3,029 research outputs found

    The weakness of the pigeonhole principle under hyperarithmetical reductions

    Full text link
    The infinite pigeonhole principle for 2-partitions (RT21\mathsf{RT}^1_2) asserts the existence, for every set AA, of an infinite subset of AA or of its complement. In this paper, we study the infinite pigeonhole principle from a computability-theoretic viewpoint. We prove in particular that RT21\mathsf{RT}^1_2 admits strong cone avoidance for arithmetical and hyperarithmetical reductions. We also prove the existence, for every Δn0\Delta^0_n set, of an infinite lown{}_n subset of it or its complement. This answers a question of Wang. For this, we design a new notion of forcing which generalizes the first and second-jump control of Cholak, Jockusch and Slaman.Comment: 29 page

    Minimal forbidden sets for degree sequence characterizations

    Get PDF
    Given a set F of graphs, a graph G is F-free if G does not contain any member of as an induced subgraph. A set F is degree-sequence-forcing (DSF) if, for each graph G in the class C of -free graphs, every realization of the degree sequence of G is also in C. A DSF set is minimal if no proper subset is also DSF. In this paper, we present new properties of minimal DSF sets, including that every graph is in a minimal DSF set and that there are only finitely many DSF sets of cardinality k. Using these properties and a computer search, we characterize the minimal DSF triples

    On 2-switches and isomorphism classes

    Get PDF
    A 2-switch is an edge addition/deletion operation that changes adjacencies in the graph while preserving the degree of each vertex. A well known result states that graphs with the same degree sequence may be changed into each other via sequences of 2-switches. We show that if a 2-switch changes the isomorphism class of a graph, then it must take place in one of four configurations. We also present a sufficient condition for a 2-switch to change the isomorphism class of a graph. As consequences, we give a new characterization of matrogenic graphs and determine the largest hereditary graph family whose members are all the unique realizations (up to isomorphism) of their respective degree sequences.Comment: 11 pages, 6 figure

    On the noncommutative geometry of tilings

    Get PDF
    This is a chapter in an incoming book on aperiodic order. We review results about the topology, the dynamics, and the combinatorics of aperiodically ordered tilings obtained with the tools of noncommutative geometry

    Dynamics and the Emergence of Geometry in an Information Mesh

    Full text link
    The idea of a graph theoretical approach to modeling the emergence of a quantized geometry and consequently spacetime, has been proposed previously, but not well studied. In most approaches the focus has been upon how to generate a spacetime that possesses properties that would be desirable at the continuum limit, and the question of how to model matter and its dynamics has not been directly addressed. Recent advances in network science have yielded new approaches to the mechanism by which spacetime can emerge as the ground state of a simple Hamiltonian, based upon a multi-dimensional Ising model with one dimensionless coupling constant. Extensions to this model have been proposed that improve the ground state geometry, but they require additional coupling constants. In this paper we conduct an extensive exploration of the graph properties of the ground states of these models, and a simplification requiring only one coupling constant. We demonstrate that the simplification is effective at producing an acceptable ground state. Moreover we propose a scheme for the inclusion of matter and dynamics as excitations above the ground state of the simplified Hamiltonian. Intriguingly, enforcing locality has the consequence of reproducing the free non-relativistic dynamics of a quantum particle
    • …
    corecore