954 research outputs found

    Identifying Regulators from Multiple Types of Biological Data in Cancer

    Get PDF
    Cancer genomes accumulate alterations that promote cancer cell proliferation and survival. Structural, genetic and epigenetic alterations that have a selective advantage for tumorigenesis affect key regulatory genes and microRNAs that in turn regulate the expression of many target genes. The goal of this dissertation is to leverage the alteration-rich landscape of cancer genomes to detect key regulatory genes and microRNAs. To this end, we designed a feature selection algorithm to identify DNA methylation signals around a gene that would highly predict its expression. We found that genes whose expression could be predicted by DNA methylation accurately were enriched in Gene Ontology terms related to the regulation of various biological processes. This suggests that genes controlled by DNA methylation are regulatory genes. We also developed two tools that infer relationships between regulatory genes and target genes leveraging structural and epigenetic data. The first tool, ProcessDriver integrates copy number alteration and gene expression datasets to identify copy number cancer driver genes, target genes of these drivers and the disrupted biological processes. Our results showed that driver genes selected by ProcessDriver are enriched in known cancer genes. Using survival analysis, we showed that drivers are linked to new tumor events after initial treatment. The second tool was developed to leverage structural and epigenetic data to infer interactions between regulatory genes and targets on a network-level. Our canonical correlation analysis-based approach utilized the DNA methylation or copy number states of potential regulators and the expression states of potential targets to score regulatory interactions. We then incorporated these regulatory interaction scores as prior knowledge in a dynamic Bayesian framework utilizing time series gene expression data. Our results indicated that the canonical correlation analysis-based scores reflect the true interactions between genes with high accuracy, and the accuracy can be further increased by using the scores as a prior in the dynamic Bayesian framework. Finally, we are developing an algorithm to detect cancer-related microRNAs, associated targets and disrupted biological processes. Our preliminary results suggest that the modules of miRNAs and target genes identified in this approach are enriched in known microRNA-gene interactions

    Network modeling of the transcriptional effects of copy number aberrations in glioblastoma

    Get PDF
    DNA copy number aberrations (CNAs) are a characteristic feature of cancer genomes. In this work, Rebecka Jörnsten, Sven Nelander and colleagues combine network modeling and experimental methods to analyze the systems-level effects of CNAs in glioblastoma

    An Investigation Of Gene Networks Influenced By Low Dose Ionizing Radiation Using Statistical And Graph Theoretical Algorithms

    Get PDF
    Increased application of radiation in health and security sectors has raised concerns about its deleterious effects. Ionizing radiation (IR) less than 10cGys is considered low dose ionizing radiation (LDIR) by the National Research Committee to assess health risks from exposure to low levels of IR. It is hard to extract the effects of mild stimulus such as LDIR on gene expression profiles using simple differential expression. We hypothesized that differential correlation instead would capture the effects of LDIR on mutual relationships between genes. We tested this hypothesis on expression profiles from five inbred strains of mice treated with LDIR. Whereas ANOVA detected little effect of LDIR on gene expression, a differential correlation graph generated by a two stage statistical filter revealed gene networks enriched with genes implicated in radiation response, DNA damage repair, apoptosis, cancer and immune system. To mimic the effects of radiation on human populations, we profiled baseline expression of recombinant inbred strains of BXD mice derived from a cross between C57BL/6J and DBA/2J standard inbred strains. To establish a threshold for extraction of gene networks from the baseline expression profiles, we compared gene enrichment in paracliques obtained at different absolute Pearson correlations (APC) using graph algorithms. Gene networks extracted at statistically significant APC (r≈0.41) exhibited even better enrichment of genes participating in common biological processes than networks extracted at higher APCs from 0.6 to 0.875. Since immune response is influenced by LDIR, we investigated the effects of genetic background on variability of immune system in a population of BXD mice. Considering immune response as a complex trait, we identified significant QTLs explaining the ratio of CD8+ and CD4+ T-cells. Multiple regression modeling of genes neighboring statistically significant QTLs identified three candidate genes (Ptprk,Acp1 and Lamb1-1) explaining 61% variance of ratio of CD4+ and CD8+ T cells. Expression profiling of parental strains of BXD mice also revealed effects of LDIR and LDIR*strain on expression of genes related to immune response. Thus using an integrated approach involving transcriptomic, SNP and immunological data, we have developed novel methods to pinpoint candidate gene networks putatively influenced by LDIR

    Bridging the Gap between Genotype and Phenotype via Network Approaches

    Get PDF
    In the last few years we have witnessed tremendous progress in detecting associations between genetic variations and complex traits. While genome-wide association studies have been able to discover genomic regions that may influence many common human diseases, these discoveries created an urgent need for methods that extend the knowledge of genotype-phenotype relationships to the level of the molecular mechanisms behind them. To address this emerging need, computational approaches increasingly utilize a pathway-centric perspective. These new methods often utilize known or predicted interactions between genes and/or gene products. In this review, we survey recently developed network based methods that attempt to bridge the genotype-phenotype gap. We note that although these methods help narrow the gap between genotype and phenotype relationships, these approaches alone cannot provide the precise details of underlying mechanisms and current research is still far from closing the gap

    Probabilistic analysis of the human transcriptome with side information

    Get PDF
    Understanding functional organization of genetic information is a major challenge in modern biology. Following the initial publication of the human genome sequence in 2001, advances in high-throughput measurement technologies and efficient sharing of research material through community databases have opened up new views to the study of living organisms and the structure of life. In this thesis, novel computational strategies have been developed to investigate a key functional layer of genetic information, the human transcriptome, which regulates the function of living cells through protein synthesis. The key contributions of the thesis are general exploratory tools for high-throughput data analysis that have provided new insights to cell-biological networks, cancer mechanisms and other aspects of genome function. A central challenge in functional genomics is that high-dimensional genomic observations are associated with high levels of complex and largely unknown sources of variation. By combining statistical evidence across multiple measurement sources and the wealth of background information in genomic data repositories it has been possible to solve some the uncertainties associated with individual observations and to identify functional mechanisms that could not be detected based on individual measurement sources. Statistical learning and probabilistic models provide a natural framework for such modeling tasks. Open source implementations of the key methodological contributions have been released to facilitate further adoption of the developed methods by the research community.Comment: Doctoral thesis. 103 pages, 11 figure

    The role of network science in glioblastoma

    Get PDF
    Network science has long been recognized as a well-established discipline across many biological domains. In the particular case of cancer genomics, network discovery is challenged by the multitude of available high-dimensional heterogeneous views of data. Glioblastoma (GBM) is an example of such a complex and heterogeneous disease that can be tackled by network science. Identifying the architecture of molecular GBM networks is essential to understanding the information flow and better informing drug development and pre-clinical studies. Here, we review network-based strategies that have been used in the study of GBM, along with the available software implementations for reproducibility and further testing on newly coming datasets. Promising results have been obtained from both bulk and single-cell GBM data, placing network discovery at the forefront of developing a molecularly-informed-based personalized medicine.This work was partially supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) with references CEECINST/00102/2018, CEECIND/00072/2018 and PD/BDE/143154/2019, UIDB/04516/2020, UIDB/00297/2020, UIDB/50021/2020, UIDB/50022/2020, UIDB/50026/2020, UIDP/50026/2020, NORTE-01-0145-FEDER-000013, and NORTE-01-0145-FEDER000023 and projects PTDC/CCI-BIO/4180/2020 and DSAIPA/DS/0026/2019. This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 951970 (OLISSIPO project)

    Statistical Methods For Genomic And Transcriptomic Sequencing

    Get PDF
    Part 1: High-throughput sequencing of DNA coding regions has become a common way of assaying genomic variation in the study of human diseases. Copy number variation (CNV) is an important type of genomic variation, but CNV profiling from whole-exome sequencing (WES) is challenging due to the high level of biases and artifacts. We propose CODEX, a normalization and CNV calling procedure for WES data. CODEX includes a Poisson latent factor model, which includes terms that specifically remove biases due to GC content, exon capture and amplification efficiency, and latent systemic artifacts. CODEX also includes a Poisson likelihood-based segmentation procedure that explicitly models the count-based WES data. CODEX is compared to existing methods on germline CNV detection in HapMap samples using microarray-based gold standard and is further evaluated on 222 neuroblastoma samples with matched normal, with focus on somatic CNVs within the ATRX gene. Part 2: Cancer is a disease driven by evolutionary selection on somatic genetic and epigenetic alterations. We propose Canopy, a method for inferring the evolutionary phylogeny of a tumor using both somatic copy number alterations and single nucleotide alterations from one or more samples derived from a single patient. Canopy is applied to bulk sequencing datasets of both longitudinal and spatial experimental designs and to a transplantable metastasis model derived from human cancer cell line MDA-MB-231. Canopy successfully identifies cell populations and infers phylogenies that are in concordance with existing knowledge and ground truth. Through simulations, we explore the effects of key parameters on deconvolution accuracy, and compare against existing methods. Part 3: Allele-specific expression is traditionally studied by bulk RNA sequencing, which measures average expression across cells. Single-cell RNA sequencing (scRNA-seq) allows the comparison of expression distribution between the two alleles of a diploid organism and thus the characterization of allele-specific bursting. We propose SCALE to analyze genome-wide allele-specific bursting, with adjustment of technical variability. SCALE detects genes exhibiting allelic differences in bursting parameters, and genes whose alleles burst non-independently. We apply SCALE to mouse blastocyst and human fibroblast cells and find that, globally, cis control in gene expression overwhelmingly manifests as differences in burst frequency

    Inferring causal genomic alterations in breast cancer using gene expression data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the primary objectives in cancer research is to identify causal genomic alterations, such as somatic copy number variation (CNV) and somatic mutations, during tumor development. Many valuable studies lack genomic data to detect CNV; therefore, methods that are able to infer CNVs from gene expression data would help maximize the value of these studies.</p> <p>Results</p> <p>We developed a framework for identifying recurrent regions of CNV and distinguishing the cancer driver genes from the passenger genes in the regions. By inferring CNV regions across many datasets we were able to identify 109 recurrent amplified/deleted CNV regions. Many of these regions are enriched for genes involved in many important processes associated with tumorigenesis and cancer progression. Genes in these recurrent CNV regions were then examined in the context of gene regulatory networks to prioritize putative cancer driver genes. The cancer driver genes uncovered by the framework include not only well-known oncogenes but also a number of novel cancer susceptibility genes validated via siRNA experiments.</p> <p>Conclusions</p> <p>To our knowledge, this is the first effort to systematically identify and validate drivers for expression based CNV regions in breast cancer. The framework where the wavelet analysis of copy number alteration based on expression coupled with the gene regulatory network analysis, provides a blueprint for leveraging genomic data to identify key regulatory components and gene targets. This integrative approach can be applied to many other large-scale gene expression studies and other novel types of cancer data such as next-generation sequencing based expression (RNA-Seq) as well as CNV data.</p
    corecore