be formulated as Eq.(3.1.3). Note that the examples in Table 2.2 are all

generative methods, hence w, and consequently its feasible set,W , is omitted.

3.2 Generative Term

In this section, we will explainD(.; .) (the generative term) that measures the divergence between

the data (X) and its decomposition (BC), that is

X = BC + E

where E represents approximation error (noise).

Various divergence choices can model different noise assumptions. Basically, any Bregman

divergence can be used for D(·; ·):

Definition 3.2.1. For any strictly convex function φ : S ⊆ R → R that has a continuous first

derivative, the corresponding Bregman divergenceDφ : S× int(S)→ R+ is defined asDφ(x, y) ,

φ(x)− φ(y)−∇φ(y)(x− y), where int(S) is the interior of set S [65].

Bregman divergences are non-negative, convex in the first argument and zero if and only if

x = y. For matrices, we can define separable Bregman divergences asDφ(X,Y) =
∑
ij Dφ(xij , yij).
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Notice that xij , yij ∈ domφ ∩ R+. Different choices of φ lead to various divergence terms. For

example φ(x) = 1
2x

2 yields Frobenius norm and φ(x) = x log(x) gives element-wise Kullback-

Leibler (KL) divergence.

We assume Gaussian noise between observations (X) and their reconstructions (BC), i.e.,

p(X|B,C) = N (BC, 1
λ1

I). It is shown in [47] that the Frobenius norm is optimal for additive

Gaussian noise. Hence, the generative term is:

− log p(X|B,C) = λ1D(X; B,C) = λ1‖X−BC‖2F (3.2.1)

Observe that the divergence term is a convex function with respect to B if C is fixed, and vice-

versa, but it is not jointly convex with respect to both B and C. Other assumptions of noise

between observation and reconstruction, e.g., Poisson, can be modeled by various choices for the

divergence term, e.g., Kullback-Leibler (KL) divergence [65].

3.3 Discriminative Term

The idea behind the discriminative term is to encourage discriminative basis vectors. In other

words, if an image, xi, is projected on basis vectors yielding new features (e.g., vi), such new

features should be discriminative. In other words, for new features (v), there exists a classifier

parametrized by, say w, that minimizes a loss function, `(yi;hw∗(vi)), for an optimal set of pa-

rameters w∗. Here, we use a linear classifier, namely

hw(v) = 〈w,v〉 (3.3.1)

where 〈·, ·〉 represents inner product and entries of v are new features after projection.

Ideally, v can be written as a projection operator acting on xi to project it on the subspace

spanned by bj ’s. However, in our formulation, we set vj = 〈x,bj〉 or, in matrix notation, v =
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BTx. It is not a proper projection unless the basis vectors are orthonormal; nevertheless, as it will

become clear in the next section, due to the positivity constraint and the fact that basis vectors

act like indicator functions, 〈x,bj〉 is proportional to the weighted sum of features in a non-zero

area of a basis vector, which is the quantity we are interested in using as new features. There is

also two more reasons for defining the classifier as it is:

• Remember our example in Section 2.5.1 in which the objective was to define regions (clus-

ters) on images and rows of the B were membership values of the clusters. In that context,

vj = 〈x,bj〉 =
∑D
d=1 bdjxd computes weighted average of j’th cluster for a given image (x).

In other words, it is one way to extract a feature value for each cluster.

• This formulation allows us to have two different types of features on the generative and

discriminative terms. In other words, it is possible to have vj = 〈ψ(x),bj〉. instead of

Eq.3.3.1. This situation arises when original features used to define regions (xi) are not nec-

essary the discriminative ones and perhaps a mapping of that ψ(·) must be fed as features

to the classifier.

Therefore, the classifier function is:

hw(x) = 〈w,BTx〉 = wTBTx, (3.3.2)

in which x is an image concatenated into a D-dimensional vector and w ∈ RK is a vector with

the same dimensionality as the number of basis vectors. In fact, BTx reduces the dimensionality

from D to K. w is linearly related to the classifier, hw(·), because of computational reasons; more

specifically, `(·) becomes convex with respect to B when w is fixed.

The loss term `(.; .) penalizes misclassification of data by comparing estimated classification

with class labels, y. Many choices are possible for the loss function in SVM. Here, we choose the

squared hinge loss function, namely `(y;hw(v)) = [1 − yhw(v)]2+ = max (0, 1− yhw(v))2. Dif-

ferentiability of this loss function is one of the reason for our choice and any other differentiable
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loss, e.g., log-logistic, can also be used; this reason will be discussed more in Section 3.5. For the

binary case (i.e., yi ∈ {−1, 1}), the discriminative loss function would be:

`(y; X,B,w) =
1

N

N∑
i=1

`(yi;hw(BTxi))

=
1

N

N∑
i=1

[1− yiwTBTxi]
2
+ (3.3.3)

Notice that this loss function can also be written as:

`(y; X,B,w) = min
w,ξi≥0

1

N

N∑
i=1

ξ2
i (3.3.4)

subject to ξi ≥ 1− yiwTBTxi

in which the loss function is written as the optimal value of Eq.3.3.5 which is obviously convex

with respect to ξi. Notice that if ‖w‖22 is added to the objective function of Eq.3.3.5 and the

optimization is performed with respect to w and ξi’s jointly, Eq.3.3.5 is the optimization problem

of Support Vector Machine (SVM) when BTxi are features.

This loss function can be easily extended to the multi-class case (i.e., yi ∈ {1, 2, · · · , L}) [56]:

`(y; X,B,W) = min
wl,ξi≥0

1

N

N∑
i=1

ξ2
i (3.3.5)

subject to wT
yiB

Txi −wT
l BTxi ≥ eli − ξi i = 1, · · · , N

where

eli =


0 if yi = l;

1 if yi 6= l.

therefore, there is a wl corresponding to the l’th class label. Eq.3.3.5 reduces to Eq.3.3.5 for the
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binary case. The decision function is

arg max
l=1,··· ,L

wT
l v

Other possibilities for the loss function (e.g., logistic, hinge, etc.) are not investigated in this

thesis. For more diverse choices of the loss function, please see [78] and references therein. Some

of the examples of the loss functions are shown in Figure2.9a.

3.4 Priors

Various feasible sets for B (i.e., B) can be defined for different applications some of which will

be addressed in more details in Chapter 4. For experiments in this chapter, we use the following

definition for the feasible set and postpone further explanations to Chapter 4:

bk ∈ Bλ := {b ∈ RD : 0 ≤ b ≤ 1, ‖b‖1 ≤ λ}, (1 ≤ k ≤ K) (3.4.1)

where bk denotes the k’th column of matrix B and λ3 specifies the sparsity of bk(for more detail

see Chapter 4). Bλ indicates that it depends on λ.

We mainly focus on the regularization terms for w and C in this section. We choose `22 for

w, namely ‖w‖22 similar to `2-SVM [38]. The rationale behind using this type of regularization

for w is similar to that of `2-SVM. It can be shown [38] that adding this regularization for SVM

encourages a linear classifier in the feature space that maximizes the margin between two classes

and the decision boundary while minimizing the loss function. Another common option for

regularization of w is `1-norm [78] that favors a sparser w (or fewer features). However, given

that the basis vectors, B, have already reduced the dimensionality significantly from D to K, a

sparse w is not preferable here.

For C, we simply impose a non-negativity constraint. Lee et al. [141] demonstrated that Non-
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Figure 3.3: Due to non-negativity constraints, only the addition operation is allowed. If a part is added to an
image, it cannot be subtracted; thus the algorithm must choose proper basis vectors to represent an image.

negative Matrix Factorization (NMF) is able to learn parts of faces and semantic features of text.

NMF is distinguished from the other factorization methods, e.g., PCA and Vector Quantization

(VQ) which learn holistic but not parts-based representations, by its use of non-negativity con-

straints that leads to a parts-based representation because it allows only additive, not subtractive,

combinations (this idea is intuitively represented in Figure3.31). Donoho et al. [68] showed that

under certain conditions, basically requiring that some of the samples are spread across the faces

of the positive orthant, result in a unique decomposition. Nevertheless, as explained in the ex-

amples in Section 2.5.1, constraints on C and B depends on our modeling and interpretation of

the blocks of the algorithm. We will come back to this notion in more detail in Chapter 4.

3.5 Optimization

Given the generative term (Eq.(3.2.1)), the discriminative term (Eq.(3.3.3)), and the regularization

on w (‖w‖22), on C (C ≥ 0), and B ( that we abstractly represent as B), we form the optimization

problem as follows:

min
w,B,C

λ1D(X; B,C) + λ2`(y; X,B,w) + ‖w‖22

subject to: B ∈ B, C ≥ 0 (3.5.1)

1Pictures of parts of the boat shown in the figure are borrowed from presentation of a paper by Biggs et al. [27].
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where D(·, ·) and `(·; ·) are given in Eq.(3.2.1) and Eq.(3.3.3) respectively and B is the the abstract

definition of the feasible set for B that shall be explained in Chapter 4. λ1 and λ2 are relative

weights to control importance of the three terms in the objective function. The ratio λ2

λ1
controls

the discriminative power vs. the generative power of the model: the higher the ratio, the more

discriminative the model. Throughout the experiments, λ1 and λ2 are normalized by the number

of samples (i.e., λ1, λ2 ∝ 1
N ). Note that the objective in Eq.(3.5.1), is comprised of three terms;

thus, two regularization weights suffice to control the relative ratio of the terms.

Although this optimization is not jointly convex with respect to all variables, it is a block-wise

convex program; i.e., if any pair of blocks of variables is fixed, it is a convex optimization problem

with respect to the other block. For example, if w and C are fixed, it is a convex optimization

problem with respect to B. Therefore, we propose a block coordinate descent (BCD) scheme

shown in Alg.1. However, a block-wise optimization does not converges to local minimum in

general. For example when the objective function is non-differentiable on joint terms between

blocks, BCD may not converges (see Figure3.4 for an example). However, the following theorem

guarantees that BCD converges to a local minimum but we need a lemma first [202].

Theorem 3.5.1. (ref. [202]) The objective function of an optimization can be written as:

f(x1, · · · ,xN ) = f0(x1, · · · ,xN ) +

K∑
k=1

fk(xk)

for some fk : Rn1+···+nN → R∪{∞}, k = 1, · · · , N and some fk : Rnk → R∪{∞}, k = 1, · · · , N and

we assume that f is proper, i.e., , f 6≡ ∞. Suppose that f, f0, f1, · · · , fN satisfy:

(A1) f0 is continuous on dom(f0).

(A2) For each k ∈ {1, · · · , N} and (xj)j 6=k, the function xk → f(x1, · · · ,xN ) is quasiconvex

and hemivariate 2

(A3) f0, f1, · · · , fN are lower semicontinuous (lsc) 3

2A function is called hemivariate if it is not constant on any line segment over its domain.
3A function is called lower semicontinuous (lsc) if for ∀x0 ∈ dom(f), we have lim infx→x0 f(x) ≥ f(x0); where
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Figure 3.4: This figure shows an example of a function (f ) in two dimensional space: f(x1, x2) = f0(x1, x2)+
f1(x1) + f2(x2) that is not differentiable on the join term (i.e., f0(x1, x2)); therefore, a BCD applied on x1

and x2 alternatively may stuck in the ridge area.

and f0 satisfies either assumption:

(B1) dom(f0) is open and f0 tends to∞ at every boundary point of dom(f0).

(B2) dom(f0) = Y1 × · · · YN , for some Yk ⊆ Rnk , k = 1, · · · , N .

Also, assume that the sequence {xr = (xr1, · · · ,xrN )}r=0,1,··· generated by the BCD method. Then, either

{f(xr)} → ∞, or else every cluster point z = (z1, · · · , zN ) is a coordinate-wise minimum point of f .

In our case:

f0(B,C,w) = λ1D(X; B,C) + λ2`(y; B,w) + ‖w‖22

f1(B) =


0, for B ∈ B

∞, for B /∈ B

f2(C) =


0, for C ∈ C

∞, for C /∈ C

f0 is defined everywhere and it is continuous (hence lsc). f1 and f2 are both lsc. Because of

lim inf is the limit inferior (of the function f at point x0).
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Algorithm 1 Block-wise Optimization

Require: Data (X), Labels (y), Regularization (λ’s)
initialize B, C, w
k ← 0
repeat

Bk+1 ← arg minB J3(B; Ck,wk) (Eq.(3.5.4))
Ck+1 ← arg minC J2(C; Bk,wk) (Eq.(3.5.3))
wk+1 ← arg minw J1(w,Bk,Ck) (Eq.(3.5.2))
k ← k + 1

until some convergence criteria satisfied

our choice of the loss function in Eq.3.3.3, if we fix all blocks of f except one (e.g., w), the function

is quadratic and hence convex and hemivariate which satisfies A2. This rationalizes our choice

for the loss function in Eq.3.3.3 and why we preferred squared hinge versus hung loss function.

The optimization is straightforward with respect to two of the blocks (C and w) but challeng-

ing with respect to the others (B) that will be discussed in detail subsequently. Optimization of

B depends on the definition of its feasible set that will be discussed in detail in Chapter 4

Optimization w.r.t. w

We start with the most straightforward block. In the k’th iteration, fixing B and C, the optimiza-

tion should find the global minimum of the following convex function:

J1(w; Bk,Ck)= λ2`(y; X,Bk,w) + ‖w‖22 (3.5.2)

in which `(·; ·) is the loss function defined in Eq.(3.3.5). Solving this optimization problem with

respect to w is not challenging because it is basically a linear SVM classifier with `22 regularization

applied on new features, namely BTxi. It yields a constrained quadratic optimization and any

off-the-shelf quadratic solver can solve Eq.3.5.2 in a reasonable time. One option can be a multi-

class linear SVM solver because computational complexity of such a solver is a function of the

number of new features (K) and number of samples (N ), which are not large in our application.

We use LIBLINEAR [78] as the solver.
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Optimization w.r.t. C

Fixing B and w in the k’th iteration, we need to find the global optimum of the following objective

with respect to C:

J2(C; Bk,wk)= ‖X−BkC‖2F

subject to: C ≥ 0 (3.5.3)

This problem can be easily formulated as a non-negative quadratic optimization problem

with K × N variables. Hessian of the objective function is IN ⊗ (BTB) where ⊗ is Kronecker

product and IN is N ×N identity matrix. Given that N is not typically large in medical imaging

applications and K is also not large, any off-the-shelf solver (e.g., MOSEK [1]) can solve this prob-

lem. Since the optimization problem is not very large scale for C, an interior-point method which

are known to be fast can be used to solve Eq.3.5.3. There is also abundant supply of options for

non-negative least squared solvers.

Optimization w.r.t. B

Fixing C and w in the k’th iteration, a constrained convex programming problem needs to be

solved to find optimal B:

J3(B; Ck,wk)= λ1‖X−BCk‖2F + λ2`(y; X,B; wk)

subject to: bj ∈ B, 1 ≤ j ≤ K (3.5.4)

where B is the feasible set for the columns of B. Several choices for B are discussed in Chapter

4. For the experiments in this chapter, we use Eq.3.4.1.

Complexity of the algorithm needed to solve Eq.3.5.4 depends on choice of B that will be dis-

cussed in detail in Chapter 4. Nevertheless for large number of choices of non-trivial B, Eq.3.5.4
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can be a difficult optimization problem due two reasons: 1) high-dimensionality: the number

of variables is at least D × K (number of voxels by number of basis vectors) plus variables

introduced by the non-differentiability of the constraints or objective, and 2) constrained pro-

gramming subject to a non-smooth feasible set. In general, constrained optimization problems

are more expensive to solve than unconstrained optimization problem. In this section, we will

introduce the general method to solve the problem above and explain the details in Chapter 4.

First we need to introduce proximal operator for an extended convex function h : Rn → R ∪

{∞}:

Ph(x) = arg min
y

1

2
‖x− y‖22 + h(y) (3.5.5)

The Projected Gradient (PG) algorithm combines a proximal step with a gradient step. PG

algorithm can be used to solve constrained optimization problems. It can also be used to solve

non-smooth problem at linear rates. Assuming that an objective function can be decomposed as:

J(x) = f(x) + h(x) (3.5.6)

where f is smooth and h is a convex extended real valued function. Let us assume that ∇f is

Lipschitz so that ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

In PG scheme, the algorithm starts from a feasible point, x0. Let α1, α2, · · · be a sequence of

positive step sizes. The k + 1’th iteration of the PG scheme:

xk+1 = Pαkh(xk − αkh(xk)) (3.5.7)

The algorithm alternates between taking gradient steps (i.e., computing∇f(x)) and then tak-

ing proximal point steps. Notice that the decomposition in Eq.3.5.6 matches with Eq.3.5.4; in this

case f is simply the objective function and h is the indicator function of B (similar to 3.1.4); there-

65



fore its proximal operator become projection on B. We represent this special proximal operator

as
∏
B(x):

∏
B

(x) , Ph(x) = arg min
y∈B
‖x− y‖22

The objective function in Eq.3.5.4 consists of two terms: 1) the generative term (D(X; BC)), 2)

and the discriminative term (`(y; X,w,B)). Derivative of the generative term with respect to B

is:

∇BD(·; ·) = 2(BC)� (X−BC)

In general case, when a divergence term is used, the derivative of the divergence term is:

∇BD(·; ·) = φ′′(BC)� (X−BC)

where φ′′ is the second derivative of φ(·) which is define earlier in Def. 3.2.1 and � is element-

wise matrix multiplication.

Derivative of the discriminative term with respect to k’th column of B in a binary case (i.e.,

yi ∈ {−1,+1}) is:

∇bk
`(·; ·) =

N∑
i∈I

(1− yi
K∑
j=1

wjb
T
j xi)(−yiwkxi)

=

N∑
i∈I

(

K∑
j=1

wjb
T
j xi − yi)(wkxi)

in which I ≡ {i|1 − yiw
T (BTxi) > 0}. It also follows similarly for the multi-class case (i.e.,
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yi ∈ {1, 2, · · · }):

∇bk
`(·; ·) =

N∑
i∈I

(

K∑
j=1

1 + (wjŷi − wjyi)(bTj xi))(wkŷixi − wkyixi) (3.5.8)

in which I ≡ {i|1 + wT
ŷi

(BTxi) − wT
yi(B

Txi) > 0} and wjyi is the j’th element of classifier

corresponding to the class label yi and wjŷi is the j’th element of the class label (incorrectly)

associated with the i’th sample; the incorrect label is ŷi.

Projected Gradient (PG) [26] is a first order method that can be used for a constrained prob-

lem. However, PG can be slow particularly for non-smooth feasible sets. The newton method

is used to accelerate first-order solvers [26]. The Interior Point (IP) method is a variant of the

Newton method for a constrained problem [35]. However, the IP method implemented naively

fails to solve Eq.(3.5.4) because IP involves computation and inversion of a Hessian matrix which

is prohibitive in term of computation and memory costs. In our experiments, more sophisticated

implementations like MOSEK [1] fail to find a point in the feasible set in a reasonable time. Our

chosen alternative is use to use Spectral Projected Gradient (SPG) [28] that is a modification of the

classical PG method which differs in two essential ways: 1) It uses a non-monotone line search

that measures descent with respect to a fixed number of previous iterations instead of just the

last iteration. This may lead to a temporary increase in the objective while ensuring overall con-

vergence. 2) It uses spectral step length introduced by Barzilai-Borwein (BB) [16] that gives an

initial step length. In the BB approach, the step length (αt) in t’th iteration is chosen such that

α−1
t I mimics the Hessian of the objective over the most recent step. Similar approaches have been

taken recently by Schmidt et al. [183] and Wright et al. [226] for large-scale non-smooth problems.

There are several choices for BB step length [59], in this thesis, we choose the following method

to compute it [205]:

sk = vec(Bk), gt = vec(∇J3(Bk))
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Algorithm 2 Spectral Projected Gradient Solver

Require: Initial point, step-length bounds 0 < αmin < αmax, ν, M
repeat

d←
∏
B(sk − αgk)− sk

γ ← 1
M ← maxk−M≤i≤k{J3(si)}
while J3(sk + γd) > M + νγ〈gk,d〉 do

Choose γ ∈ (0, 1) with quadratic interpolation [96]
end while
sk ← sk + γd
compute step-length: αk ← min{αmax,max{αmin, αbb}} (αbb in Eq.(3.5.9))
k ← k + 1

until some convergence criteria satisfied

qk = sk − sk−1,pk = gk − gk−1

αbb =
‖qk‖2
‖pk‖2

(3.5.9)

where vec(.) is an operator that reorders elements of a matrix into a vector.

Our proposed algorithm is shown in Alg.(2). It is conceivable that the bottleneck of the algo-

rithm is the projection (PB(·)) because it should be performed in each iteration. In Chapter 4, we

will discuss various choices for B and their practical implications. We will also propose efficient

approach to compute PB(·) for each choice.

3.6 Experiments

In this section, we first perform some experiments to study different aspects of the proposed

framework. In the first set of experiments, we generate some synthetic images that are combina-

tions of some normal and abnormal variations (i.e., effect). Effectiveness of the proposed method

in recovery of the correct effect is investigated in different ratios of variations. In the second set

of experiments, we apply the method on a benchmark set of images of digits4 to represent a few

examples of basis vectors. The effect of the balance between the generative term to the discrimi-

4The US Postal (USPS) handwritten digit dataset is derived from a project on recognizing handwritten digits on
envelopes [106], [113].
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Figure 3.5: This figure represents the normal (b1,b2,b3) and the abnormal (effect) (b4,b5) parts (basis vectors)
used for simulation. Normal images are allowed to use only two out of three normal parts. Abnormal
images are addition of normal parts and abnormal parts. Contribution of parts in image are specified with
random coefficients.

native term is studied. We also study the influence of the generative discriminative ratio on the

classification rate. At the end of this chapter, we apply the method on high dimensional real

brain images to show practical application of the method for classification purposes. The dataset

consists of brain images from two cohorts of subjects: subjects diagnosed with Alzheimer disease

and normal controls. We evaluate the results quantitatively in terms of classification accuracy and

qualitatively by comparing with findings to prior clinical reports and facts. Sensitivity analysis

is also reported on varying the ratio between the generative and the discriminative terms.

In all of the experiments in this section, the feasible set of B (B) is defined as the intersection

of `1 and `∞ norms in the positive orthant; it can be represented mathematically as:

B ∈ Bλ = {bk : 0 ≤ bk ≤ 1, ‖bk‖1 ≤ λ} ⊂ RD×K , ∀1 ≤ k ≤ K (3.6.1)

We call this feasible set Boxed-Sparsity. The reason for such a choice for the feasible set will be

elaborated in Chapter 4. Since we are interested to investigate the impacts of the generative and

the discriminative terms in this section, we keep the definition of the feasible set for B the same

in all experiments and set λ to a reasonable value that is specified by each experiment.
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3.6.1 Synthetic Data: Effect Recovery

In this set of experiments, parametric consistency of the algorithm is studied empirically. In other

words, under certain generative assumptions to generate samples (i.e., images), we empirically

study if the algorithm can successfully recover the correct parameters (i.e., basis vectors). Here,

we assume a simple setting in which there is normal variation in the population that is represented

as a non-negativity linear combination of basis vectors (i.e., parts). For simplicity, we assume

that there are three parts available; each part is represented as a vertical box occupying one

third of horizontal axis of the image domain and the whole vertical axis (as shown in Figure3.5).

Each image consists of two parts randomly selected from available three parts and added to the

image with a non-negative random coefficient (cik, k = 1, 2, 3). Images generated under such

assumptions constitute the normal cohort; i.e., yi = 1. Generative scheme is the same for so-

called abnormal images (i.e., yi = −1) except that b4 and b5 are also added to the image with

random contribution (ĉi4 and ĉi5 for b4 and b5 respectively):

sk ∈ {0, 1}, s1 + s2 + s3 = 2,P(s1) = P(s2) = P(s3)

cik ∼ U[0, γ1], ĉik ∼ U[0, γ2], εi ∼ U[0, ε]

xi =

3∑
k=1

(skcik)bk + εi, yi = 1 1 ≤ i ≤ N1

xi =

3∑
k=1

(skcik)bk +

5∑
k=4

(sk ĉik),bk + εi, yi = −1 N1 + 1 ≤ i ≤ N (3.6.2)

where sk are selector variables (sk ∈ {0, 1}, k = 1, 2, 3) and only two out of three can be one

(
∑
k sk = 2) with the same probability. U[a, b] is a uniform random distribution between a and

b, γ1 and γ2, and ε are constants denoting maximum magnitudes coefficients of normal parts,

abnormal parts and noise respectively. The ratio γ2
γ1

controls the effect regime: the higher the

ratio, the stronger the effect. Each box in basis vectors represented in Figure3.5 denotes a 30× 30

pixel image; hence each basis vector is a 90× 90 pixel image.
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The ratio γ2/γ1 denotes different strength of the effect with respect to the original signal;

the higher the ratio, the more salient the effect of the abnormal parts (see Figure3.5). The other

ratio, λ2/λ1, indicates the balance between discriminative and generative terms; the higher the

ratio, the stronger the discriminative term. We designed the following experiment: for different

ratios of γ2/γ1, we change λ2/λ1, and studied how successful we the method can detect the

abnormal part. The aim of the experiment is to study the effect of balance between generative

and discriminative term on detecting the abnormal part for varying strength of the abnormal

coefficients. We repeated the experiment 10 times by regenerating the sample images according

to the generative scheme given in Eq.3.6.2. For evaluation, we found the closest basis vectors to

b4 and b5 in `2-norm sense; let us call them b̂4 and b̂5 respectively. ‖b4 − b̂4‖2 + ‖b5 − b̂5‖2

is used as a measure to quantify how well the algorithm was able to capture the actual effects.

Figure3.6 reports the means and standard deviations of the measure for different values of γ2/γ1.

As expected, decreasing (γ2/γ1) which means weaker effect, deteriorates the average de-

tectability of the effect signal in general. However, unless the effect signal is very strong ( e.g.,

Figure3.6-d) optimal ratios λ2/λ1 lie somewhere (or in multiple places) between the ends of the

spectrum ([0,∞)) and deteriorates at both ends. If effect is very strong, e.g., Figure3.6-d where

the effect is twice as strong as the maximum variations in the normal image, the generative term

is enough to capture effect basis vectors. In such cases, effect basis vectors have such strong

variations that the generative term dedicates, which only tries to explain the data, dedicates a

few basis vectors to explain them. This experiment shows that in general, the discriminative

term is useful to recover the actual effects unless in extreme cases where the effects dominate the

variation in a dataset.

3.6.2 Experiment on a Benchmark Data: Handwritten Digits

In order to show a simple yet illustrative example for application of the algorithm, we apply it

on the US Postal (USPS) handwritten digit dataset that is derived from a project on recognizing
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(a)

(b)

(c)

(d)

Figure 3.6: Figures plot average and standard deviations of distance between the closest basis vectors to
the effect basis vectors on y-axis with respect to different ratios of the discriminative versus the generative
terms (λ2/λ1) on x-axis. (a)-(d) plots represent different rates of γ2/γ1; i.e., different strength of effect.
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Figure 3.7: The figure on the left shows pixel-wise average of the 9 digits available in USPS dataset and the
figure on the left shows an example of each from the dataset.

handwritten digits on envelopes [106], [113]. Similar to the experiments in the previous section

and all of the experiments in this chapter, we do not change the definition of the feasible set for

B (i.e., we use Eq.3.6.1) and its parameters are set to a reasonable value. Therefore, we only focus

on the roles of the generative and discriminative terms in this chapter.

The USPS data set consists of 1,100, 16 × 16 gray-scale images of handwritten digits (1,100

images of each digit 0 through 9). All images are aligned with affine transformation. Figure3.7

shows average images of the digits in the database.

In order to illustrate the effect of the generative and the discriminative terms, 100 images of

“6” and “8” were selected randomly to form the training sample. To investigate the effect of the

discriminative term, λ1 was set to constant value and λ2 was varied over a large range (0,∞).

For this experiment, we set the number of basis vectors to 16 (K = 16) and λ3 was set to 20% of

number of pixels (i.e., λ3 = 0.2D, where D = 16 is number of pixels). Some results are shown

in Figure3.8. In addition to basis vectors, we have also shown B|w| =
∑K
k=1 bk|wk|, where |wk|

denotes the absolute value of the k’th element of w. This measure can be viewed as a qualitative

measure for how well the algorithm can delineate area of difference between two characters; if

the algorithm dedicates some of basis vectors to minimize `(·, ·), they should high contribution

in the loss function and hence have values for |wk|.

For very small ratio (i.e., λ2/λ1 → 0) which is equivalent to the very generative formulation,

the algorithm generates only part-based representation of the training set (see examples of the
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Figure 3.8: The figure shows images of B|w| =
∑K
k=1 bk|wk| as a qualitative measure of performance of

the algorithm in detecting discriminative parts. The knobs symbolize the ratio of the discriminative to the
generative term from almost zero (generative) on the left (discriminative). The figures on the bottom show
basis vectors (K = 16). Notice that for a so-called optimal ratio ((λ2/λ1)∗), B|w| denotes areas of difference
between “6” and “8” with hot colors and some of basis vectors (highlighted by a red box) represent the
discriminative parts. For small values of the ratio, the model is mostly generative and B|w| has a lot of
non-zero values all over the image with very small magnitude. For large values of λ2/λ1, the algorithm
tries to over-fit for the labels of the training samples by adding as many pixels as it can to decrease the `(·; ·)
on the training data.

basis vectors in bottom left of Figure3.8). However, such basis are not necessarily optimal for clas-

sification. In addition, they weakly delineate areas in which “6” and “8” differ as it can be seen in

B|w|. For very large values of the discriminative term (i.e., λ2/λ1 →∞), the algorithm tries to be

purely discriminative and it is not loyal in term of representation of the dataset (see examples of

the basis vectors in bottom right of Figure3.8). It can be seen in B|w| that aggressively adds pixels

that are even slightly discriminative features for the training sample. Large ratio of λ2/λ1 drives

the algorithm to only reconstruct the labels (y) on the training set that are not necessarily good in

term of generalization on a test data. For a range value of the ratio λ2/λ1, the algorithm can both

optimally outline area of the image in which “6” and “8” differ and at the same time represent

the dataset. In fact, it generates a discriminative part as one of the basis vectors in B. Areas of

difference also stand out in B|w|; it shows that “6” and “8” differ mostly on the top and oblique
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band in the middle of the image and features extracted from these areas are the most discrimi-

native ones. The figures in the middle bottom of Figure3.8 show examples of such basis vectors,

notice the basis vector highlighted by the red box in Figure3.8 that represents the discriminative

part of “6” and “8”.

3.6.3 Generative versus Discriminative Trade-Off

The images used in this experiment are structural MR brain images (T1 image) obtained from

Alzheimer’s Disease Neuroimaging Initiative (ADNI5). 63 normal control (NC) individuals and

54 AD patients were pre-processed via the same pre-processing pipeline. The pre-processing

pipeline is designed according to previously validated and published techniques by Goldszal et

al. [90]. It includes the following steps: 1) alignment of images to the AC-PC plane; 2) removal

of extra-cranial material (skull-stripping); 3) tissue segmentation into gray matter (GM), white

matter (WM), and cerebral fluid (CSF), using a brain tissue segmentation method proposed in

Pham et al. [166]; 4) non-rigid image warping using the method proposed by Shen et al. [186] to a

standardized coordinate system, a brain atlas (template) that was aligned with MNI coordinate

space [125]; 5) formation of regional volumetric maps, named RAVENS maps (see [90] and [61]),

using tissue-preserving image warping [90]. RAVENS maps quantify the regional distribution of

a GM, WM, and CSF, since one RAVENS map is formed for each tissue type. A RAVENS map

quantifies an expansion (or contraction) of the tissue modeled by a transformation that warps the

image from the original space to the template space. Consequently, voxel values of a RAVENS

map in a template space are directly proportional to the volume of the respective structures in the

original brain scan. Although this map can be formed for CSF, WM, and GM, we only used maps

corresponding to the GM tissue type. An example of GM, WM, and ventricle RAVENS map is

shown in Figure3.9.

In order to investigate the effect of the hybrid generative-discriminative model, we modified

5www.loni.ucla.edu/ADNI
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Figure 3.9: Examples of RAVENS maps for the tissue types created from the transformation (φ) that warp
the template (top, left) to the subject (top, right). The image shows the RAVEN maps for the tree tissue type:
Gray Matter (GM, bottom left), White Matter (WM, bottom middle), and Cerebral Spinal Fluid (CSF, bottom
right).

the λ2/λ1 ratio for various numbers of basis vectors (K). In this experiment, Boxed-Sparsity was

used as the sparsity regularization and λ3 was set to 20% (i.e., λ3/D = 1/5). The number of

basis vectors (K) was chosen from set of {5, 10, 15, 20, 30, 40, 50} to examine robustness of the

algorithm to different numbers of basis vectors. As mentioned earlier in the methods section, the

proposed algorithm can be viewed as a dimensionality reduction from an original large dimen-

sion (D) to smaller but more discriminative and representative dimensions (K); hence so-called

projection BTx can be viewed as feature extraction. While the original dimension may be too large

to apply a non-linear classifier on, we can simply apply a classifier (in this experiment Logistic

Model Trees [137] 6) on the extracted features (K-dimensional instead ofD-dimensional) to boost

the performance. For each setting, i.e., a particular ratio of λ2/λ1 and number of basis vectors (K),

data was split into 10-folds; training including learning (B,C,w) and training a classifier on the

extracted features (BTxi), was conducted on 9-fold and the test was carried on the remaining

fold. This process was repeated 10 times to compute an average classification accuracy; hence,

each point in Figure3.11 is the 10-fold cross-validation accuracy. Results are shown in Figure3.11.

In order to avoid occlusion of the Figure3.11a, error-bars (i.e., standard deviations of the accuracy

rates) are added as a separate figure (Figure3.11b).

In Figure3.11, as number of basis vector (K) increases, the accuracy rates also increase but

they reach a plateau around K ∈ (20, 40). An excessively discriminative model (yellow and

6This classifier is called Simple Logistic in Weka [102].
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(a)

(b)

(c)

Figure 3.10: Three examples of basis vectors with three different methods (λ3/D = 20%): (a) one of the
basis vectors learned by the proposed method on sagittal and coronal cuts and; (b) one of the basis vectors
learned by the NMF method on sagittal and coronal cuts and, (c) one of the basis vectors learned by the
SVD method on sagittal and coronal cuts.

violet corresponding to λ2/λ1 = 100 and λ2/λ1 = 10 respectively) becomes more unstable as the

number of basis vector increases while the blue graph, in which the generative term dominates, is

quite stable. Increasing the number of basis vectors further, not only increases computational cost

drastically but also degrades generalization of the model because of high dimensionality, since

the number of samples is of the same order of magnitude (in this experiment N = 117), so we

set the maximum number of basis vectors to 50 which is in the same order magnitude. The best

performance is shown by red line (λ2/λ1 = 0.1) that maintains a balance between the generative

and discriminative terms. This graph shows that having the generative term helps to create more

stable classification rates. It also shows that unless the algorithm is pushed too much toward
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the discriminative side, it is fairly robust with respect to choice of parameters; for example for

K = 30, perturbations in classification accuracy rates are about 6% for a reasonable range of

λ2/λ1 (i.e., around 0.01 and 0.1 for this data). Notice that in this cross validation process, every

fold contains few samples (between 11 to 13 samples) and 7%-9% missclassification is about one

miss classification per fold.

Figure3.10 compares basis vectors learned by the proposed algorithm with those of NMF

and SVD. The basis vectors are overlaid on the corresponding anatomical template on various

slices of sagittal and coronal cuts. In the cases of the proposed algorithm (Figure3.10a) and NMF

(Figure3.10b), voxels of the basis vectors with values less than 0.3 are shown transparent for

the sake of a better visualization; in case of SVD, values of voxels can be positive or negative,

hence only values around zero are set to transparent. Figure3.10a clearly show Hippocampus and

temporal lobe which are associated with memory and have been frequently reported [45], [51]

and [127] to undergo significant shrinkage in course of the Alzheimer’s disease. Hippocampus

is also clearly depicted in the basis vector learned by NMF method (Figure3.10b); however, in

the basis vector learned by SVD, almost all areas have nonzero positive and negative values and

hence it does not clearly show which areas are important.

In order to further investigate the effect of K (number of basis vectors) on the classification

accuracy, we chose 100 subjects consisting of two cohorts (50 for AD, and 50 for normal). The

data is divided into 5-folds and K was varied over larger range. Figure3.12 shows the average

accuracy rates. For most of the ratios of λ2/λ1, the average accuracy rates reach their peaks

around K ∈ (20, 40) and drop after that.

3.7 Conclusion and Discussion

In this chapter, we introduced our main framework. The method is formulated as a matrix factor-

ization framework. It consists of three major terms: the generative term, the discriminative term
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(a)

(b)

Figure 3.11: Average classification rates in 10-fold cross-validation for various ratios of λ2
λ1

(discriminative vs.
generative) for different number of basis vectors; i.e., various K. To avoid occlusion, standard deviations of
the accuracy rates are added as a separate figure in (b). The y-axis, σ(C.V. Accuracy), indicates the standard
deviations of the accuracy rates. The colors are the same as (a).

and the regularizer terms which can also be viewed as feasible sets (see Eq.3.4). We explained the

feasible sets for C and w and briefly discussed B. Since an exact definition of the feasible set for

B depends on an application, we left elaborative discussion to Chapter 4.

It is shown in our illustrative examples in Section 2.5.1 that the generative term clusters (seg-
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(a)

(b)

Figure 3.12: Average classification rates in 5-fold cross-validation for various ratios of λ2
λ1

(discriminative vs.
generative) for longer range of K. To avoid occlusion, standard deviations of the accuracy rates are added
as a separate figure in (b). The y-axis, σ(C.V. Accuracy), indicates the standard deviations of the accuracy
rates. The colors are the same as (a).

ments) voxels together and the discriminative term encourages to form clusters that are discrim-

inative. Simulation experiments in Section 3.6.1 showed that unless the effect size that differen-

tiated two groups is very strong compared to the background signal, the discriminative term is

required in order to recover the effect correctly. In Section 3.6.2, we showed how a balance choice
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of λ2/λ1 can help to recover areas of difference between two groups. Experiments with real data

in Section 3.6.3 showed that the algorithm is robust with respect to choice of λ2/λ1 ratio as long

as it is chosen within a reasonable range.
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Chapter 4

Regularizers and Optimizers

4.1 Overview

Remember in Chapter 3, we introduced the main formulation that consists of three blocks (vari-

ables), B, C, and w:

(B∗,C∗,w∗) = arg min
B,C,w

D(X; B,C) + `(y; X,B,w) +R(B,C,w)

subject to: B ∈ B C ∈ C w ∈ W, (4.1.1)

All feasible sets were discussed in Chapter 3 (C : C ≥ 0, W : RK) except B which is to be

discussed in this chapter. B is a matrix columns of which are the basis vectors. Each basis vector

(column of bk) lives in RD which has the same dimensionality as number of voxels of the images

in the training set. We also explained in Chapter 3 that the most discriminative basis vector

reveals the effects. Our prior knowledge about the effects is encoded in B. Different applications

call for different definitions of B two of which are introduced in this chapter: Boxed-Sparsity and

Group-Sparsity. We also briefly discussed other possibilities and corresponding applications.

The optimization issues were also addressed in Chapter 3. We proposed an efficient first-
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order algorithm for optimization of B. It was shown that different definitions of B only changes

the proximal operator which is just a projection function:

PB(x) = arg min
y∈B
‖x− y‖22 (4.1.2)

It is also shown in Section 3.5 that the projection is the bottle-neck of the algorithm 2 because

it needs to be repeated in every iterations of the algorithm. In this chapter, for each B, an efficient

algorithm for projection is proposed.

Both Boxed-Sparsity and Group-Sparsity are various definitions of the sparsity and consequently

depend on a parameter specifying amount of sparsity. We investigated effect of such parameter

on the classification accuracy on a real brain image dataset. Finally, we compare the classification

results with the state-of-the-art algorithm on the real data.

4.2 Boxed-Sparsity

We would like to encourage basis vectors that act like indicator functions. Mathematically speak-

ing, we would like the elements of bk to be either 0 or 1, namely bk ∈ {0, 1}D. In addition, we

are interested in finding localized basis vectors for two reasons: it increases robustness and inter-

pretability of basis vectors. The sparsity constraint promotes the indicator functions that select

subsets of voxels. The `0-norm, which counts number of nonzero entities in a vector, can be used

as a regularization or constraint in order to encourage or bound sparsity. Here, we prefer to use

sparsity as a constraint. Hence, a basis vector should reside in the intersection of two sets: the

set of indicator functions and the set of sparse vectors, which can be written mathematically as

follows:

{bk ∈ {0, 1}D} ∩ {bk ∈ RD : ‖bk‖0 ≤ λ}, 0 ≤ k ≤ K
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b1

b2

b3

Figure 4.1: Graphical representation of Boxed-Sparsity ball for a hypothetical image consisting three voxels.
Therefore, each basis vector lives in R3. The set is the intersection of `∞ and `1 norm balls in the positive
orthant. The blue dots are vertices of the feasible set.

where λ is a constant that defines the level of sparseness and K is the number of basis vectors.

However, this constraint is combinatorial in nature, hence difficult to optimize. In the context of

machine learning [160] and optimization [35], the integer ({0, 1}D) and `0 constraints are relaxed

with their convex surrogates:

‖b‖0 ≤ λ ‖b‖1 ≤ λ

b ∈ {0, 1}D  0 ≤ b ≤ 1 ≡ b ≥ 0, ‖b‖∞ ≤ 1 (4.2.1)

where denotes a relaxation and ≡ shows equivalence, ‖.‖1 is the `1-norm of a vector which is

a convex relaxation of its `0-norm and ≤ is an element-wise inequality constraint. Geometrically,

each basis vector, bk, dwells in the intersection of the `1-norm ball of radius λ with unit `∞-norm

ball (box) in the positive orthant, which is shown graphically in Figure4.1 for b ∈ R3 for sake of

illustration. We call the feasible set the Boxed-Sparsity set, in contrast to a feasible set to be defined

subsequently.
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Figure 4.2: Presentation of a feasible set (B) for b ∈ R2.

4.2.1 Efficient Projections on the Boxed-Sparsity Balls

We need to repeatedly project on this set (B) in the our optimization algorithm (alg.2). There-

fore, having an efficient projection algorithm speeds up the optimization algorithm substantially.

Euclidean projection operator on a feasible set can be viewed as an optimization problem:

P(u) = arg min
z

1

2
‖u− z‖22 s.t. z ∈ B

For Boxed-Sparsity, the problem is a constrained quadratic programming:

min
z

1

2
‖u− z‖22

subject to:0 ≤ z ≤ 1

1T z ≤ λ (4.2.2)

Geometrically, the projection point lies either on the boundary of the box in Figure4.2 or inside

of the box, on the inside boundary of the shaded area in Figure4.2. To determine which one, we

can simply project the point on the box:

Pbox(u) = min{1, [u]+}

where [u]+ = max{0,u}.
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If Pbox(u) still lies outside of the feasible set, it means that the projection point is on the inside

boundary of the shaded area. To find the projection in this case, this problem should be solved:

min
z

1

2
‖u− z‖22

subject to: 0 ≤ z ≤ 1

1T z = λ (4.2.3)

Lagrangian of Eqn.(4.2.3) is:

L(z, ζ, θ, η) =
1

2
‖z− u‖22 + θ(

D∑
i=1

zi − λ)

−〈ζ, z〉+ 〈η, z− 1〉 (4.2.4)

where θ ∈ R and η, ζ ∈ RD+ are Lagrangian multipliers. Differentiating it with respect to z and

setting it to zero, yields optimality condition: ∂L
∂zi

= zi − ui + θ − ζi + ηi = 0. By complementary

slackness of KKT condition, we know whenever zi > 0 then ζ = 0 and whenever zi < 1 then

ηi = 0. Hence, if 0 < zi < 1 then:

zi = ui − θ + ζi − ηi = ui − θ (4.2.5)

In order to determine optimal solution, zi, we need to determine θ and indices for which zi’s

are zero or one. If indices of ones and zeros of z are given, complementary slackness of KKT

condition and the optimality conditions of Eqn.(4.2.3) suffices to find optimal θ:

θ =
1

|I|
(
∑
i:zi=1

1 +
∑
i∈I

zi − λ) (4.2.6)

where I = {i ∈ [n] : 0 < zi < 1} and |I| is cardinality of this set.
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Following lemmas help us to determine the indices 1:

Lemma 4.2.1. [184] Let z be the optimal solution to the minimization in Eqn.(4.2.3). Let s and j be two

indices such that us > uj . If zs = 0 then zj must be zero as well.

We will propose a similar lemma for the upper bound:

Lemma 4.2.2. Let z be the optimal solution to the minimization in Eqn.(4.2.3). Let s and j be two indices

such that us > uj . If zj = 1 then zs must be 1 as well.

Proof. The proof is by contradiction, similar to Lemma 4.2.1. Assume that z∗ is optimal solution

and there exist indices j and s such that uj < us and z∗j = 1 but z∗s < 1. Now, let us assume that

new vector ẑ that is equal to z∗ except in two indices j and s in which ẑs = z∗j and ẑj = z∗s . It can

be readily checked that ẑ is also feasible. The difference in objective value for new vector is:

‖u− z∗‖22 − ‖u− ẑ‖22 = (uj − z∗j )2 + (us − z∗s )2

−(uj − ẑj)2 − (us − ẑs)2

= −2ujz
∗
j − 2usz

∗
s + 2uj ẑj + 2usẑs

= 2z∗s (uj − us) + 2z∗j (us − uj)

= 2(z∗j − z∗s )(us − uj) ≥ 0

which contradicts with optimality of z∗.

Given the lemmas, we can form an optimization problem similar to Eqn.(4.2.3). For a fixed θ,

we solve the following optimization problem:

min
z

1

2
‖(u− θ1)− z‖22

subject to: 0 ≤ z ≤ 1 (4.2.7)

1Similar approach was adopted by Duchi et al. [73]
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and then we search over θ such that the solution z satisfies the equality constraint in Eqn.(4.2.3).

Observe that the term with θ in Eqn.(4.2.4) is absorbed into the quadratic term in Eqn.(4.2.7).

However, Eqn.(4.2.7) has a closed form solution:

z∗θ = min{1, [u− θ1]+} (4.2.8)

Since we do not know the appropriate θ, we need to search for it. So far, optimization problem

has simplified from D-dimensional to one dimensional problem. However, the two lemmas help

us to find exact θ in finite number of iterations. The idea is to shrink [θmin, θmax] with a bisection-

type algorithm until number of zeros and ones stay unchanged, then θ can be found exactly with

Eqn.(4.2.6). The details of the algorithm are shown in Alg.3. In Alg.3, I ← {j ∈ [D] : 0 < zj < 1}

and ShiftInterval is a function that accepts three real values arguments and returns two:

(θ3, θ2 +
1

2
(θ2 − θ1)) = ShiftInterval(θ1, θ2, θ3)

4.3 Group-Sparsity

Another interesting prior on B arises when a partition is available and needs to be taken into

account. We assume a common coordinate system by warping all images to a template and an

image partitioning (image segmentation) is available for the template image (e.g., an anatomical

parcellation in a template space). It is possible to consider sparsity constraint/regularization on

the group-level rather than voxel level which promotes that a few groups (e.g., brain structures)

are involved in group difference rather than a few voxels. In order to encourage this property,

we can enforce an `1-norm on groups instead of voxels. Before defining the idea precisely, we

need a few definitions. Assuming G is a segmentation of an image into sets (gi’s), we can define
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Algorithm 3 Efficient Projection on Boxed-Sparsity Ball

Require: Input u, λ
z← min{1,max{0,u}}
if z is infeasible then
θ1 ← 2 maxi zi; θ2 ← mini zi
y1 ← min{1, [u− θ11]+}; y2 ← min{1, [u− θ21]+}
θ ← θ2 + 1

2 (θ2 − θ1)
while True do

z← min{1, [u− θ1]+}
if 1T z > λ then

(θ2, θ)← shiftInterval(θ1, θ2, θ)
y2 ← z

else if 1T z < λ then
(θ1, θ)← shiftInterval(θ1, θ2, θ)
y1 ← z

else
return the z

end if
if numbers of {0, 1} of z, y1, and y2 are unchanged then
θ ← 1

|I| (
∑
z=1 1 +

∑
i∈I zi − λ); z← min{1, [u− θ1]+}

return z
end if

end while
else

return z
end if

two group-norms as follows (the idea is graphically shown in Figure4.3):

‖b‖1,2 :=
∑
g∈G

ρg‖b|g‖2

‖b‖∞,2 := max
g∈G
{ρg‖b|g‖2} (4.3.1)

where b|g is a D-dimensional vector such that its voxels not belonging to the group g are set

to zero, ρg is a positive constant that compensates for a group-size, namely ρg = 1
|g| where | · |

is cardinality of a set. Notice that in the definition of ‖ · ‖1,2, the `2-norm is used instead of `22

because the squared norm does not have the sparsifying properties. This kind of regularization

is called Group regularization or Mixed-Norm regularization and have received much attention in

recent years in machine learning [163], [112].

Given the new norm definitions in Eq.(4.3.1), we can define the Group-Sparsity constraint
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g1

g2

g3

G

1 2 3

4 5 6

7 8 9

b|g1 = [b1; b2; b3; b4; 0; 0; 0; 0; 0]
‖b‖2,1 = 1

4
√
〈b|g1 ,b|g1〉+ 1

2
√
〈b|g2 ,b|g2〉+ 1

3
√
〈b|g3 ,b|g3〉

(a) (b)

Figure 4.3: (a) shows an example of a 3× 3 image (hence b ∈ R9) that is segmented into three regions (G =
{g1, g2, g3}). b|g1 and ‖b‖2,1 are shown as examples. 〈·, ·〉means inner product thus ‖b|g1‖2 =

√
〈b|g1 ,b|g1〉;

(b) shows an example of grouping (i.e., segmentation) for medical imaging applications.

mathematically as follows:

‖b‖1,2 ≤ λ

b ≥ 0, ‖b‖∞,2 ≤ 1 (4.3.2)

For the rest of the chapter, we will refer to ‖b‖1,2 subject to the constraints as Group-Sparsity.

Observe the correspondence between Boxed- and Group-Sparsity: comparing Eq.4.2.1 and Eq.(4.3.2),

‖ · ‖1,2 replaced ‖ · ‖1 and ‖ · ‖∞,2 exchanged for ‖ · ‖∞.

4.3.1 Efficient Projection on Group-Sparsity Ball

Given Alg.(3), efficient projection on a Group-Sparsity ball is very simple because it uses Alg.(3)

as a submodule. An algorithm for efficient projection on a Group-Sparsity ball is shown in

Alg.(4). In this case, the following optimization problem should be solved:

min
z

1

2
‖u− z‖22
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subject to: 1T t ≤ λ

ρg‖z|g‖2 ≤ tg,∀g ∈ G

z ≥ 0, t ≥ 1 (4.3.3)

where t is a positive |G|-dimensional vector and tg is g’th element of that and ρg is a constant.

Eqn.(4.3.3) ia a Second Order Cone Programming (SOCP) and may look significantly different

from Eqn.(4.2.2) but a careful inspection reveals that an efficient algorithm to solve Eqn.(4.2.2)

(Alg.(3)) can help us to solve Eqn.(4.3.3) by defining:

v ∈ R|G|, vg = ρg‖[u|g]+‖2

The defined v can be provided as input to Alg.(3) to find a projection in R|G| space. Given the

projected point, simple rescaling yields optimal z. The procedure is explained in Alg.(4).

Algorithm 4 Efficient Projection on Group-Sparsity Ball

Require: Input u, λ
if ‖[u]+‖1,2 > λ then

Form vector v as follows: vg = ρg‖[u|g]+‖2
t← ProjectBoxedSparsity(v, λ) (Alg.(3))
for all g ∈ G do

z|g ←
tg
vg

u|g
end for
return z

else
return z

end if

Recently there have been a few research papers about efficient projection on the group-sparsity

ball for arbitrary definition of the groups. Although it has been shown that projection on group-

sparsity ball for arbitrary group is possible [118], it is an expensive operation unless some special

structures are assumes for the groups [128] (e.g., tree structure).

‖b‖1,∞ ≤ λ
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b ≥ 0, ‖b‖∞,2 ≤ 1

4.4 Other Possibilities for the Feasible Set

In section, we address other possibilities for B which are not explored in this thesis but can

be used depending on application. In Section 4.3, we chose `2 norm to group pixel together.

Obviously, it is not the only option. For example, `∞ can be used to group voxel together, namely:

‖b‖1,∞ :=
∑
g∈G

ρg‖b|g‖2

‖b‖∞,∞ := max
g∈G
{ρg‖b|g‖∞}

Comparing to Eq.4.3.1, using this definition of group sparsity drives the maximum value of

b|g to zero. Within g’th group, b|g tend to choose values close the maximum because only the

maximum value is penalized. One potential advantage of using such definition is that resultant

optimization problem is a constrained Quadratic Programming (QP) which is computationally

less expensive than to SOCP in Section 4.3. Nevertheless, we showed in Section 4.3.1, for non-

overlapping groups the SOCP can be computed efficiently.

Regardless of choice of the norm for grouping voxel, some application may demand over-

lapping groups. An example is when priors are provided as regions of interest (ROI’s) that are

connected through fiber tracking algorithm. A conceivable prior is that areas connected with

white matter fiber track are more likely to fire simultaneously during resting-state fMRI experi-

ments Figure4.4. If `2 norm is chosen to group the voxels, overlapping groups makes solving the

proximal operator computationally expensive. Assuming that `∞ is chosen for grouping, Marial

et al. [153] has recently shown that the proximal operator can be solved efficiently using network

flow algorithm.
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Figure 4.4: An example of applications of overlapping groups for definition of group norm: groups are
defined by areas of brain that are connected through white matter fiber tracks.

4.5 On Selection of the Regularization Parameters

To set values of the parameters (i.e., λ’s and r), two strategies are available: first, to embed search-

ing for the best parameters as a part of the training of the algorithm. This strategy is chosen to

show the results in this chapter; second, to set values of the parameters to pre-defined values

which are presumed to perform well. Ideally, the first option is preferred because it potentially

yields better performance than setting parameters to pre-defined values, however, the large op-

timization with respect to (B,C,w) renders searching an expensive task. Although the latter

strategy is not investigated in this chapter, we will give intuition on how to select parameters to

some fixed values.

Parameters of the proposed algorithm are as follows: K number of basis vectors; λ1, the

weight for the generative term; λ2, the weight for the discriminative term; λ3, the sparsity ratio

for the basis vectors. We propose to choose the parameters in the following order:

1. λ2: Given Eq.3.5.2 and Eq.3.3.3, it can be readily derived that N
λ2

defines the weight for the
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second term in Eq.3.5.2 (‖w‖22). One suggestion is to run the algorithm for a small-scale

dataset for a few iterations and choose λ2 such that it produces a reasonable classification

rate. One can even run the algorithm for a few iterations without the discriminative term

and extracts feature (i.e., BTxi) in order to have a sense of an appropriate range for λ2.

2. K and λ3: Selection of λ3 can be inspired by our clinical hypothesis; λ3

D approximately sets

the non-zero ratio of each basis vector. Depending on our clinical expectations regarding

portion of an anatomy (e.g., brain) affected by the disease of interest, we can choose a range

for λ3. However, if sparseness is set to a high value (low λ3/D), the generative term may

not be able to represent the data well because it may not be able to cover the whole domain

of images; hence, optimal basis vectors may stay away from the boundaries of the feasible

set (where basis vectors achieve 0-1 values) while the model may try to compensate with

C to reconstruct the data. In fact, there is a limited budget to reconstruct the data. In order

to increase the budget, one can increase the number of basis vectors (K). However, a very

large value of K increases the computational cost significantly, so one needs to trade off

between excessive sparsity and computational cost. There are also other factors involved

in choosing the sparsity ratio that will be discussed in Section 4.6.

3. λ1: Once other parameters are set, we can set a value for λ1. The ratio λ2/λ1 decides the

balance between the generative and the discriminative terms; since λ2 is already set, one

needs to choose the ratio of λ2/λ1. As it will be shown in Section 3.6.3, the algorithm is

relatively robust with respect to ratio of λ1/λ2 as long as λ1 is in a reasonable range; hence

the value of λ1 should be chosen such that the first and second terms in in the objective of

the optimization have similar magnitudes.
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Figure 4.5: The figure shows B|w| as a qualitative measure of how well the algorithm can delineate area of
difference between “6” and “8”; pixels with hot colors are presumably more discriminative. The knobs on
the bottom of figures symbolize the sparsity parameter (λ3). If λ3 → 0, it yields B|w| → 0 but less sparse
result. Increasing λ3 beyond some level does not change the patter significantly.

4.6 Experiments

4.6.1 Sparsity and Detecting Discriminative Area

In order to illustrate the effect of sparsity parameter λ3, 100 images of “6” and “8” were selected

randomly to form the USPS handwritten dataset [106], [113]. The discriminative to the generative

ratio (λ2/λ1) is set a reasonable value (see Section 3.6.2 for discussion), number of basis vectors is

set to 16 (K = 16) and we vary the sparsity parameter (λ3) over a wide range (λ3 ∈ (0, D), where

D = 16 is number of pixels) to study the effect of sparsity parameter.

Figure4.5 shows three examples of B|w| computed for three different values of λ3. B|w| =∑K
k=1 bk|wk| where |wk| denotes the absolute value of the k’th element of w. This measure can

be viewed as a qualitative measure for how well the algorithm can delineate area of difference

between two characters; if the algorithm dedicates some of basis vectors to minimize `(·, ·), they

should high contribution in the loss function and hence have values for |wk|. The figure in the

middle corresponds to λ3 = 0.2D which is a reasonable value. Increasing λ3 (less sparsity) does

not change B|w| significantly but it affects classification accuracy. Counter-intuitively, making

λ3 too small does not make B|w| too sparse. In fact, as λ → 0, (B|w|) → 0 as expected but since

columns of B have limited budget to represent images, bk stay away from the boundaries of the

feasible set which result in non-sparse basis vectors. The figure shows that there is a lower bound
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for λ3 in term of finding the correct discriminative area. We will see that classification accuracy

decides about the upper bound on λ3.

4.6.2 Sparsity and Classification Accuracy

In this section, we study how the sparsity parameter, λ3, affects classification accuracy for Boxed-

and Group-Sparsity feasible sets. The images used in this experiment are structural MR brain im-

ages (T1 image) obtained from Alzheimer’s Disease Neuroimaging Initiative (ADNI2). 63 normal

control (NC) individuals and 54 AD patients were pre-processed. The pre-processing pipline is

exactly the same as what explained in Section 3.6.3. For experiments in this section, we setK = 30

that shows reasonable performance in Section 3.6.3 (see Figure3.11) and we changed λ3 over a

wide range for various ratios of λ2/λ1.

Figure4.6 compares examples of basis vectors for two different sparsity ratios. Increasing

λ3 from 20% to 10% of voxels yields sparser and more localized basis vectors. As discussed in

Section 4.6.1, decreasing λ3 which enforces stricter sparsity constraint (say λ3/D = 0.1%) may not

be helpful for better representation because as λ3 decreases, the algorithm has a limited budget of

voxels (i.e., few voxels can be selected) to satisfy the generative term (D(·; ·)); therefore it prefers

to push values of the voxels away from boundaries (i.e., {0, 1}) to satisfy the generative term.

Nevertheless, we changed λ3/D in range of [0.1..0.6] to examine its effect on the classification

accuracy (Figure4.7). The experiment elaborated in Section 3.6.3 is repeated but for different

values of λ3/D and λ2/λ1. The settings of the experiment in term of number of samples and

pre-processing is identical with those of the experiments in Section 3.6.3.

Figure4.7 shows comparison of different ratios of λ3/D for the Boxed-Sparsity for different

rates of λ2/λ1. Since two types of behaviors are observed, they are shown in two separate graphs

for a sake of illustration. Figure4.7a shows cases in which the generative term is dominant or

moderate while Figure4.7b shows graphs in which the discriminative term is dominant.

2www.loni.ucla.edu/ADNI
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(a)

(b)

Figure 4.6: The figure shows examples of basis vectors for two different values of the sparsity parameter: (a)
(λ3 = 0.1D) on coronal and sagital views; (b) (λ3 = 0.2D) on coronal and sagital views.

In Figure4.7a, increasing λ3 (less sparse) slightly improves level of classification accuracy up

to a certain point (λ3/D ∈ [0.2, 0.4] depending on the ratio λ2

λ1
) because it yields better reconstruc-

tion. However from that point on, it decreases because it means less regularization on the model.

Nevertheless, if the generative term is dominant, the algorithm is relatively robust.

Figure4.7b shows similar graph for the cases in which the discriminative term is dominant or

has relatively higher weight than those of Figure4.7a. In this case, increasing λ3 (decreasing spar-

sity) deteriorates the classification accuracy. When the discriminative term is dominant, reducing

sparsity can approximately be compared to `1-SVM with small regularization weight; excessive

reduction of the regularization weight in `1-SVM can worsen generalization of the classifier.

Figure 4.8 shows an example of a basis vector when Group-Sparsity is used. The feasible set

of the Group-Sparsity is smoother than that of the Boxed-Sparsity (Figure4.6); in other words, it

has fewer sharp corners than the Boxed-Sparsity one. This encourages solutions that are smooth,

i.e., voxel values are likely to be in (0, 1) rather than 0 or 1. Nevertheless such behavior is also

affected by `2-norm of the samples (i.e., normalization of samples) that are not discussed in this
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(a) (b)

Figure 4.7: Investigation of sparsity level on the classification accuracy for the Boxed-Sparsity when: (a) the
generative term is dominant; (b) the discriminative term is dominant. Standard deviations of the accuracy
rates are added as the bars to the figures.

(a) (b)

Figure 4.8: An example of a basis vector for a case in which Group-Sparsity constraint is used. (a) coronal
cuts; (b) sagittal cuts.

chapter in interest of space.

Figure4.9, depicts the same graphs as Figure4.7 but for Group-Sparsity regularization. As in

Figure4.7, the graphs are divided into two (generative- or discriminative- dominant) sub-graphs

for a sake of better illustration. In term of maximum accuracy, the Group-Sparsity is comparable

with the Boxed-Sparsity (about 3% improvement) but it is more robust with respect to change of

parameters; Figure 4.8a shows perturbation is accuracy that is about 5% across different settings.

In Figure4.9b, the Group-Sparsity shows significantly more robust behavior when the discrimi-

native term is dominant comparing to Figure4.7b. Such robustness can be explained by defini-

tion of the Group-Sparsity regularization. Due to the non-linear relationship within each group,
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(a) (b)

Figure 4.9: Investigation of sparsity level on the classification accuracy for the Group-Sparsity when: (a) the
generative term is dominant; (b) the discriminative term is dominant. Standard deviations of the accuracy
rates are shown as error bars.

Group-Sparsity imposes fewer degrees of freedom than those of Boxed-Sparsity, therefore it reg-

ularizes the objective further. Figure4.9b also shows that a reasonable range for Group-sparsity

is around λ3

D ∈ [0.4, 0.7] which is different that that of the Boxed-Sparsity; the accuracy rates

slightly degrade after this range.

4.6.3 Comparison with Other Methods

In this section, we compare performance of the proposed algorithm with other methods but first

we need to clarify some points about parameter selection (λ’s). The dataset is divided into 20

splits, 18 splits are used to learn (B,C,w) and the testing accuracy on one of the two left-out

splits is used to search for the best λ’s and finally the classification accuracy is reported on the

other left-out split.

Table 4.1 compares the accuracy rates between five different methods (two of them are vari-

ants of the proposed method) on two dataset. Bx and Grp stand for the proposed for Boxed- and

Group-Sparsity constraints respectively. Singular Value Decomposition (SVD) and Non-negative

Matrix Factorization were added to the table in order to have baseline comparisons. In order to
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Table 4.1: Comparison of the classification accuracy rate of the proposed method using two different con-
straints Boxed-(Bx) and Group-(Grp) with other methods: Singular Value Decomposition (SVD), Non-
negative Matrix Factorization (NMF) and COMPARE [80]. AD vs NC is Alzheimer’s disease verse Normal
Control from ADNI dataset and Lie vs Truth is β-maps of fMRI study for lie detection. The values
inside of the parentheses are the standard deviations of the accuracy rates.

AD vs NC Lie vs Truth

Bx 86.6%(±14.3%) 84.1%(±20%)
Grp 89.0%(±13.3%) N/A
SVD 74.2%(±19.3%) 72.5%(±21%)
NMF 62.1%(±16.3%) 55.0%(±10%)
COMPARE 86.7%(±15.3%) 88.3%(±16.3%)

have a fair comparison, number of basis vectors for NMF, SVD, and both variants of the proposed

method are set to the same number which is 30. COMPARE is a method proposed by Fan et al. [80]

and has shown to perform well on ADNI dataset [79].

While features extracted from NMF and SVD methods were fed to the same procedure as the

proposed method to find the best classifier, COMPARE has it own routine to find an optimal clas-

sifier. AD vs NC dataset is already explained in the beginning of this section. Lie vs Truth

contains 22 subjects performing a forced-choice deception and their brain activations were ac-

quired using BOLD imaging (fMRI). SPM2 software [2] is used to calculate Parameter Estimate

Images (PEIs), i.e., regression coefficients or β, of the HRF regressors for each of the 50 conditions

from the least mean square fit of the model to the time series. The 50 conditions include forty-

eight regressors modeled “lie” and “truth” events individually while two additional regressors

modeled the variant distracter and recurrent distracter conditions.

In the Table 4.1, while the Group-sparsity regularization outperforms COMPARE, the Boxed-

sparsity performs almost as well as COMPARE on the AD vs NC dataset. On the Lie vs Truth

dataset, COMPARE outperforms our method although the Boxed-sparsity is in a reasonable range

of the best performance. The Group-Sparsity result for fMRI dataset is shown as “N/A” because

fMRI images which are pre-processed with SPM2 are registered to SPM2 atlas with affine transfor-

mation. Therefore, structural brain regions of the atlas do not match well with the corresponding
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Table 4.2: Comparison of the proposed method using two different constraints, i.e., the Boxed-(Bx) and
Group-(Grp) Sparsity with other methods: Singular Value Decomposition (SVD), Non-negative Matrix Fac-
torization (NMF) and COMPARE [80]. AD vs NC is Alzheimer’s disease verse Normal Control from ADNI
dataset and converter versus non-converter MCI subjects (MCI-C vs MCI-NC). The values inside of the
parenthesis are the standard deviations of the accuracy rates.

AD vs NC MCI-C vs MCI-NC

Bx 84.2%(±8.3%) 60.7%(±9.4%)
Grp 83.7%(±8.6%) 61.5%(±8.3%)
SVD 70.9%(±14.1%) 57.3%(±2.9%)
NMF 71.8%(±14.7%) 53.5%(±7.8%)
COMPARE 82.2%(±7.4%) 59.4%(±10.5%)

regions on the individual subjects that makes the definition of the groups in the Group-Sparsity

inaccurate.

The values reported in the Table 4.1 for the AD vs NC dataset are in the same range as the

accuracy rates reported in [58]; Nevertheless the conditions of the experiments (including pre-

processing, features extraction, samples in the training and testing lists, etc.) are different, which

make the results not one-to-one comparable.

4.6.4 Sensitivity Analysis of the Parameters

In this section, we perform a few experiments to investigate the effect of parameter selection

(λ’s) on the classification accuracy rates. In this section, instead of optimizing λ’s, we set λ’s

to the most frequently chosen ones in the Section 4.6.3. The MCI subjects were not involved in

the experiments of the Section 4.6.3. In addition, we held out 205 AD and NC subjects (89 AD

and 114 NC) from the ADNI dataset. Therefore, optimizing λ’s in the Section 4.6.3 is oblivious

with respect to the samples used in this section. In addition to the AD versus NC classification,

we have included classification between converter and non-converter MCI subjects to the Table

4.2 which is known to be a difficult classification problem [58]. In fact, this experiment shows

conservative results for the proposed methods.

As the Table 4.2 shows, the proposed method outperforms other methods on both datasets.
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The classification rates are relatively low on the MCI-C vs MCI-NC dataset as reported in the

literature [58] yet the proposed method shows slightly better performance comparing to other

methods in the Table. This experiment shows that as long as the datasets are similar, one can

reduce the computational cost of optimizing λ’s by removing the extra nested loop for parameter

selection (i.e., searching for the best λ’s inside of training sets) without significant degradation in

the performance of the classifiers.

4.7 Conclusion and Discussion

In this chapter, we introduced various possible feasible sets for basis vectors. Different applica-

tions may impose various priors which lead to different definition of feasible sets, two of which

were discussed here namely Boxed-Sparsity and Group-Sparsity. Boxed-Sparsity simply enforces

sparsity in the voxel level neglecting relationship between voxels in the image domain. Group-

Sparsity assumes a segmentation (partitioning) exists and enforces sparsity on groups of voxels

and implicitly considers relationship between voxels in the image domain. Mathematical defi-

nition of the feasible set defined by Boxed-Sparsity was reduced to intersection of `∞-ball and

`1-norm ball in the non-negative orthant. For Group-Sparsity, `∞ and `1 were replaced with their

group-norm counterparts. The proposed optimization in Section 3.5 requires to project on the fea-

sible set in each iteration; therefore if the projection is time consuming, it will render the whole

algorithm very inefficient. We first proposed an efficient procedure for Boxed-Sparsity projection

in Section 4.2.1. This procedure was used as subroutine to project on the Group-Sparsity set in

Section 4.3.1.

We have also experimented with other types of regularizers in order to incorporate relation-

ship between voxels [20]. We realized that for TV 1
2 -norm (see 2.1), there is no significant dif-

ference in results if the images are pre-smoothed. Nevertheless, TV 1
1 - or TV 1/2

2 -norms (see 2.1)

are not equivalent to pre-smoothing operation but projection algorithms on feasible sets defined
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by such norms are computationally expensive. Recently Fadili et al. [77] proposed a first order

method for projection on TV 1/2
2 -norm but given that the projection should be repeated in every

iteration of SPG, it renders the optimization algorithm very slow.

In the experiment section, it was show that the algorithm is robust with respect to choice of

parameters as long as they are chosen within a reasonable range. It also shows that the generative

term is helpful; indeed we have observed in our experiments that in the process of searching for

the best λ’s, those settings biased toward the generative terms are selected quite frequently. The

experiments shows that discriminative term is also essential because in its absence, the formu-

lation becomes more or less similar to NMF [141] formulation which is shown to underperform

in Table 4.1. Nevertheless, for very large sample size experiments finding optimal parameters

might be computationally expensive. Therefore, in Section 4.5, we analyzed the role of each pa-

rameter in well-possessedness of the objective function and introduced an intuitive sequence to

pick λ’s within a reasonable range. In addition, we empirically showed in the Section 4.6.4 that

as long as datasets are similar one can avoid parameter selection without significant degradation

in the accuracy rate.

In Section 4.6.3, we also compared the proposed method with PCA and NMF as baseline

methods and COMPARE [80] as the state-of-the-art algorithm. Both variants of the proposed

method outperformed the baseline methods (i.e., NMF and PCA) and performed better or almost

as well as COMPARE. The Group-sparsity achieved the best performance in AD vs NC but it was

not applicable to Lie vs Truth because we defined the groups for the Group-sparsity based

on a segmentation of an atlas and all fMRI subjects are brought to the atlas space using only affine

registration; it yields inaccurate brain segmentation for each subject and consequently inaccurate

definition for the groups. It is also worth mentioning that COMPARE achieves such level of

accuracy using 150-250 features while our algorithm uses only 30 basis vectors (i.e., number of

features). There is no clear winner between the Group- and the Box-sparsity.
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Part II

Extensions
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Chapter 5

Application for Multi-Channel

Imaging

5.1 Introduction

This chapter presents a general discriminative dimensionality reduction framework for multi-

channel image-based classification in medical imaging datasets. The major goal is to use all

channels simultaneously to transform very high dimensional images to a lower dimensional rep-

resentation in a discriminative way. In addition to being discriminative, the proposed approach

has the advantage of being clinically interpretable.

We propose a framework based on regularized tensor decomposition. We will show that

different variants of tensor factorization imply various hypothesis about data. Inspired by the

idea of multi-view dimensionality reduction in machine learning community, two different kinds

of decomposition will be presented and their implications will be discussed in this chapter. We

have validated our method on different datasets including a multi-channel longitudinal brain

imaging study. We compared this method with a state-of-the-art classification software based on
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purely discriminative feature reduction (COMPARE [80]).

Over recent years, emphasis of modern medical image analysis in context of diagnosis has

shifted toward developing new biomarkers. Recently, various structural (e.g., MRI, DTI, etc.) and

functional (e.g., PET, resting state fMRI, etc.) imaging channels have been utilized to develop new

biomarkers for diagnosis. Multiple image channels can provide a rich multi-parametric signature

that can be used to design more sensitive biomarkers [136], [108]. For example, while structural

MR images provide sensitive measurements for detection of atrophy in brain regions [83], recent

studies [66] have shown FDG-PET1 can quantify reduction of glucose metabolism in parietal

lobes, the posterior cingulate, and other brain regions [66]; combination of both channels can be

very instrumental in early diagnosis of Alzheimer’s disease [82].

An immediate solution to exploit multiple channels is to concatenate all image channels into a

long vector, but learning a classifier that generalizes well in such a high dimensional space is even

harder than in the uni-channel case because multi-channel datasets tend to be small. Therefore,

dimensionality reduction plays an even more important role here. Most existing studies extract

features from a few predefined areas [136]. Zhang [235] suggested extracting features from a

few pre-defined regions of interest (ROIs) and combining them into one kernel that then input

to a kernel-SVM classifier. However, predefined regions might not be optimal for diagnosis on

the individual level, i.e., classification of subjects into normal and abnormal groups. Ideally, the

whole image (e.g., brain scan) should be viewed as a large dimensional observation and relevant

regions to the target variable of interest (class labels, here) should be derived from such high

dimensional observation. High-dimensional pattern classification methods have been proposed

for morphological analysis [80], [92] which aim to capture multivariate nonlinear relationships

in the data. A critical step underlying the success of such methods is effective feature extraction

and selection, i.e., dimensionality reduction. In Chapter 3, we proposed a constrained matrix

factorization framework for dimensionality reduction while simultaneously being discriminative

1fluorodeoxyglucose positron emission tomography
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and representative; however, that method only works for uni-channel cases.

One could concatenate all image channels of a subject into long columns of a matrix and sim-

ply apply the method in Chapter 3 or a similar method. However, the straightforward approach

is limited with respect to its ability to model different hypotheses regarding the data. In this

chapter, we extend the formulation proposed in Chapters 3 and 4 by viewing the data matrix as

tensor. In our matrix notation, the first and the second indices enumerate voxels and subjects

respectively; we introduce new index that enumerates channels; it extends the data matrix to a

tensor. The proposed method here is not exactly tensor factorization as defined in [47], [130].

However, the advantage of viewing the data as a tensor is that the tensor structure allows us

different decompositions which imply various hypotheses about data. The proposed method is

inspired by the multi-view setting in the machine learning community [126], [8]. In the multi-view

setting, there are various views, sometimes in a rather abstract sense, of the data which co-occur;

here views are multiple channels. There are also target variables of interest (e.g., class labels). The

goal is to learn the target via the relationship between different views [126]. In this chapter, we

introduce two factorizations and explain their connotations. One of the variants is more appro-

priate for a setting that all channels focus on the same tissue type; for example PET and T1 which

both focus on gray matter tissue. The other variant is more applicable for channels characterizing

different tissue types; for example DTI and T1 which characterize white and gray matter tissues

respectively. We also view fMRI resting-state data an an instances of multi-channel image; in

this case, each time snapshot of brains, which is a volumetric image, is viewed as a channel. We

derive the factorization by solving a large scale optimization problem.

In the section 5.2.1, we briefly review the framework introduced in the Chapters 3 and 4. In

the section 5.2.2, two variants of the extensions for multi-channel cases are presented for medical

image classification purposes. The section 5.2.3 shows how resting-state fMRI can be viewed

as multi-channel image. We explore the applicability of the method for discovery of the so-

called default-mode-network (DMN). By extending the notion of group sparsity introduced in the
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Chapter 4, we show how structural connectivity can be used a prior to guide inference of the

DMN. In the section 5.3.1, we apply the methods introduced in the sections 5.2.2 on real datasets

for classification. Since we do not have a solid ground-truth for DMN, the method is tested on a

synthesized data in the section 5.3.2. Finally, we explore the applicability of the method on a real

resting-state data in the section 5.2.3 and compare the results with what is reported in the clinical

literature.

5.2 Method

5.2.1 General Framework

The novel method proposed in this chapter is based on an extension of the previously proposed

framework for uni-channel in Chapters 3 and 4, which we briefly present here for perspective.

Similar to Chapters 3, the proposed method reduces the dimensionality in a discriminative way

while preserving the semantics of images; hence it is clinically interpretable and produces good

classification accuracy. We use regularized matrix factorization formalism for dimensionality

reduction. Regularized matrix factorization decomposes a matrix into two or more matrices

such that the decomposition describes the matrix as accurately as possible. Such a decom-

position could be subjected to some constraints or priors. Let us assume that the columns of

X = [x1 · · ·xN ] represent observations (i.e., sample images that are vectorized), and B ∈ RD×K

and C ∈ RK×N decompose the matrix such that X ≈ BC. K is the number of basis vectors,

which is a parameter of the algorithm, D is the number of voxels in images and N is the number

of samples. The columns of matrix B (called bk) can then be viewed as basis vectors and the

nth column of C (called cn) contains corresponding loading coefficients or weights of the basis

vectors for the nth observation. The columns bk ∈ B and cn ∈ C are subjected to some con-

straints which define the feasible sets B and C. We use variable yn ∈ {−1(abnormal), 1(healthy)}

to denote labels of the subjects. Healthy subjects are denoted by 1 and abnormal ones by −1.
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An optimal basis vector (bk) operates as a region selector; therefore its entries (bjk) must be

either on or off (i.e., bjk ∈ {0, 1} ). Since optimizing integer values is computationally expensive,

particularly for the large dimensionality characteristic of medical images, we relax this constraint

to 0 ≤ bjk ≤ 1 which can be encoded mathematically by a combination of `∞ norm and non-

negativity (b ≥ 0). Assuming that only certain structures of an anatomy are affected (e.g., atrophy

of hippocampus in Alzheimer’s disease), we can impose sparsity on the basis vectors which

also makes them more interpretable. The sparsity constraint can be enforced by an inequality

constraint over the `1 norm of the basis vectors. These two properties constitute the feasible set

for the basis vectors (B) as follows (see Chapter 4 for more details):

B := {b ∈ RD : b ≥ 0, ‖b‖∞ ≤ 1, ‖b‖1 ≤ λ3}, (5.2.1)

where the ratio of λ3/D encodes the ratio of sparsity of the basis vectors.

For the feasible set of coefficients (C), we only assume non-negativity (i.e., C := {c : c ≥ 0})

because our images are usually non-negative however this is not a limitation for the model, and

this constraint can be relaxed in the case of negative values in image (see Section 5.2.2).

In order to find optimal B and C matrices, we define the following constrained optimization

problem:

min
B,C,w∈RK

λ1D(X; BC) + λ2

N∑
n=1

`(yn; f(xn; B,w)) + ‖w‖2

subject to: f(xn; B,w) = 〈BTxn,w〉

bk ∈ B, C ≥ 0 (5.2.2)

The cost function of the optimization problem consists of two terms: 1) the generative term (D(·; ·))

encourages the decomposition (BC) to be close to the data matrix (X); 2) the discriminative term

(`(yn; f(xn,B,w))) is a loss function that encourages a classifier f(·) to produce class labels that
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are consistent with available labels (y). The classifier parametrized by w produces a label given

the new feature (vn = BTxn) which is the projection an image (xn) on the basis vectors. We

use a linear classifier, hence f(xn,B,w) = 〈BTxn,w〉. Similar to Chapter 3, we set D(X; BC) =

‖X−BC‖2F and λ1 is a constant. For the loss function, we choose a hinge squared loss function:

`(y, ỹ) = (max{0, 1− yỹ})2, that is a common choice in machine learning (see Chapter 3).

There are three blocks in the optimization problem in Eq.(5.2.2): w,B, and C. The problem is

not jointly convex with respect to all blocks however it is block-wise convex. In other words, if

any two pairs of blocks are fixed, the problem is convex with respect to the remaining block. The

optimization scheme starts from a random initialization of blocks, fixes two blocks, optimizes

with respect to the remaining one, and repeats this process for each block. The whole process

is repeated till convergence. Optimization with respect to C and w is not challenging but, due

to the large-scale dimensionality of a medical image, optimization with respect to B requires a

specialized method (see Chapter 4 for details).

5.2.2 Extension to Multi-Modality: Classification Problem

Unlike the uni-channel case, in which each voxel stores a scalar value, in the multi-channel case,

each voxel of an image is associated with an array of values. In Section 5.2.1, we stored the

training data into a matrix (X); while in the multi-channel case, we need to structure the data

into a tensor (X). In fact, in the general framework (Section 5.2.1), the matrix X can be viewed

as an order-2 tensor2 in which the first index (rows) enumerates voxels and the second index

(columns) enumerates subjects. We simply extend this matrix to an order-3 tensor in which the

third index (faces) enumerates channels. One can simply concatenate all image channels of a

subject into long columns of a matrix and then apply the method presented in Chapters 3 and

4, or a similar method. However, the advantage of viewing the matrix data to a tensor data is

that various factorizations can be proposed, each of which implies different hypotheses about
2The order of a tensor is the number of indices necessary to refer unambiguously to an individual component of a

tensor.
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(a)

(b)

Figure 5.1: The difference between the two proposed factorizations: (a) multi-View(X,y), (b)
multi-View(y). There are M channels stored in the data tensor (X); in (b) for multi-View(y), we need
to have M sets of basis vectors (B(1), · · · , B(M)) and corresponding coefficients (C(1),...,C(M)), while for
multi-View(X,y) (in (a)), there is one set of basis vectors (B) shared across channels. The method in (a) is
more proper for channels focusing on the same tissue type while (b) can be applied for channels focusing
on different tissue types.

the data because of the structure of a tensor. In this section, we introduce two factorizations and

explain their connotations (pictorially represented in Figure 5.1 ).

Our method can be viewed as multi-view learning [126]. In the multi-view setting, the goal is

to implicitly learn about the target via the relationship between different views [126]. The goal is

to learn the target (here, class labels) via the relationship between different views (here, different

channels) [126]. In this chapter, we introduce two factorizations and explain their connotations.

One of the variants is more appropriate for a setting that all channels focus on the same tissue

type; for example PET and T1 which both focus on gray matter tissue. The other variant is

more applicable for channels characterizing different tissue types; for example DTI and T1 which

characterize white and gray matter tissues respectively.
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(a) (b)

Figure 5.2: This figure shows how we can viewed the proposed methods as Multi-Task learning. (a) shows
a schematic representation of multi-View(X,y) (i.e., Eq.5.2.3). There are M generative tasks and one dis-
criminative task; B is shared across them. (b) shows schematic representation of multi-View(y) (i.e.,
Eq.5.2.4). There are M generative tasks each of which has it own Bm but they share their parameters with
the discriminative task.

multi-View(X,y) :

One assumption could be that there is one hidden variable (here basis vectors: B) that is shared

across image channels and class labels. This mostly makes sense for the cases that the multiple

channels measure various quantities of the same tissue; for example Fractional Anisotropy (FA)

and Trace both characterize white the matter tissue of a brain. Different channels indicate differ-

ent signatures of an abnormality at the same region of the anatomy (e.g., brain); therefore they

share the location (B) but with different coefficients (Cm). In this case, both class labels (y) and

data (X) are the targets; we will refer to the method as multi-View(X,y) (see Figure 5.1a). It

can also be viewed as a Multi-task learning process [163]. Here, we have M + 1 tasks: M gener-

ative tasks to reconstruct the data and 1 task to reconstruct the class label (i.e., classification). In

multi-View(X,y), all M + 1 tasks share the same parameters, namely B (see Figure 5.2a).

We can modify Eq.5.2.2 as follows:

min
B,C,w∈RK

λ1

M∑
m=1

‖Xm −BCm‖2F + λ2

N∑
n=1

`(yn; f(xn; B,W)) + ‖W‖2F
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subject to: f(Xn; W,B) =

M∑
m=1

〈wm,B
TXmn 〉

bk ∈ B, C ≥ 0 (5.2.3)

where the generative term D(·; ·) is augmented to reconstruct different channels however B is

shared across the channels and they differ by their coefficients (Cm). The classifier (f(·)) is also

augmented. It is parametrized by a matrix (W ∈ RK×M ) instead of w ∈ RK but this extension

can also be viewed as extension of of w to longer vector as shown in Figure 5.1a. The regularizer

of w in Eq.5.2.2 is simply augmented to the Frobenius norm, namely ‖W‖2F =
∑M
m=1 ‖wm‖22.

multi-View(y) :

Unlike multi-View(X,y), an alternative assumption could be that there is no hidden variable

shared across channels, hence every channel has its own basis vectors (B(m)), but projection

on these basis vectors collaborate to predict class labels. For example, different channels may

measure quantities on non-overlapping regions of a brain (e.g., white matter and gray matter)

each quantifying complementary features about the class labels. We refer to this variation as

multi-View(y). Since B(m)’s need to collaborate on the discriminative term, this assumption

is still different than applying the uni-channel method separately. multi-View(y) can also be

viewed as Multi-task learning. Similar to multi-View(X,y), there areM+1 tasks, M generative

tasks that are independent from each other because they have their own parameters (B(m)) and 1

discriminative task which shares the parameter with each of the M generative tasks (see Figure

5.2b).

We can modify Eq.5.2.2 as follows:

min
B,C,w∈RK

λ1

M∑
m=1

M∑
m=1

‖Xm − BmCm‖2F + λ2

N∑
n=1

`(yn; f(xn; B,W)) + ‖W‖2F

subject to: f(Xn; W,B) =

M∑
m=1

〈wm, (Bm)TXmn 〉
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B(:, n,m) ∈ B, C ≥ 0 (5.2.4)

where the generative term D(·; ·) is augmented to reconstruct different channels which is basi-

cally sum of M independent reconstruction with their own Bm and Cm. The classifier (f(·)) is

also augmented with respect to Eq.5.2.2. It is parametrized by a matrix (W ∈ RK×M ) instead

of w ∈ RK but this extension can also be viewed as extension of w to longer vector as shown

in Figure 5.1b. Notice that the generative term is separable for each channel but basis matrices

(Bm’s) are coupled together through the loss function (`(·, ·)) in Eq.(5.2.4); therefore, it is different

than applying the uni-channel algorithm (Section 5.2.1) separately and concatenating extracted

features later for a classifier.

5.2.3 Resting-state fMRI: Network Detection

Over recent years, there has been a growing interest in studying brain connectivity using resting-

state fMRI (rs-fMRI) [30]. By discovering which regions are functionally connected, we can learn

more about the functional organization of the brain [4] and potentially identify bio-markers for

diseases such Alzheimer’s [211]. However, unlike task-based fMRI, there is no external variable

to fit a model against which renders discovering brain networks challenging.

A common approach is to calculate temporal correlations between the mean signals of pre-

defined regions of interest (ROI’s) [203]; if two regions are highly correlated, they are considered

connected. Although such a model-based method may produce interpretable results, the out-

comes are highly dependent on the ROIs chosen [203]. At the other end of the spectrum are

data-driven approaches that do not require pre-defined seeds, such as Independent Component

Analysis (ICA) [39]. To improve spatial localization of ICA and in turn the clinical interpretabil-

ity of the results, many researchers have suggested using a sparsity prior for the spatial term;

for example, Varoquaux et al. [206] suggests smooth-Lasso penalty as a regularizer. Another

data-driven method is clustering [52], [91]. For example, Golland et al. [91] suggests optimally
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partitioning the volume into a set of disjoint networks. However, a shortcoming of this approach

is that the clusters typically do not overlap whereas one region of a brain may be involved in

multiple networks. Furthermore, the clusters are not necessarily biologically plausible. By re-

ducing degrees of freedom, a structural prior may alleviate the lack of controlled experimental

design in rs-fMRI and potentially improve clinical interpret-ability.

The relationship between functional and structural connectivity is not fully understood, but

combining the two may improve our understanding of brain networks. A few methods have

been recently proposed to embed functional and structural connectivity into a common frame-

work [208], [63], [236]. In this section, we propose a method that bridges between user-driven and

data-driven approaches. We reinterpret clustering as matrix factorization that decomposes data

into two sets of latent variables: spatial maps of brain activity and corresponding time courses.

Subjects share the activation maps but every subject has its own time signature. We model func-

tional activity maps as sparse combinations of structurally connected parcels that we refer here

as groups. The groups can simply be set of voxels in an ROI or connected set of voxels through

fiber tracks (see Figure 5.4). We suggest imposing sparsity on the union of the groups rather than

at the voxel level; i.e., we would like encourage few groups to co-activate instead of voxels.

We can view rs-fMRI as an instance of multi-channel image. Each time sample, which is an

image, can be viewed as a channel. The proposed method in Section 5.2.2 can be applied to

identify networks. In this case, identifying a functional network can be viewed as a generative

problem (unless there are two or more cohorts of subjects for whom a class labels exist), and we

suggest using Eq.5.2.3 (λ2 = 0) because we would like to find a common area across channels (or

time points). It is shown in Chapter 3 that the method can be viewed as a clustering approach

except that it allows clusters to overlap. Figure 5.3 shows the concepts pictorially. Assume our

dataset contains T time points for each of N subjects, and that each time point is an image con-

taining D voxels. The data is stored in a tensor X ∈ RD×N×T . Using Eq.5.2.3, the columns of

B are representative of the clusters that can be viewed as regions in the brain. Assuming that
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Figure 5.3: The figure shows T time series of all N subjects collected in X. X(d, 1, :) denotes time signal of
the d’th voxel of the first subject. C(1, i1, :) and C(1, i2, :) are time-series centroids of the first cluster (basis)
corresponding to i1’th and i2’th subjects respectively. Notice that the algorithm clusters time-series; subjects
share common basis (spatial pattern) but their time-series may differ.

all subjects are aligned, B finds common areas. Subjects shares the activation maps but every

subject has its own time signature (see Figure 5.3).

Setting λ2 = 0, for rs-fMRI, the following optimization problem needs to be solved:

min
B,C

T∑
t=1

‖Xt −BCt‖2F

subject to: ‖bk‖1 ≤ λ3, ‖bk‖∞ ≤ 1, bk ≥ 0 (5.2.5)

Here, T is number of time-points and Xt is a matrix (t’th face of X) holding images of all N

subjects in the t’th time point. Assuming that each image has D voxels, Xt ∈ RD×N . Notice that

the non-negativity term is dropped on C because after de-trending and other pre-processing steps

on rs-fMRI signal, the time series signal is not non-negative. However, the non-negativity on B

is kept because it contributes in clustering properties of the formulation.

Structural Connectivity Prior

The relationship between functional and structural connectivity is not fully understood, but

combining the two may improve our understanding of brain networks. A few methods have

been recently proposed to embed functional and structural connectivity into a common frame-
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Figure 5.4: An example on how groups can be constructed in real data: each of the 3 regions g1,g2,g3 can be
member of sets of groups (G). There are a lot of fibers connecting g1 and g2; hence (g1∪g2) can form another
group.

work [208], [63], [236].

The formulation in Eq.5.2.5 does not account for prior knowledge about the underlying data

(i.e., 3D image). To illustrate the value of domain knowledge, notice: 1) the columns of Xt con-

catenate all voxels into a long vector and ignore that voxels are structured in a specific order

within an image, 2) it is not obvious how to incorporate other types of prior knowledge about

brain structures such as connectivity into the formulation. For example, we might know a pri-

ori that two regions are connected through white-matter fiber tracks (see Figure 5.4) or there is

correlation between the their gray-matter thickness [123]. A possible scenario is shown in Figure

5.5; warmer colors indicate stronger connections between areas. The strength of the connections

can be measured via different methods such as white matter tractography (see Figure 5.4) or any

other method [123]. It is not immediately obvious how to incorporate such information into the

formulation.

We propose to form groups based on structural connectivity. The idea is that members of a

group are more similar (e.g., connected) to each other. Instead of imposing sparsity on voxel-level,

we suggest to impose sparsity on the union of groups; i.e., instead of few voxels, we would like to

encourage few groups to co-activate. Before introducing the notion, recall from Section 4.3, G =

contains set of groups. Each group g ∈ G is set of indices of voxels belonging to that group. In
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(a) (b)

Figure 5.5: (a) and (b) shows connectivity examples in human brain: warmer colors mean stronger connec-
tions [123]. It shows that “left caudal anterior cingulate cortex” is strongly connected to “left rostral anterior
cingulate cortex” and “left posterior cingulate cortex” can be considered as a group g1. On the other hand,
“left rostral anterior cingulate cortex” is strongly connected to “left caudal anterior cingulate cortex” which
can be considered as a group g2.

Chapter 4, defined two variants of the group-norms as follow:

‖b‖1,2 :=
∑
g∈G

ρg‖b|g‖2

‖b‖∞,2 := max
g∈G
{ρg‖b|g‖2} (5.2.6)

where b|g is a D-dimensional vector such that its voxels not belonging to the group g are set to

zero and ρg is a positive constant. There are two major differences between our objectives here

and Section 4.3:

• We emphasized in Section 4.3 that the groups should not overlap. However, in order to

detect connectivity, groups may or in some cases should overlap. For example, in Figure

5.5, it shows that “left caudal anterior cingulate cortex” is strongly connected to “left rostral

anterior cingulate cortex” and “left posterior cingulate cortex” which can form group g1.

On the other hand, “left rostral anterior cingulate cortex” is strongly connected to “left
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(a) (b)

Figure 5.6: In (a), if ‖b|g2‖2 = ‖b|g3‖2 = 0, set of possible non-zero voxels belong to intersection of comple-
ment of g2 ∪ g3 (inside of dashed blue line) which might not be meaningful. However the model in (b) does
not have the same problem: both g1 and g3 can shrunk to zero but since b is combination of the groups and
support region of b is still a valid group.

caudal anterior cingulate cortex” which can form g2.

• Even if groups overlap, imposing sparsity on the group level does not mean that the re-

sult would be the union of the groups but it might be their intersection which may not

meaningful. The idea is presented in Figure 5.6a: if in Eq.5.2.6 with overlapping groups,

‖b|g2‖2 = ‖b|g3‖2 = 0, then the pixels which are allowed to be non-zero belong to (g2∪g3)c.

If g1 happens to be important (hence ‖bg1‖2 6= 0), only pixels of g1 which are also in (g2∪g3)c

can be non-zero; however g1

⋂
(g2 ∪ g3)c may no be meaningful.

Obozinski and Jacob [118] suggested a regularizer to select entire variables in a union of se-

lected groups. The idea is to introduce a new set of variables, v|g ∈ RD, that is non-zero only in-

side of the group (i.e., supp(v|g) ⊂ g) and add an extra equality constraint, namely b =
∑
g∈G v|g .

Inspired by this idea, we can change Eq.5.2.6 to define a new regularization:

ΩG(b) := min
∀g∈G,vg

∑
g∈G

ρg‖v|g‖2, s.t.
∑
g∈G

v|g = b, v|g ≥ 0, ‖v|g‖2 ≤ 1 (5.2.7)

The equality constraint decomposes b as sum of v|g’s whose support are included in each

group as in Figure 5.6b. Since the equality constraint is enforced, an i’th entry of b can be non-

zero as long as it belongs to at least one non-shrunk group. Figure 5.7 illustrates the unit balls

of the group-norms for three different definitions of the group-norm introduced in this thesis
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(a) (b) (c)

Figure 5.7: (b) and (c) are unit balls of group norms with and without union property respectively. Singu-
larities exist in both cases, but occur at different positions: for (c) they correspond to situations where only
b1 or only b2 is nonzero, i.e., where all covariates of one group are shrunk to 0. (b) corresponds to new
regularization in Eq.5.2.7, singularities correspond to situations where only b1 or only b3 is equal to 0, i.e.,
where all covariates of one group are nonzero. For comparison, the unit ball of non-overlapping group is
also shown for G = {{1}, {2, 3}}. Figures are adopted from [162].

so far. Figure 5.7c shows the unit ball of the group norm defined in Chapter 4 (i.e., Eq.5.2.6) for

G = {{1}, {2, 3}. Figure 5.7a and Figure 5.7b show the unit balls for G = {{1, 2}, {2, 3}}. They

show the differences between the new (i.e., Eq.5.2.7) and the former definition of the group norm

(i.e., Eq.5.2.6) when groups overlap. While Figure 5.7a has only four singularities corresponding

to either b1 = 0 or b3 = 0, Figure 5.7b has two circular sets of singularities corresponding to

(b2, b3) = 0 and (b1, b2) = 0 [162]. The unit ball of non-overlapping group norm is shown just for

comparison.

Replacing the regularization term in Eq.5.2.5 with the new regularizer, we have:

min
B,C∈RK

T∑
t=1

‖Xt −BCt‖2F

subject to: ΩG(bk) ≤ λ3, 1 ≤ k ≤ K (5.2.8)

the problem is not jointly convex but it is convex fixing each block and optimizing with respect

to the other.
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We use a block-wise optimization scheme to solve Eq.5.2.8. Solving for C is straightforward

but due to the large dimensionality of the images, solving with respect to B is challenging. As

discussed in Chapter 4, the bottle-neck is on solving the projection or proximity operator effi-

ciently, namely

P(u) = arg min
ΩG(b)≤λ3

‖u− b‖2, (5.2.9)

In Algorithm 2 in Chapter 4, we suggested to use SPG to solve for B. Algorithm 3 or Al-

gorithm 4 were suggested for the proximity operator depending on the type of regularizer. For

the new group norm introduced here, we suggest to use SPG to solve Eq.5.2.9. Therefore, the

optimizer for B constitutes of two nested SPG; one for the proximity operator and the other one

for updating B. The idea is to rewrite Eq.5.2.9 as another equivalent optimization problem with

non-overlapping groups and use the algorithms proposed in Chapter 4 as a sub-module. To do

so, we need to rewrite Eq.5.2.9 as follows:

min
z
‖Az− u‖2

s.t. ‖z‖1,2 ≤ λ3, 0 ≤ z ≤ 1 (5.2.10)

where z is constituted by concatenating elements of each group therefore it has
∑
g∈G |g| ele-

ments; ‖ · ‖1,2 is a non-overlapping norm defined similar to Eq.4.3.1. A ∈ RD×(
∑

g∈G |g|) is a

membership matrix; its entries are either 0 or 1 depending on i’th row being a member of corre-

sponding group in z or not. This reformulation casts the problem to a non-overlapping group on

z that let us use the efficient Algorithm 4 proposed in Chapter 4. The algorithm is summarized

in Algorithm 5.
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Algorithm 5 SPG solver for the proximity operator (Eq.5.2.10)

Require: Initial point, step-length bounds 0 < αmin < αmax, ν, M
repeat

d← PB(zk − αk(ATAzk − 2ATu))− zk (using Alg.4)
γ ← 1
M ← maxk−M≤i≤k{‖Azi − u‖2}
while ‖A(zk + γd)− u‖2 > M + νγ〈(ATAzk − 2ATu),d〉 do

Choose γ ∈ (0, 1) with quadratic interpolation [96]
end while
zk ← zk + γd
compute step-length: αk ← min{αmax,max{αmin, αbb}} (αbb in Eq.(3.5.9))
k ← k + 1

until some convergence criteria satisfied

5.3 Experiments

In this section, we show the results from two sets of experiments. In Section 5.3.1, we apply

our method on real multi-channel data for classification purposes. In Section 5.3.2, we simulate

synthetic images and examine the applicability of the proposed method in detecting a network

in various settings as well as exploring its utility in the analysis of fMRI data.

5.3.1 Classification with Real Data

For this section, we acquired a subset of images from a longitudinal brain imaging study for vali-

dation of our method. The objective of this choice was to investigate the longitudinal progression

of changes in brain structure (MRI) and brain function ([15O]-water PET-CBF) in relation to cogni-

tive change in cognitively normal older adults. We used slopes of CVLT3 score over the follow-up

period as a measure of cognitive function to subdivide the entire cohort into two groups: top 20%

(25 subjects) showing the highest cognitive stability (CN: cognitively normal), and bottom 20%

(25 subjects) showing the most pronounced cognitive decline (CD: cognitively declining).

All T1-MR images used in this study were pre-processed according to [80] and registered to

a template. Two volumetric tissue density maps [187] were formed for white matter (WM), gray

matter (GM) regions. These maps quantify an expansion (or contraction) to the tissue applied by

3California Verbal Learning Test [64]
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Figure 5.8: Two examples of the basis vectors shown in different cuts. Left: Multi-View(X,y), Right:
Multi-View(y) (γ∗ = 100; number of basis vectors is 60).

the transformation to warp the image to the template space.

Samples are divided into five folds and 4/5 of samples are used for training basis vectors (an

example of which is shown in Figure 5.8); projections on these basis vectors are used as features

and are fed to an SVM classifier.

In uni-parametric dataset, the algorithm is relatively stable as long as λ’s are chosen within

reasonable ranges (see [17]). We set the parameters to the most frequently chosen parameters

used for the uni-channel case on a totally different dataset. Numbers reported in Table 5.1 are

produced using such parameters. Nevertheless, we performed sensitivity analysis with respect

to ratio of λ1/λ2 and number of basis vectors, K (see Figure 5.9). For notational brevity, in γ∗ for

ratio of λ1/λ2 we used for Table 5.1. Different curves in Figure 5.9 denote different ratios of λ1/λ2.

While Multi-View(y) is relatively stable with respect to K and different ratios, performance

of Multi-View(X,y) improves as K increases. Although parameters that are more inclined

toward the unsupervised setting (e.g., λ1/λ2 = 10γ∗) under-perform settings that are excessively

discriminative (e.g., λ1/λ2 = 0.001γ∗), are more stable. This observation can be explained by the

fact that a weak regularization was imposed on the discriminative term (i.e., there is almost no

‖W‖2F ) making the algorithm vulnerable to over-fitting.

Table 5.1 reports the average classification rates on the left-out folds for different scenar-

ios and methods. We used a publicly available software, called COMPARE [80], for compari-

son. The COMPARE method has been applied to many problems and has been claimed to per-
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Figure 5.9: Sensitivity Analysis: accuracy rates with respect to different number of basis vectors (K) for
various ratios of λ1/λ2. Left: Multi-View(y). Right: Multi-View(X,y).

Table 5.1: Comparison of classification accuracy rates for different scenarios and different methods on “cog-
nitively normal” (NC) versus “cognitively declining” (CD) subjects. Results are reported in the format:
accuracy (sensitivity,specificity); with γ∗ = 100; total number of basis vectors in each experiment is 60.

NC vs. CD
(WM,PET) (WM,GM) (GM,PET) (GM, WM, PET)

Multi-View(X,y) 0.82 (0.84,0.8) 0.76 (0.72,0.8) 0.84 (0.88,0.8) 0.94 (0.88,1.0)
Multi-View(y) 0.86 (0.84,0.88) 0.84 (0.8,0.88) 0.78 (0.8,0.76) 0.84 (0.84,0.84)
m-COMPARE 0.88 (0.8,0.96) 0.86 (0.88,0.84) 0.8 (0.8,0.8) 0.86 (0.84,0.88)
COMPARE 0.78 (0.68,0.88) 0.82 (0.76,0.88) 0.82 (0.84,0.8) 0.82 (0.76,0.88)
Single-View 0.84 (0.8,0.88) 0.84 (0.8,0.88) 0.82 (0.84,0.8) 0.8 (0.76,0.84)

form very well. Its variants, i.e., COMPARE and m-COMPARE, are similar to Multi-View(y) and

Multi-View(X,y) respectively. For comparison, we have included Single-View results for

each scenario in which basis vectors are extracted independently and features are concatenated

and fed to the same procedure to find the best parameters for a classifier as the multi-view meth-

ods. Since results shown in the table are column-wise comparable, the highest values in the col-

umn are magnified with a bold font in each column. In general, Multi-View(X,y) or its coun-

terpart m-COMPARE perform better. In all columns, at least one of the multi-view methods out-

performs the single view equivalent and the best performance is achieved by Multi-View(X,y).
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5.3.2 Network Recovery: Synthetic Data

In this set of experiments, parametric consistency of the algorithm is studied empirically. In other

words, under certain generative assumptions to generate samples (i.e., images), we empirically

study if the algorithm can successfully recover correct parameters (i.e., basis vectors). The idea is

to synthesize basis vectors resembling default network in human brain. As reported in literature

[95], there is a so-called default network in a brain that involves approximately similar areas in all

individuals. The three basis vectors in Figure 5.10a (b1 to b3) mimic this effect. This network

operates with it own synchronicity but each individual has her own frequency. Parts of this

network may positively (b1 and b2) or negatively correlated with each other (b1 and b3). In

addition to the default network, each individual may have her own activation pattern. This

activation may even overlap with default network. In order to mimic this property, we randomly

select three basis vectors (from b4, · · · ) with their own synchronicity.

f1
i ∼ U [fmin, fmax], f2

i ∼ U [fmin, fmax]

εi1(t), εi2(t), εi3(t) ∼ N (0, σ), a1 ∼ N (η, σ), a2 ∼ N (−η, σ) (η > 0)

ci1(t) = sin(f1
i t) + εi1(t), ci2(t) = a1sin(f1

i t) + εi2(t), ci3(t) = a2sin(f1
i t) + εi3(t),

s4, s5, s6 ∈ {4, · · · , 12} s4 6= s5 6= s6 P(4) = · · · = P(12)

cis4(t) = sin(f2
i t) + εi4(t), cis5(t) = sin(f2

i t) + εi5(t), cis6(t) = sin(f2
i t) + εi6(t),

xi(t) =

3∑
k=1

bkcik(t) +

6∑
k=4

bk(skcisk(t)) + εi εi ∼ N (0, σ) (5.3.1)

Equations in Eq.5.3.1 summarize the procedure we used to generate data:

• First, two frequencies f1
i and f2

i are sampled from a uniform distribution between fmin

and fmax, i.e., U [fmin, fmax]. f1
i is used to synchronize the common basis and f2

i is used to

synchronize the individual basis.
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(a) (b)

Figure 5.10: (a) shows common basis vectors that are shared across population and basis that can be cho-
sen for each individual. Loading coefficients between b1 and b2 are positively correlated and loading
coefficients between b2 and b3 are negatively correlated. (b) shows the definition of the groups for Group-
Sparsity regularization in Eq.5.2.7.

• Two correlation values a1i and a2i are sampled from two normal distributions. η is the

average positive correlation between b1 and b2 and −η is the average negative correlation

between b1 and b3 (see Figure 5.10a).

• From b4 to b12, two basis vectors are chosen without replacement. s4, s5, and s6 indicate

indices of the basis vectors. Corresponding coefficients cis4 , cis5 , and cis6 are synchronized

with f2
i .

• All basis and coefficients are mixed together to form the image xi ∈ R2564 with noise εi.

100 images are generated with the procedure in Eq.5.3.1. The number of time samples is set

to 30 (i.e., 1 ≤ t ≤ 30). It renders X ∈ R256×100×30.

In order to evaluate the success of the algorithm, we have two criteria: 1) finding correct basis

(i.e., b1, b2, b3), 2) getting correct correlation sign between (b1,b2) and (b2,b3). Those criteria

are encoded into three terms: 1) d1 that is `2 distance between ground-truth b1 and our closest

estimate to it, say b̂1: d1 = ‖b̂1 − b1‖; 2) d2 that is the `2 distance between basis with positive

correlation with b̂1 that is the most similar to b2: d2 = ‖b̂2−b2‖. If there is no basis with positive

correlation d2 = ‖b2‖. 3) Similar definition for b3 except with negative correlation. Finally

d = d1 + d2 + d3. We also investigated how an informative group-sparsity prior can affect the

consistency. Figure 5.10b shows that groups are moving vertical and horizontal patches of voxels.

4Each image is 4× 4 blocks and each block is 4× 4 pixels, hence the image is 16× 16 pixels, hence xi ∈ R256.
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Figure 5.11: The y−axis denotes the distance between ground-truth and estimated network in synthetic data.
x−axis denotes different correlation ratio. The blue curve corresponds to k−means clustering algorithm
is considered as baseline. Different shades of red are Boxed-Sparsity algorithm for various values of the
sparsity constraint (λ3) and different shades of green are Group-Sparsity for various values of λ3. Group
sparsity robustly outperforms k−means.

The experiment was repeated 10 times and averages of d are shown in Figure 5.11 for different

ratios of correlation (i.e., η) on the x-axis. Results of the k−means are also reported as a base-line.

To study the robustness of the algorithm with respect to different values of sparseness constraint,

λ3 is chosen from {D8 ,
D
4 ,

3D
8 ,

D
2 }; the ground-truth for λ3 is D

8 as shown in Figure 5.10a. Increas-

ing correlation improves the the consistency (decreases d) as expected. Figure 5.11 shows while

Boxed-sparsity (Eq.5.2.1) outperforms the base-line (i.e., k−means) only if λ3 is chosen close to

the ground-truth, group-sparsity is very robust and it outperforms the k−means for relatively

large values of λ3.

5.3.3 Network Recovery: fMRI Data

For Default-Mode-Network (DMN) in rs-fMRI, we have neither quantitative ground-truth nor we

have two cohorts of subjects (i.e., normal vs. abnormal) for classification. Therefore, to evaluate

our results, we compare them what is reported in clinical literature and anatomical knowledge.

For qualitative assessment of the algorithm, we selected 50 controls (23 female, 27 male, mean
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age 13.4± 3.38) from the open-access ADHD-200 dataset released by NITRC5. The resting BOLD

fMRI scan for each subject (360s length, TR = 2s) first underwent standard fMRI preprocessing

(motion correction, de-trending, smoothing). We then took the residual series of each scan after

nuisance regression on motion and mean WM and CSF signals, masked it to include only gray

matter (GM), and non-rigidly registered it to a template subject. We constructed 99 groups for

our experiments; 25 of which are defined based on strong structural connectivity as described in

the Human Connectome project6 ( [123] explains how the structural connectivities are inferred),

while the rest are individual regions defined by Freesurfer parcellation. The areas of brain repre-

sented by the groups are listed in Table 5.2. Notice that multiple parcellation methods or different

approaches such as fiber-tracking could be used to specify the groups.

To reduce computational cost, each experiment was limited to 30 basis vectors. We tested

λ values of 5, 10, and 15 and did not observe significant differences, though with λ = 15 the

basis vectors have higher budget and group norms can achieve values closer to 1. Figure 5.12a

illustrates a few cuts of the top basis vectors, ranked according to maximum value. We focused

on the top five basis vectors, sorted the groups comprising each of these basis according to their

norm, and focused on the top 50% of non-zero groups. A common observation was that these

top groups tended to be either single areas considered to be involved in the DMN (Default-

Mode-Network), e.g., superior parietal, or combinations defined on DMN seed regions. More

significantly, multiple DMN areas tended to be ranked highly in the same basis; for example,

combinations based on the posterior cingulate cortex (PCC) and bilateral middle temporal gyri

repeatedly appeared together in the top 5 basis vectors. Some basis vectors contained groups

which are not known to be part of the DMN, such as the rostral middle frontal gyrus ROI, but

these were typically ranked lower than DMN-associated groups. To summarize the experiment,

we add ‖v|g‖2 of the groups in all basis vectors of the experiment and rank the groups in de-

scending order based on the values in order to find the most selected groups. Figure 5.12b shows

5http://fcon 1000.projects.nitrc.org/indi/adhd200/
6http://www.humanconnectomeproject.org
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(a) (b)

(c) (d)

Figure 5.12: (a) shows example of two of the basis vectors on different axial cuts. (b) shows the top 5 groups
(different colors) in an experiment. (c) is 3D visualization of (b). To show the repeatability, (d) summarizes
the index of top 7 groups based on sum of ‖v|g‖2 in all basis vectors in each of the 3-folds.
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the top 5 groups denoted in the different colors. We used a similar measure to evaluate the re-

peatability of the algorithm. The 90 subjects were divided into three cohorts (3-folds) and the

results of group ranking were compared across the three runs. Figure 5.12d shows only the top

7 groups for the three runs for each fold. The figure shows that the algorithm is very consistent,

the first group is always g19, which contains regions connected to the left PCC, and is followed

by g1 and g28, which are based on the left middle temporal and left precuneus respectively. The

rest of the groups are also consistent although the order may vary slightly in the three runs.
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5.4 Conclusion

We proposed a framework that exploits all channels in a dataset simultaneously to reduce di-

mensionality in a discriminative yet interpretable way. Inspired by multi-view learning, two

variants of constrained tensor factorization are suggested each of which implies different hy-

pothesis about the data. We showed that the algorithm is relatively robust with respect to choice

of parameters and achieves good classification results.

In the fMRI experiment, we proposed a method that bridges user- and data-driven approaches

to infer functional connectivity. It allows prior knowledge about brain structures (e.g., fiber-

tracking) to be incorporated to guide this inference. It was shown that the method improves

robustness compared to the k−means on the synthetic data and finds areas reported frequently

in the clinical literature as belonging to the default-mode-network.
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Chapter 6

Semi-Supervised Learning

6.1 Introduction

Medical imaging community frequently relies on voxel-wise image analysis to define areas of

difference between groups [10] or to extract features for classification. However, this approach

is not well suited for identifying complex population differences because it does not take into

account the multivariate relationships in data [20, 40]. Moreover, regions showing significant

group difference are not necessarily discriminative for classifying individuals. In order to over-

come these limitations, high-dimensional pattern classification methods have been proposed in

the recent literature [80, 92]. A fundamental limitation of these methods with respect to medical

imaging is their need for large training sets of labeled data. One way to address this issue is to

train the methods using unlabeled data, which may exist in large quantities. However, it is not

clear how to exploit unlabeled data for dimensionality reduction. We will explore these topics in

the subsequent sections.

Semi-supervised learning refers to a class of machine learning techniques that simultaneously

use both labeled and unlabeled data for training in settings in which a small amount of labeled

data and a large amount of unlabeled data are available. Semi-supervised learning combines
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elements of unsupervised and supervised learning. In many medical imaging applications, such

situations arise either due to the availability of abundant sample images with no labels, or more

importantly due to uncertainty about the labels. For example, subjects may deviate from the

normal population and may be diagnosed with a certain disease in future follow-up scans; class

labels of such subjects are not very well-defined. This is the case for subjects diagnosed as Mild

Cognitive Impairment (MCI) who show some impairment in their cognitive scores and have high

risk to develop Alzheimer’s disease (AD) in near future [99]. One may be interested to predict

future follow-up labels (converging to AD or not) of the MCI subjects by considering them as un-

labeled data. Considering MCI subjects as unlabeled data allows an algorithm to locate unlabeled

subjects in the spectrum of normal vs. abnormal. Recently, several methods have been proposed

to address this issue. Sabuncu et al. [180] and Blezek et al. [33] proposed different frameworks

for joint image registration and clustering that can exploit unlabeled images. Ribbens et al. [174]

suggested a probabilistic method that can incorporate prior clinical information.

Our proposed method is based on techniques proposed in the previous chapters. As ex-

plained in Chapter 3, our method has two building blocks: Generative and Discriminative. The

Generative block attempts to find a low rank decomposition of the data and in effect, it clusters

voxels together given the constraint defined in Chapter 4. The discriminative part of the method

seeks to classify subjects given the the decomposition of the generative block. This framework

can be readily extended to the semi-supervised setting. The unlabeled data can contribute in the

generative term and help the discriminative task indirectly by imposing a better regularization.

Section 6.2 briefly sums up our general framework that we expand upon. The section also

presents the extension for semi-supervised setting and finally in Section 6.3 the applicability of

the method is investigated on the bench-mark and real data in a few experiments.
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6.2 Method

Dimensionality reduction is typically applied to achieve a generalizable classification rate when

number of samples is less than dimensionality of features. We propose to use regularized ma-

trix factorization formalism for dimensionality reduction. This framework allows to keep the

semantics of images; hence it produces interpretable results.

In this section, we lay out the general framework. Regularized matrix factorization decom-

poses a matrix into two or more matrices such that the decomposition describes the matrix as

accurate as possible. Such a decomposition could be subjected to some constraints or priors. Let

assume that columns of X = [x1 · · ·xN ] represent observations (i.e., sample images that are vec-

torized), and B ∈ RD×r and C ∈ Rr×N decompose the matrix such that X ≈ BC. r is number

of basis vectors which is a parameter of the algorithm, D is number of voxels of images and N

is number of samples. The columns of matrix B (called bk) can then be viewed as basis vectors

and the i’th column of C (called ci) contains corresponding loading coefficients or weights of

the basis vectors for the i’th observation. The columns bk ∈ B and ci ∈ C are subjected to some

constraints, which we denote with the feasibility sets B and C. We use variable yi ∈ {−1, 0, 1} to

denote labels of the subjects. Healthy subjects are denoted by 1 and abnormal ones by −1; 0 is

used simply for unlabeled subject indicating that labels are not decided for them.

In order to define the feasible sets (B), we need to elaborate the requirements that our algo-

rithm should satisfy: 1) The basis vectors must be anatomically meaningful; this means that a

constructed basis vector should correspond to contiguous anatomical regions preferably in areas

which are biologically related to a pathology of interest. In other words, the basis vectors should

not resemble spread disjoint voxels. Sparsity of the basis vectors, i.e., a relatively small number

of voxels with non-zeros values, encourages it to be more spatially localized. 2) The basis must

be discriminative: we are interested in finding features, i.e., projections onto the basis vectors,

that construct spatial patterns that best differentiate groups. 3) The decomposition (BC) should
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be a good representative of data without compromising the previous properties.

In this chapter, we assume that images are non-negative hence it is reasonable to impose non-

negativity on B and C. Thus, our proposed method can be viewed as a variant of non-negative

matrix factorization (NMF). NMF [141], [68] is an additive model that is known to decompose

images into meaningful parts that are shared across subjects; this property is favorable for our

application. Such part-based decomposition property encourages basis vectors to be similar to

anatomically meaningful parts of images (i.e., Hippocampus, Caudate, etc.for brain images). We

also assume that certain structures (e.g., Hippocampus) of an anatomy of interest (e.g., brain) are

affected by the abnormality (e.g., shrinkage of Hippocampus Alzheimer’s disease); this property

can be viewed as a sparsity constraint on the basis vectors which also help the basis vectors to be

more interpretable. We encode these properties via non-negativity on the coefficients and com-

bination of non-negativity and `1 and `∞ norms on the basis vectors. The `1-norm encourages

the sparsity property and combination of `∞ and non-negativity promotes part-based decompo-

sition:

C := {c ∈ Rr : c ≥ 0}

B := {b ∈ RD : b ≥ 0,‖b‖∞ ≤ 1,‖b‖1 ≤ λ3} (6.2.1)

where ratio of λ3/D encodes ratio of sparsity of the basis vectors. In order to find optimal B and

C, we define the following constrained optimization problem:

min
B,C,w∈Rr

D(X;BC) +
∑
i∈L

`(yi; 〈BTxi,w〉) + ‖w‖2

subject to: bk ∈ B, ci ∈ C (6.2.2)

The cost function of the optimization problem consists of two terms: 1) Generative term (D(·; ·))

that encourages the decomposition, BC, to be close to the data matrix (X); both labeled and

unlabeled data contribute to this term. 2) Discriminative term (`(yi; f(xi,B,w))) is a loss func-
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tion that encourages a classifier f(·) to produce class labels that are consistent with available

labels (y). The classifier parametrized by w, projects each image (xi) on the basis vectors to

produce new features (vi = BTxi) and produces a labels. In this chapter, we use a linear classi-

fier, hence f(xi,B,w) = 〈BTxi,w〉. Only labeled data contribute to the discriminative term.

Various choices are possible for D(·; ·) and `(·; ·). Here, we set D(X; BC) = λ1‖X − BC‖2F

where λ1 is a constant. For the loss function, we choose a hinge squared loss function: `(y, ỹ) =

(max{0, 1 − yỹ})2 which is a common choice in Support Vector Machine literature. Summing

over L for the loss function simply indicates that the labeled subjects participate in this term.

In case of semi-supervised learning in our method, some subjects have certain labels (de-

noted by XL) and some subjects do not have labels (denoted by XU ). In other words, the data

matrix (X) can be partitioned into two sub-matrices, namely X = [XL XU ]. Our generative-

discriminative framework can easily handle such cases. Recall the objective function of the op-

timization problem in Eq.(6.2.2); it was decomposed into three terms: generative term (D(·; ·)),

discriminative term (`(·; ·)), and regularization term. XL contributes in both generative and dis-

criminative terms while XU only contributes in the generative term, namely:

Θ = {B,C,w}

J (Θ) = D([XL,XU ]; Θ) + `(y; XL; Θ) +R(Θ) (6.2.3)

in which Θ is introduced to simplify the notation by grouping all parameters into Θ, J (·) denotes

the objective function, R(·) stands for the regularization term. Eq.(6.2.3) shows that unlabeled

samples are not penalized in the discriminative term (the second term) because the true labels

are not available for them. This setting will be validated in Section 6.3.
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6.3 Experiments

In this section, we investigate the performance of the extension of our method to semi-supervised

learning. In order to examine the effectiveness of the proposed method for semi-supervised

learning, we performed two sets of experiments. In the first set of experiments, the proposed

method is compared with well-established semi-supervised methods on a benchmark data pub-

lished earlier by Schölkopf et al. [42]. In the second sets of experiments, we apply the method on

real medical images acquired from the ADNI dataset.

6.3.1 Experiment with Benchmark Datasets

Table 6.1 compares accuracy rates of the proposed method with those of three well-established

semi-supervised learning methods on three datasets of a publicly available benchmark [42]. Al-

though the setting in [42] is not in favor of our method and the proposed method is designed to

address semi-supervised learning for medical image data, the results can show the soundness of

the method in a very general context. Full descriptions of the datasets and pre-processing steps

are elaborated in [42] but briefly:

• USPS : It is a dataset consisting of 150 images of each of the ten digits randomly drawn

from the USPS set of handwritten digits. The digits “2” and “5” were assigned to the

class +1, and all the others formed class -1. The images were obscured by application of

algorithm 21.1 in [42] to prevent people from exploiting spatial relationship of features in

the images [42]; more specifically for this dataset: D = 241 and N = 1500.

• Text : This is the 5 comp.* groups from the Newsgroups dataset and the goal is to

classify the ibm category versus the rest (provided by Tong et al. [200]); more specifically

for this dataset: D = 11, 960 and N = 1500.

• BCI : This dataset originates from research toward the development of a brain computer

interface (BCI) (Lal et al. [135]). In each trial, EEG (electroencephalography) was acquired
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Table 6.1: Comparison of classification error rates on a semi-supervised benchmark [42] between the semi-
supervised extension of the proposed method and a few well-established methods. SSL-Bx stands for
Boxed-Sparsity constrained formulation in the semi-supervised setting (Section 6.2)

USPS Text BCI
SSL-Bx 21.6 35.5 47.23

(Nlabel = 10)Linear TSVM 30.66 28.6 50.04
non-Linear TSVM 25.20 31.21 49.15
lapSVM 19.05 37.28 49.25

SSL-Bx 13.1 24.8 29.19

(Nlabel = 100)Linear TSVM 21.12 22.31 42.67
non-Linear TSVM 9.77 24.52 33.25
lapSVM 4.7 23.86 32.39

from a single subject from 39 electrodes. An autoregressive model of order 3 was fitted to

each of the resulting 39 time series. The trail was represented by the total of 117 = 39 × 3

fitted parameters; more specifically for this dataset: D = 117 and N = 400.

In Table 6.1, in the first four rows, number of label samples (Nlabel) are set to 10 and in the

second four rows, it is set to 100. The Table reports error rates for non/linear Transductive Sup-

port Vector Machine (TSVM) [121], Laplacian SVM (lapSVM) [188], which are chosen due to their

good performance on the three datasets, in addition to the error rate for the proposed method.

Entries of the table for lapSVM and non/linear-TSVM are adopted from [42]. According to [42],

hyper-parameters of each of the algorithms are chosen by minimizing the test error, which is not

possible in real applications; however, the results of this procedure can be useful to judge the

potential of a method. To be comparable, similar procedure was applied to find λ1/λ2, λ3/D and

K for our algorithm.

Table 6.1 shows that no method consistently outperforms other methods across datasets; how-

ever, the results are consistent on each dataset. It shows that although our method outperforms

others only on the BCI dataset, it is within a reasonable range of the best performance. This

result motivates us to employ the semi-supervised extension of our method on a real medical

image data.
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6.3.2 Semi-Supervised Learning on a Brain Image Dataset

In this experiment 238 structural MRI images of MCI subjects were acquired from the ADNI

dataset and used as unlabeled data. All 238 MCI subjects have at least 2 scans corresponding

to 24-36 months follow-ups. Among 238 subjects, 99 patients have converted to AD at some

point by their third year follow ups (MCI-C) and 139 did not convert after three years (MCI-NC).

AD and NC subjects explained in the Chapter 4 were used as labeled data and the MCI subjects

(MCI-C/MCI-NC) were used an unlabeled data. RAVENS maps of the images were computed

by the same pre-processing pipeline as those of AD and NC subjects explained in the Section

4.6. Labeled data (AD/NC) is divided to 20 folds; data from 19 folds plus unlabeled data (MCI

subjects) is used to learn the basis vectors. One fold out of 20 folds of the labeled data plus the un-

labeled data were used for testing. In order to avoid searching for the best parameters, the most

frequently selected parameters in the Section 4.6.3 were used as the parameters. Both variants of

the regularizers introduced in Chapter 4: the Boxed-Sparsity (Eq.4.2.1), and the Group-Sparsity

(Eq.4.3.2). For Group-Sparsity, similar to the Chapter 4, all images are registered to a template and

an image partitioning (image segmentation) is available for the template image (e.g., an anatom-

ical parcellation in a template space). We used the support of each segmentation (i.e., brain area)

to define the groups.

To evaluate the performance of the algorithm, accuracy rates on the labeled data (AD/NC)

and recall rates on the unlabeled data are reported in Table 6.2 for both regularization types.

Since unlabeled data is shared between 20 folds, the recall rates (true positive and true negative

rates depending on the class label) are averaged among 20 folds.

Table 6.2 shows the results for the semi-supervised learning, SSL-Bx/Grp represent semi-

supervised learning for the Boxed- and Group-Sparsity constraints respectively. The classifi-

cation accuracy rates for the labeled data have been improved slightly for the Boxed-Sparsity

compared to the Table 4.1 meaning that unlabeled data can help improving the classification ac-
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Table 6.2: This table shows application of the algorithm in a semi-supervised setting on the ADNI. The ac-
curacy and recall rates (True-Positive and True-Negative rates) for labeled (AD/NC) and unlabeled data
(MCI-C/MCI-NC) are shown in the table. ssl-Bx and ssl-Grp indicate semi-supervised setting of the pro-
posed algorithm with the Boxed-Sparsity and Group-Sparsity constraints respectively.

Accuracy Recall
AD vs NC MCI-C MCI-NC

SSL-Bx 87.2%(±14.9%) 79.3%(±6.5%) 44.6%(±5.8%)
SSL-Grp 88.9%(±12.3%) 85.4%(±3.6%) 39.9%(±5.9%)

curacy for the labeled data. While the recall rates show high values for the MCI-C group, they

demonstrate low recall rates for the MCI-NC group. Such low values can partly be justified by

the fact that the patients in the MCI-NC group have not converted to the AD group yet but they

may convert in the future. In addition, the labeled data anchored the classifiers to produce valid

results for the AD/NC groups and avoid a case in which all data are assigned to one class. There-

fore, Area Under Curve (AUC) of the classifiers should be investigated for further evaluation of

the method.

Note that for all values reported in Table 6.2, basis vectors (hence features) extracted in the

semi-supervised way but the classifiers are supervised (Logistic Model Trees [137]). One question

would be whether a semi-supervised classifier can improve the results. Therefore, we designed

an experiment to answer multiple questions: 1) Whether it is helpful to feed the features extracted

using semi-supervised basis learning to a semi-supervised classifier instead of a supervised clas-

sifier; 2) Whether our semi-supervised basis learning is useful when there are few labeled sam-

ples; 3) How the number of labeled samples and different configurations of (semi-)supervised

basis learning and (semi-)supervised classifiers affect AUC for MCI subjects.

For computational efficiency, the basis vectors B were learned only from 79 MCI subjects (as

unlabeled data), and 20 AD and 20 NC subjects (as labeled data). The labeled subjects were

divided into five folds for cross validation (4/5 for training and 1/5 for testing) and the 79 MCI

subjects were shared as unlabeled data across folds. In order to investigate the effect of number
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of labeled data, we performed four basis learning experiments by increasing number of revealed

labels from 4 to 32; each fold has 4/5 × (20 + 20) = 32 AD/NC subjects and we revealed labels

of AD/NC subjects as: {(2, 2), (4, 4), (8, 8), (16, 16)}. Rest of MCI subjects (i.e., 238 − 79 = 159)

and AD/NC subjects that do not contribute in the basis learning are added to the testing lists for

each fold.

After basis learning, features are extracted by projecting all images on the learned basis vec-

tors. These features were fed into a supervised-classifier (Logistic Model Trees [137]) and a semi-

supervised classifier (linear Laplacian SVM [24]) to produces labels. To have a reference point for

comparison, we also learned the basis without unlabeled data (supervised basis learning). Figure

6.1 plots accuracy rates of AD/NC with respect to the number labeled data in different settings.

The accuracy rates were computed on the left-out labeled data and the rest of the labeled data

that was not introduced during the basis learning or training of the classifier. For brevity, SF

in Figure 6.1 indicates Supervised Features, i.e., using only labeled data to learn the basis vec-

tors, and SSF denotes Semi-Supervised Features, i.e., using the labeled and the unlabeled data

to learn the basis vectors. The figure shows different scenarios for classification: supervised fea-

tures fed into a supervised classifier (SF + SC) and a semi-supervised classifier (SF + SSF) and

compares them with with semi-supervised features fed into a supervised classifier (SSF + SC)

and a semi-supervised classifier (SSF + SSF).Figure 6.1a and Figure 6.1b show accuracy rates

and AUC for the MCI respectively when the Boxed-sparsity is used for regularization and Fig-

ure 6.1c and Figure 6.1d represent the same quantifies when the Group-sparsity is applied as the

sparsity regularization.

The results shown in Figure 6.1 can be summarized as follows:

• semi-supervised basis learning helps: in all scenarios semi-supervised features (SSF) which

are extracted by basis vectors learned in presence of unlabeled data outperform their cor-

responding supervised features (SF). Significant difference can be seen when the semi-

supervised features are fed into semi-supervised classifier (i.e., SSF+SSC) which achieves
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the best performance for both measures particularly for the Boxed-Sparsity.

• semi-supervised classifier helps: in all scenarios in Figure 6.1 semi-supervised classifiers (i.e.,

SF+SSC and SSF+SSC) outperform their corresponding supervised classifiers for both

types of regularizations (Boxed-Sparsity: Figure 6.1a-6.1b, Group-Sparsity: Figure 6.1c-

6.1d) and both measures (i.e., accuracy and AUC).

Note that semi-supervised features are more stable in terms of performance even if they are

fed into a supervised classifier; for example, compare SF+SC and SSF+SC in Figure 6.1b and

Figure 6.1d. Also note that AUC measures are computed for MCI-NC/MCI-C subjects because

there is no real ground truth for them; hence AUC might be a better measure to show that the

classifiers are not biased toward one of the classes although good performances on the labeled

data (i.e., AD vs NC) already show this fact.

6.4 Conclusion

We presented a framework to reduce the dimension of image features in the presence of un-

labeled data. Constrained matrix decomposition problem was adapted for generative and dis-

criminative basis learning and extended to semi-supervised formulation. Semi-supervised di-

mensionality reduction method outperforms supervised dimensionality reduction for both clas-

sification tasks considered in our experiments, both in terms of classifier accuracy and area under

curves (AUC).
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(a) (b)

(c) (d)

Figure 6.1: The accuracy rates and Area Under Curve (AUC) versus different number of labeled samples
for different regularizations. SF and SSF stand for supervised and semi-supervised features respectively
i.e., supervised basis learning with or without unlabeled data; SC and SSC denote supervised classifier
(Logistic Model Trees [137]) or semi-supervised classifier (linear lapSVM) respectively. (a) The accuracy
rates of AD/NC when the Boxed-Sparsity is used as regularization. (b) AUC for MCI-NC/MCI-C subjects
when the Boxed-Sparsity is used as regularization. (c) The accuracy rates of AD/NC when the Group-
Sparsity is used as regularization. (d) AUC for MCI-NC/MCI-C subjects when the Group-Sparsity is used
as regularization.
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Chapter 7

Conclusion and Future Research

In this thesis, we combined two learning paradigms, generative and discriminative, to address

the curse of dimensionality for medical imaging classification applications. While in most meth-

ods for medical image classification feature extraction and classification are performed sepa-

rately, in this thesis, we combined those two steps into one framework. We proposed a novel

formulation that cast the problem as a large-scale constrained matrix factorization. The formu-

lation, in effect, chooses a subset of the rows (voxels of the images) and classifies the columns

(subjects). The method allowed us to reduce the dimension without compromising classification

or to produce clinically meaningless results (Chapter 3). The experiments with the synthetic and

the real images in Chapter 3 showed how a balanced choice between generative and discrimina-

tive terms can help us to recover areas of difference between two classes of images. The extension

of the method to the multi-channel case was also straightforward by changing our view from the

data matrix to the data tensor. Such a change in the perspective allowed us to account for two sce-

narios: modalities characterizing the same tissue type (Multi-View(X,y)) and different tissue

type (Multi-View(y)). Experiments in the Chapter 5 on a few multi-channel datasets showed a

superior classification performance with respect to the state-of-the method [80].

There are also several avenues for improvement which are left for future work:
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• Automatic Parameter Selection: There are a few parameters (i.e., λ1, λ2, λ3) that need to be

tuned using cross-validation. Although we have showed in Chapter 3 (see Section 3.6.3)

that the algorithm is relatively robust with respect to a wide range of parameters, in order

to achieve a high classification rate, one needs to do cross-validation inside of the training

set. We have also suggested an ad hoc method to set the parameters in the Section 4.5.

Another method is to estimate λ’s from the data using a similar method to the Bayesian

approaches such as Relevance-Vector-Machine (RVR) [199].

• Incorporating Orthogonality as a Constraint: We observed in our experiments on real

brain images that increasing the weight on the discriminative term encourages many of the

basis vectors to be similar to each other. Currently, we do not have any term to push the

basis vectors away from each other. Given that bi’s are all non-negative, pushing bi’s to

be dissimilar can be viewed as an orthogonality constraint which is difficult to impose in

our current block-wise convex formulation. In addition, imposing a strict orthogonality is

not favourable for our problem (we would like basis to have some level of overlap) but

we would prefer a soft version of the orthogonality constraint. There are a few works

that address similar problem [229], [164] but they break the block-wise convexity of the

formulation which is essential for its computational efficiency.

• Other Variants of the Groups Sparsity: The Boxed-Sparsity regularizer ignores the under-

lying structure of an image because it simply concatenates voxels of an image into a vector.

One approach to account for image structure could be to incorporate smoothness on the

bi’s (e.g., different variants of the TV-norm in Chapter 2) to encourage smoothness. In [20],

we used TV 1
2 -norm as a regularizer. We empirically realized that the algorithm yields sim-

ilar results if the images are smoothed before being fed to the algorithm. This is not the

case for TV 1/2
2 - or TV 1

1 -norms however they impose significant computational cost on the

optimization algorithm. For this reason, we always pre-smooth the images before applying

the method. Another remedy to this problem is to use other variants of the sparsity norm

146



for the feasible set (e.g., Group-Sparsity in Chapters 4 and 5). We showed in Section 5.2.3

that by allowing the groups to overlap, we can go beyond just image structure and consider

long-range connection between areas of a brain. Nevertheless, the experimental results in

the Section 5.3.3 are limited and further evaluation is needed.

• A Better Regularization for Semi-Supervised Learning: The modular nature of the method

makes it readily extensible for semi-supervised, and unsupervised learning cases. The

semi-supervised learning is important in medical imaging datasets when there are large

sets of subjects not classified as normal but lacking fully confident disease labels (e.g., MCI

cases). The experiments in the Chapter 6 showed that the semi-supervised basis learning

helps in term of predicting follow-up labels of the MCI subjects. It is also possible to add

extra regularization to incorporate relationship between samples (neighborhood informa-

tion) similar to the Laplacian SVM (`−SVM) [189]. In `−SVM the idea is as follows: the

samples with similar features (e.g., close to each other in `2 sense) should have similar

class labels. Neighborhood information can be encoded via a graph Laplacian and can be

added as regularization to the objective function. We have explored this idea in [17]. The

graph Laplacian was build by measuring the amount of deformation to register every pair

of the images. Comparing the results of the experiments in [17] and those of Chapter 6,

we realized that the generative term has more impact in the semi-supervised learning than

the Laplacian term; nevertheless further investigation is required to find the right balance

between the generative term and a better Laplacian term to exploit unlabeled data.

• Tightening the Relaxation: Finding the optimal basis vectors requires solving a large-scale

optimization problem. We relaxed the selection constraints for the voxels (i.e., {0, 1} was

converted to [0, 1]) for the computational purposes. A novel technique based on the proxi-

mal method [49] was proposed to gain computational efficiency. Nevertheless, due to the

relaxation, the entries of each basis vector are not necessarily 0/1 but rather between 0 and

1; this makes an ambiguity for choosing a threshold. A remedy is to avoid the relaxation
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and solve the combinatorial optimization problem. Since off-the-shelf discrete optimiza-

tion solvers cannot tackle this problem due to its large-dimensionality, one may resort to

a greedy methods to solve it. One way is to use matching pursuit methods [75], [76] al-

though the scalability of such approaches for a large-scale problem is questionable. Since

each bi can be viewed as a subset, finding optimal K subsets (K is the number of bi’s)

is even more difficult because number of possibilities to choose from (even with a greed-

ily method) is exponential. An intelligent sampling method can potentially outperform

simple greedy algorithm, nevertheless special attention is required to construct an efficient

sampling algorithm [134].

• Unifying with Registration: Through out this thesis, we assumed that all images are

registered to a common template and the images in the dataset are reconstructed using a

linear combination of basis vectors and coefficients (the BC in the generative term). We

can view the registration step as a generative process that generated the images by deform-

ing the template image. This perspective allows us to extend the linear reconstruction to

a non-linear one. We have partially studied this idea in [18] without the discriminative

term. The idea was to linearly reconstruct the stationary velocity fields of the diffeomor-

phic registration that reside in the tangent space of the identity map (no deformation) in

the template space. This approach can potentially unify the registration step within the

framework nevertheless adding the discriminative term to the formulation imposes com-

putational difficulties that need to be addressed in the future.
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