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Abstract 14 

The accumulation of somatic mutations in a genome is the result of the activity of one or 15 

more mutagenic processes, each of which leaves its own imprint. The study of these DNA 16 

fingerprints, termed mutational signatures, holds important potential for furthering our 17 

understanding of the causes and evolution of cancer, and can provide insights of relevance for 18 

cancer prevention and treatment. In this review, we focus our attention on the mathematical 19 

models and computational techniques that have driven recent advances in the field.  20 
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Introduction 24 

Cancer is a disease of the genome, in which uncontrolled clonal proliferation is initiated and 25 

fuelled by genomic alterations in somatic cells [1]. Despite the fact that a cancer genome may 26 

carry between tens and millions of somatic mutations [2,3], only a small subset of these, 27 



termed ‘driver’ mutations, are thought to be under selection and to cause neoplastic expansion 28 

[1,4]. The remaining ‘passenger’ mutations are generally believed not to confer selective 29 

advantage, and to arise from the processes involved in mutagenesis [5,6]. The collection of 30 

mutations in a somatic cell genome is the result of one or more mutational processes 31 

operating, continuously or intermittently, during the organism’s lifetime [7]. Such mutational 32 

processes include DNA damage by exogenous or endogenous agents, defective DNA 33 

replication, insertion of transposable elements, defects in DNA repair mechanisms, and 34 

enzymatic modifications of DNA, among others [8]. Many of these processes imprint a 35 

distinct pattern of mutations in the genome, known as a ‘mutational signature’ [2,9]. 36 

Therefore, the compendium of somatic changes in a cancer genome constitutes a record of the 37 

combined mutagenic effect of the specific mixture of processes moulding it [2]. Furthermore, 38 

because most mutations are passengers, they are largely beyond the effect of adaptive 39 

selection [10]. 40 

Although mutational signatures are a relatively recent concept in cancer biology, the 41 

first descriptions of genomic aberrations caused by a specific process date back to the early 42 

twentieth century, when X-rays were found to induce chromosome breakage in irradiated 43 

cells [11–13]. More-detailed mutational patterns were reported in the 1960s, notably the 44 

crosslinking of adjacent pyrimidine bases (CC, CT, TC, TT) due to ultraviolet radiation, 45 

which produces cytosine-to-thymine (C>T) and cytosine–cytosine-to-thymine–thymine 46 

(CC>TT) transitions at dipyrimidine sites [14–16]. Other causal links between mutagenic 47 

agents and patterns of somatic changes have also become established, such as the guanine-to-48 

thymine (G>T) transversions resulting from guanine adducts that are caused by carcinogens 49 

present in tobacco smoke [17,18]. Furthermore, some chemotherapeutic agents are mutagens 50 

as well, and may imprint their own mutational signature in the cancer genomes of patients 51 

with secondary malignancies [19,20]. These examples illustrate the importance of studying 52 

somatic mutation patterns to our understanding of the molecular mechanisms of neoplasia, 53 

potentially enabling the discovery of novel mutagens [2,7,8,21]. Moreover, several authors 54 



have emphasised the potential of mutational signature analysis to provide insights of clinical 55 

significance, by informing and guiding diagnostic procedures, personalised cancer 56 

interventions and prevention efforts [19,22–27]. 57 

Recent advances in high-throughput DNA sequencing technologies have enabled 58 

studies which examine many thousands of whole cancer genomes or exomes. In parallel, new 59 

scientific avenues have been explored to identify and analyse genomic aberrations, among 60 

them the extraction of mutational signatures from collections of somatic mutations. This has 61 

produced catalogues of signatures that operate in a variety of human neoplasias [2,28–31]. 62 

While the development of methods for discovery of mutational signatures has achieved 63 

considerable success, this is still an emerging field, stemming from very recent analytical and 64 

technological breakthroughs. In this review, we aim to summarise current methodologies, in 65 

particular the mathematical models and computational techniques, which form the basis of 66 

mutational signature analysis. 67 

 68 

Mathematical modelling of mutational signatures 69 

A mutational signature can be mathematically defined as a relationship between a (known or 70 

unknown) mutagenic process and a series of somatic mutation types. Many classes of 71 

genomic alterations can serve as features of a mutational signature, including single- or di-72 

nucleotide substitutions, small insertions and deletions (indels), copy number changes, 73 

structural rearrangements, transposable element integration events, localised hypermutation 74 

(kataegis), and epigenetic changes. In practice, only a limited number of features can be 75 

incorporated into the mathematical abstraction of a mutational signature, with the attention of 76 

most studies to date being focused on single-base substitutions. However, signatures based on 77 

indels [29,32] or structural variants [27,29,32] have also been described. Furthermore, certain 78 

substitution signatures are consistently associated with features such as increased numbers of 79 

indels or rearrangements of a particular class, kataegis events, or biases in the transcriptional 80 

strand in which mutations occur [2,28–30,33]. It is therefore useful to consider such features 81 



as biological constraints for the identification of signatures, even if precisely modelling them 82 

is more challenging. 83 

The selected set of K mutation types can be expressed as a finite alphabet 𝒜, with 84 

𝒜  = K, every symbol in 𝒜 representing a distinct mutation type. This alphabet constitutes 85 

the domain of a mutational signature, which is modelled as a discrete probability density 86 

function, S : 𝒜 → ℝ+K. Hence, the mathematical representation of a given signature, Sn, is a K-87 

tuple of probability values, Sn  =  [s1n, s2n, …, sKn]T, with skn denoting the probability of the 88 

mutation type represented by the k-th symbol in A being caused by the mutational process 89 

associated with Sn. As probability values, the elements of Sn are intrinsically nonnegative and 90 

their sum is always 1: 91 

 skn = 1
K

k=1

 (1) 

 skn  ≥  0, 1  ≤  k  ≤  K (2) 

The same mutational process operating in multiple genomes may produce different 92 

numbers of mutations in each. The intensity at which a mutational process with signature Sn 93 

operates in a genome g, expressed in terms of the number of mutations caused, is known as 94 

the ‘exposure’ to (or the ‘contribution’ or ‘activity’ of) the process, and denoted by eng. 95 

Regarding the catalogue of somatic mutations in a cancer genome g, this is also defined as a 96 

vector of mutation counts over 𝒜, Mg ∶ 𝒜 → ℕ0K, and expressed as a second nonnegative K-97 

tuple: Mg = [m1g, m2g, …, mKg] . (This notation of mutational catalogues, signatures and 98 

exposures will be maintained hereafter for coherence.) 99 

A mutational catalogue can be approximately considered as a linear superposition of 100 

the signatures of the latent mutational processes that have acted at some point in the somatic 101 

cell lineage giving rise to the sampled neoplastic cells, each signature weighted by the 102 

exposure to the corresponding process. In addition, catalogues are expected to contain some 103 

level of noise arising from sequencing or analysis errors and sampling noise. Neglecting such 104 

noise, the number of mutations of the k-th type in the catalogue Mg, mkg, can be approximated 105 



by the sum of the k-th element of the N operative mutational signatures, each weighted by its 106 

respective exposure: 107 

 mkg  ≈ skn  eng

N

n=1

 (3) 

Most of the existing mathematical approaches to mutational signature inference have 108 

focused on single-base substitutions as mutation features, maintaining the convention 109 

established by Nik-Zainal et al. [33] and Alexandrov et al. [2]. In this scheme, substitutions 110 

are first classified into six categories, by representing the change at the pyrimidine partner in 111 

the mutated base pair (e.g. a guanine-to-adenine substitution, G>A, is instead expressed as a 112 

cytosine-to-thymine change, C>T, in the complementary strand). This classification is then 113 

extended by considering the immediate sequence context of the substitution, usually the 114 

adjacent 5’ and 3’ bases. The six substitution types are thus translated into 96 trinucleotide 115 

mutation types (6 substitution types × 4 types of 5’ base × 4 types of 3’ base). An extensive 116 

literature supports the need for at least a trinucleotide context of mutations in order to 117 

distinguish the mutational patterns induced by a variety of mutagens. In addition, there have 118 

been attempts to deconvolute signatures using a five- or seven-base sequence context, 119 

resulting in 1536 and 24,576 mutation types, respectively [27,34,35]. Further elaboration can 120 

also be achieved by considering the transcriptional strand of mutations in transcribed regions. 121 

Nevertheless, expanding the range of mutation types normally implies a decrease in the 122 

observed number of mutations per type, which may curb the power to identify patterns. 123 

In a generalisation that considers N different mutational processes acting in a 124 

collection of G cancer genomes, with mutational catalogues defined over K mutation types, 125 

the catalogues, signatures and exposures can be mathematically expressed as matrices named 126 

M, S and E, respectively (Fig. 1a): 127 

MK×G  =

m11 m12 ⋯ m1G
m21 m22 ⋯ m2G
⋮ ⋮ ⋱ ⋮

mK1 mK2 ⋯ mKG

 



SK×N  =

s11 s12 ⋯ s1N
s21 s22 ⋯ s2N
⋮ ⋮ ⋱ ⋮
sK1 sK2 ⋯ sKN

 

EN×G  =

e11 e12 ⋯ e1G
e21 e22 ⋯ e2G
⋮ ⋮ ⋱ ⋮
eN1 eN2 ⋯ eNG

 

Consequently, the approximate description of a mutational catalogue as a sum of 128 

signatures multiplied by their exposures, expressed in (3), is generalised into matrix form: 129 

 M  ≈  S E (4) 

By adopting this mathematical representation, the problem of inferring the mutational 130 

signatures and exposures that best account for a given collection of observed catalogues 131 

becomes equivalent to finding the instances of S and E that reproduce M with minimal error. 132 

This is, in turn, connected to the problem of determining the number of signatures, N, that 133 

optimally explains the data in M (Fig. 1b). This process is sometimes referred to as de novo 134 

extraction, inference, deciphering, or deconvolution of mutational signatures. By contrast, the 135 

simpler problem of signature refitting is characterised by both M and S being known a priori. 136 

 137 

Computational approaches for mutational signature discovery 138 

A host of computational strategies have been advanced to tackle the problem of signature 139 

discovery as formulated above; these are presented below and summarised in Table 1. 140 

 141 

Nonnegative matrix factorisation 142 

The unsupervised learning technique of nonnegative matrix factorisation (NMF) [36,37] was 143 

devised to explain a set of observed data utilising a set of components, the combination of 144 

which approximates the original data with maximal fidelity. NMF is distinguished from 145 

similar techniques, such as principal component analysis (PCA) or independent component 146 

analysis (ICA), in that nonnegativity is enforced for the values composing both the 147 

components and the mixture coefficients, and that no orthogonality or independence 148 

constraints are imposed (therefore permitting partially or entirely correlated components). 149 



These features make NMF especially well-suited to the problem of mutational signature 150 

inference, because of the intrinsic nonnegativity of the matrices in the mathematical model 151 

presented above. Moreover, NMF has repeatedly stood out as a powerful technique for the 152 

extraction of meaningful components from various types of high-dimensional biological data 153 

[38–42], besides successful applications in other fields [39]. 154 

NMF constituted the basis of the first computational method for mutational signature 155 

inference, the Wellcome Trust Sanger Institute (WTSI) Mutational Signature 156 

Framework (hereafter referred to as the WTSI Framework). This was published, together 157 

with the mathematical model introduced above, in a landmark work by Alexandrov et al. 158 

[34], which enabled the first detailed delineations of mutational signatures in human cancer 159 

[2,33,43]. The WTSI Framework performs NMF on a set of mutational catalogues by 160 

building upon an implementation, developed by Brunet et al. [38], of the multiplicative 161 

update algorithm devised by Lee and Seung [36,44]. More formally, given a set of mutational 162 

catalogues, M, composed of G genomes defined over K mutation types, the method extracts 163 

exactly N mutational signatures (with 1 ≤ N ≤ min{K, G} – 1), by finding the matrices S and 164 

E that approximately solve the nonconvex optimisation problem derived from (4), with the 165 

selected matrix norm being the Frobenius reconstruction error: 166 

 min
S ! 0, E ! 0  

M  –  S E F
2    (5) 

The algorithm first initialises S and E as random nonnegative matrices, and reduces 167 

the dimension of M by removing those mutation types that together account for ≤1% of all the 168 

mutations. Two steps are then iteratively followed: (a) Monte Carlo bootstrap resampling of 169 

the reduced catalogue matrix, and (b) application of the multiplicative update algorithm to the 170 

resampled matrix, finding the instances of S and E that minimise the Frobenius norm in (5). 171 

After completion of the iterative stage, partition clustering is applied to the resulting set of 172 

signatures, in order to structure the data into N clusters. The N consensus signature vectors, 173 

which compose the averaged signature matrix, S, are obtained by averaging the signatures in 174 

each cluster. Since each signature is related to a specific exposure, the averaged exposure 175 



matrix, E, can be inferred from S. In cases where the mutational catalogues have been derived 176 

from cancer exomes, the extracted mutational signatures should thereafter be normalised to 177 

the trinucleotide frequencies of the whole genome. 178 

The WTSI Framework requires the number of signatures to infer, N, to be defined as 179 

a parameter. Because the number of signatures present in the data is normally not known a 180 

priori, the framework needs to be applied for values of N ranging between 1 (or the smallest 181 

plausible number of signatures) and min{K, G} – 1. For each value of N, the overall 182 

reproducibility (measured as the average silhouette width [45] of the signature clusters, using 183 

cosine similarity) and Frobenius reconstruction error are calculated, and the best value is 184 

selected such that the resulting signatures are highly reproducible and exhibit low overall 185 

reconstruction error. Nevertheless, the manual determination of N on the basis of these 186 

criteria is perhaps the most heavily criticised aspect of the WTSI Framework. Accurate 187 

estimation of the number of mutational signatures, besides remaining one of the thorniest 188 

facets of mutational signature analysis, is crucial given the associated risks of inferring 189 

signatures that merely describe the noise in the data by overfitting (through overestimation of 190 

N), or insufficiently separating signatures present in the data by underfitting (through 191 

underestimation of N). 192 

Although the NMF approach has proven highly effective, especially when applied to 193 

large cohorts of cancer genomes, it is not without conceptual limitations [34]. The first of 194 

these lies in the number of catalogues required, which is a limiting factor on the number of 195 

signatures that can be accurately extracted, and rises exponentially with N. The number of 196 

mutations per catalogue also influences the power to infer signatures, with a small set of 197 

densely mutated genomes being more informative than a large number of sparsely mutated 198 

genomes. In fact, the influence of catalogues with extreme mutation burdens (hypermutated 199 

genomes) on the NMF process can hinder the detection of signals from less-mutated 200 

catalogues. Furthermore, mutational signatures exhibiting higher exposures can generally be 201 

identified more easily and accurately. Sensitivity to initial conditions is another major 202 



limitation, arising from the high dimensionality and inherent nonconvexity (presence of 203 

multiple local minima) of the optimisation problem posed by (5). This aspect of NMF has 204 

attracted particular attention in the past, leading to the proposal of alternative initialisation 205 

strategies [46,47] that might outperform the random initialisation adopted by the WTSI 206 

Framework. 207 

In more recent analyses, the WTSI working group has significantly refined their own 208 

application of the WTSI Framework, in order to enhance power and accuracy; however, such 209 

refinements have not been incorporated in the publically available software. Firstly, an 210 

additional analysis step can follow the deconvolution of consensus mutational signatures, 211 

which centres on precisely estimating the contribution of each signature to each genome [28]. 212 

This is individually achieved for each catalogue through minimisation of a variation of the 213 

function shown in (5); the difference lies in S now being known, and harbouring only the 214 

consensus mutational patterns of the processes that operate in the tumour type of the sample 215 

(these are known from the signature extraction process). Notably, additional biological 216 

constraints are imposed in the selection of the processes included in S; these require that, for 217 

each candidate process, at least one associated genomic feature (e.g. transcriptional strand 218 

bias or enrichment in aberrations of a specific type) be present in the examined sample. The 219 

second enhancement consists of a ‘hierarchical signature extraction’ process [29], which is 220 

directed to increase the power to identify signatures exhibiting either low activity or limited 221 

representation across the sample cohort. Here, the WTSI Framework is initially applied to the 222 

original matrix, M, containing all the somatic catalogues. After identification of signatures, 223 

those samples that are well-explained by the resulting mutational patterns are removed from 224 

M, and the method is re-applied to the remaining catalogues. The process is repeated until no 225 

new signatures are discovered, and the additional step for estimating signature contributions 226 

described above is then applied to all the consensus patterns. 227 

Following the success of the WTSI Framework, other software tools have been 228 

released that exploit NMF to decipher mutational signatures. The SomaticSignatures 229 



package, developed by Gehring et al. [48], provides an R implementation of the NMF 230 

algorithm by Brunet et al. [38]. It aims to offer a more accessible approach to signature 231 

inference, featuring additional normalisation and plotting routines and allowing integration 232 

with widely used Bioconductor [49] workflows and data structures. On the other hand, this 233 

accessibility is accompanied by a notable shortage of options for fine-tuning of the inference 234 

process. In addition, the package allows the application of PCA for de novo signature 235 

extraction; however, since it does not enforce nonnegativity, PCA is implausible from a 236 

biological standpoint, and unlikely to be fruitful. Despite this, and due to its simplicity and 237 

adherence to the Bioconductor framework, SomaticSignatures has become the tool of choice 238 

in a number of recent cancer studies [50–56]. 239 

MutSpec is a third framework, presented by Ardin et al. [57], that exploits NMF 240 

through the R package developed by Gaujoux and Seoighe [58]; this provides an interface to 241 

several NMF implementations, including that by Brunet et al. [38]. Moreover, MutSpec 242 

stands out for being the first published tool in the field that features a comprehensive 243 

graphical user interface, with a view toward empowering a wider variety of researchers, 244 

including those with limited bioinformatics expertise, to perform analyses of mutational 245 

catalogues. MutSpec accomplishes this by building upon the open-source Galaxy platform 246 

[59,60], which allows integration of multiple bioinformatics tools in an accessible and 247 

reproducible manner. 248 

Although both SomaticSignatures and MutSpec ultimately apply the same 249 

implementation of the multiplicative update algorithm for NMF [38] originally adopted by the 250 

WTSI Framework, it should be noted that these packages may not produce identical results to 251 

those of the latter, since they lack the computationally intensive pre-processing and 252 

bootstrapping routines that complement the application of NMF in the method devised by 253 

Alexandrov et al. [34]. Nevertheless, SomaticSignatures and MutSpec do adopt the definition 254 

of mutational signatures as probability vectors over single-base substitution types in a 255 

trinucleotide context. It is worth noting that one recent study [27] that applied both the WTSI 256 



Framework and SomaticSignatures for de novo extraction of signatures from esophageal 257 

adenocarcinoma genomes reported a high similarity between the core mutational patterns 258 

identified by both tools. 259 

 260 

Expectation–maximisation 261 

In contrast to the numerical optimisation approach to mutational signature inference 262 

expressed by (5), probabilistic frameworks have also been devised which exploit the 263 

intrinsically stochastic nature of mutagenesis. These frameworks have been claimed to be 264 

better-suited to deal with mutational stochasticity, which is partly responsible for the noise 265 

observed in mutational catalogues and becomes more prominent as less-mutated genomes, or 266 

smaller genomic regions, are examined. 267 

The first probabilistic approach in the field was developed by Fischer et al. [61], 268 

under the name EMu. It builds upon the insight that the NMF optimisation problem posed by 269 

the WTSI Framework can be recast as a probabilistic model, in which the observed mutation 270 

counts (M) are distributed as independent Poisson random variables (the Poisson distribution 271 

is widely used to model count data), parameterised by the product of the matrices of 272 

signatures (S) and exposures (E). Given some assumptions, such as that the quantity being 273 

minimised in NMF is a type of Bregman divergence [62], the two approaches are equivalent 274 

[63–65]. Estimation of S and E is performed through an expectation–maximisation (EM) 275 

algorithm [66]. Notably, the probabilistic setting also addresses the determination of the most 276 

plausible number of signatures, N, as a model selection problem. 277 

Another novelty of EMu is the incorporation of tumour-specific variation in 278 

mutational opportunity across different sequence contexts. Mutational opportunities, which 279 

derive from the sequence composition of a genome, can be expressed as a nonnegative K-280 

tuple containing the opportunity for each mutation type in the genome g, 281 

Og = [o1g, o2g, …, oKg] . For single-base substitutions in a trinucleotide context, the 282 

opportunities correspond to the frequencies of each trinucleotide type in each genome. 283 



Explicitly accounting for the opportunity for mutations to occur is especially relevant given 284 

that the relative frequency of certain sequences in the human genome (e.g. 285 

underrepresentation of CpG dinucleotides) can exert undesired biases on the inferred 286 

mutational patterns. In addition, copy number alterations, which are frequent in cancer 287 

genomes [1,67], can substantially alter the mutational opportunity in affected regions across 288 

tumours. The divergence in sequence composition across genomic segments also makes 289 

opportunity a relevant factor in the determination of signature contributions in a specific 290 

region. The probabilistic framework and explicit dependence on opportunity are intended to 291 

increase adaptability for the analysis of signatures in short genomic regions. 292 

Fischer et al. make use of a Poisson-distributed probabilistic model to describe the 293 

mutational catalogue of a given genome as the result of a stochastic process of mutation 294 

accumulation. Assuming the N mutational processes to be mutually independent, the 295 

probability of observing the catalogue Mg = [m1g, m2g, …, mKg] is given by: 296 

   p Mg  Eg,  Og, S   ≡ Pois mkg     okg skn  eng 

N

n=1

K

k=1

 (6) 

In this model, the mutational signatures, S, act as the shared model parameters, and 297 

the signature exposures, E, as the hidden data. The end of the EM procedure is to find 298 

maximum likelihood estimates of both, thereby solving the deconvolution problem. The 299 

algorithm starts by making an initial guess of the model parameters, S(0), and thereafter 300 

iterates through two steps. In the first, denoted E-step, an estimate is obtained for the 301 

signature exposures, E, given the current parameter guess, S(k). In the subsequent M-step, E is 302 

used to update the parameter estimate for the next iteration, S(k+1). Iteration through these 303 

steps finishes when the likelihood of the observed data, p(M|S), converges to a local 304 

maximum. 305 

The data likelihoods obtained for different values of N are compared in order to 306 

determine the number of mutational processes involved. Because increasing N normally leads 307 

to a better explanation of the data, due to the higher number of available model parameters, 308 



the likelihood generally rises with N. Overfitting of the data is avoided applying the Bayesian 309 

information criterion (BIC) [68], a model selection criterion whose second term corrects for 310 

the model complexity: 311 

 BIC = 2 log p M S  – N K – 1    logG (7) 

The BIC is calculated for each of the models, and the one exhibiting the highest BIC 312 

value is selected [68,69]. After inference of signatures, EMu can estimate both the global 313 

exposures in each genome and the local exposures per genomic region. Inference of local 314 

exposures is performed by dividing each genome into non-overlapping segments of equal 315 

length, and using the estimated global exposures as an informed prior distribution. The 316 

patterns of variation in local exposures can subsequently be compared within and across 317 

genomes. 318 

It is worth noting that, while EMu builds upon a valid alternative interpretation of 319 

NMF, which considers the latter as an application of EM to a particular problem [64], the 320 

novel concepts and advantages of the method presented by Fischer et al. are not intrinsic 321 

properties of the EM paradigm, but explicit enhancements that are amenable to assimilation 322 

by other approaches. On the other hand, EMu suffers from the same sensitivity to initial 323 

conditions as conventional NMF, and it may as well benefit from alternative initialisation 324 

strategies. Despite this, EMu successfully exploits a probabilistic formulation of mutational 325 

signature inference to address previously unexplored aspects, namely the incorporation of 326 

context- and tumour-specific opportunity for mutations, the estimation of local signature 327 

exposures, and the direct determination of the number of mutational processes. 328 

 329 

Bayesian NMF 330 

As noted above, the WTSI Framework has been criticised for requiring a manual selection of 331 

the number of mutational signatures, N, on the basis of heuristics that are indicative of the 332 

goodness of the solutions. While EMu addresses this issue by means of a purely probabilistic 333 

methodology, alternative approaches have proceeded by wrapping NMF in a Bayesian 334 

framework, partly with a view toward improving estimation of N. 335 



The BayesNMF software by Kasar et al. [70] and Kim et al. [71] is based upon a 336 

variant of NMF proposed by Tan and Févotte [72]. Similarly to the strategy introduced by 337 

Fischer et al. [61], BayesNMF exploits the compatibilities between NMF and a Poisson 338 

generative model of mutations. More specifically, the number of mutations of the k-th type in 339 

a genome g, mkg, is assumed to be the combination of N independent mutation burdens, mkg
n  340 

(with 1 ≤ n ≤ N); such burdens are in turn assumed to be generated by a Poisson process 341 

parameterised by mutation-type- and genome-specific rates, such that the expected number of 342 

mutations attributed to signature Sn is: 343 

 E mkg
n   =  skn eng (8) 

The properties of the Poisson process [73] then imply that mkg  is also Poisson-344 

distributed as: 345 

 mkg ~ Pois    skn eng

N

n=1

 (9) 

Consequently, as already seen, the estimation of signatures (S) and exposures (E) by 346 

maximising the likelihood of the observed data (M), given the expectation E[M] = S E, is 347 

equivalent to the minimisation of a particular Bregman divergence [62] between M and the 348 

matrix product S E through NMF [72]. However, BayesNMF addresses the selection of N 349 

implicitly through a technique known as ‘automatic relevance determination’ [72], which 350 

‘prunes’ or ‘shrinks’ those components in S and E which are inconsequential, not contributing 351 

to explaining M. Each signature Sn is therefore assigned a relevance weight, Wn; then, after 352 

imposing appropriate priors on the parameters, NMF inference is performed via numerical 353 

optimisation. During this process, the columns of S and rows of E corresponding to 354 

inconsequential pairs of signatures and exposures are shrunk to zero by their relevance 355 

weights. The effective dimensionality, corresponding to the estimated number of mutational 356 

signatures, is given by the final number of nonzero components. 357 

Notably, the authors have extended their method to explicitly incorporate the 358 

transcriptional strand of mutations [71], resulting in a model with 192 trinucleotide mutation 359 

types (96 for each strand). While the WTSI Framework does not explicitly account for 360 



transcriptional strand biases, some studies have used this and other genomic features as 361 

biological constraints for validating the presence of specific signatures in a sample [28]. 362 

Moreover, models incorporating transcriptional strand information are only suitable for 363 

mutations in transcribed regions. 364 

Another notable aspect of the application of BayesNMF, particularly that presented 365 

by Kim et al. [71], is the manner in which the excessive influence of hypermutated catalogues 366 

on the inference is moderated. This is based on equally partitioning the mutations in 367 

hypermutated genomes into multiple artificial catalogues, which maintain the mutational 368 

profile of the original tumour. The number of artificial catalogues is chosen such that their 369 

contribution becomes similar to that of non-hypermutated samples, without altering the 370 

overall number of mutations. Because of the linear properties of NMF [36], the number of 371 

mutations attributed to each signature in the original genomes can be reconstructed by 372 

summing the exposures in their respective artificial catalogues. As a measure to overcome 373 

sensitivity to initial conditions, Kim et al. [71] also performed multiple applications of the 374 

method with random initial conditions. 375 

A second Bayesian approach to NMF has been recently proposed by Rosales et al. 376 

[74] in the form of the signeR package. This follows an empirical Bayesian approach to NMF 377 

which considerably differs from the strategy devised by Kasar et al. [70] and Kim et al. [71]. 378 

Firstly, the authors account for tumour-specific mutational opportunities, following the 379 

example set by Fischer et al. [61]. The number of mutations of the k-th type in a genome g, 380 

mkg, is assumed to be a Poisson-distributed variable, with a rate incorporating the mutational 381 

opportunity, okg: 382 

 mkg ~ Pois okg skn eng

N

n=1

 (10) 

The matrices S and E, which are the parameters of the generative Poisson process, are 383 

initialised either by sampling from their (Gamma) prior distributions, or by applying 384 

numerical NMF via the implementation developed by Gaujoux and Seoighe [58]. The central 385 

method for inference is based on a combination of Markov chain Monte Carlo (MCMC) and 386 



EM techniques, which are applied in an iterative fashion [75]. This MCMC EM strategy 387 

provides a posterior distribution of the NMF model, from which estimates for the mutational 388 

signatures and exposures can be derived. The MCMC EM algorithm, in which the chosen 389 

MCMC variant is a Metropolised Gibbs sampler, is applied to obtain a series of MCMC 390 

samples from the posterior distributions of the model parameters (S and E), hyperparameters 391 

and hyperprior parameters. These samples can be subsequently used to derive point estimates 392 

and posterior statistics for signatures and exposures. Estimation of the number of mutational 393 

signatures is tackled, as in EMu, by means of the BIC, which is described in (7) and 394 

computed as the median of the BIC values across the MCMC samples. 395 

In addition to this Bayesian NMF framework, Rosales et al. [74] introduce two novel 396 

applications of the method. The first is the incorporation of an a priori categorisation of 397 

samples, on the basis of independent knowledge (e.g. clinical data), in order to determine 398 

whether the exposure of any of the mutational signatures diverges significantly between the 399 

defined categories. Secondly, a measure known as ‘differential exposure score’, which results 400 

from this analysis of exposures, can be used to assign unclassified samples to one of the 401 

categories, using a k-nearest neighbours algorithm [76]. This ability for unsupervised 402 

clustering of tumours may prove especially relevant for clinical cancer prognosis. 403 

 404 

Independent probabilistic model 405 

An unconventional approach to mutational signature discovery, which stands out for the 406 

adoption of a novel probabilistic model of signatures, has been introduced in the 407 

pmsignature R package by Shiraishi et al. [35]. Their model is termed ‘independent’ 408 

because, in contrast to the conventional ‘full’ model employed by all other methods, it 409 

decomposes mutational signatures into separate features (such as substitution type, flanking 410 

bases or transcriptional strand bias), which are assumed to be mutually independent. The 411 

notion of independence across features of a signature, if counterintuitive, simplifies the model 412 

drastically by reducing the number of parameters per signature. This, in turn, allows 413 



incorporation of additional signature features, such as extended sequence context. For 414 

instance, the mutational pattern defined by single-base substitutions in a pentanucleotide 415 

sequence context results in K = 1536 mutation types, or 1535 free parameters per signature, in 416 

the full model. Generally, accounting for the n adjacent bases 5’ and 3’ of the mutated site 417 

results in (K – 1) = (6 × 42n – 1) free parameters in the full model. This imposes a practical 418 

limit on the number of features that can be incorporated into a signature, because both 419 

inference stability and interpretability of the inferred signatures decline as the parameter 420 

space gains in dimensionality. The consequence is a constrained flexibility of full models; 421 

these, for example, normally consider only a trinucleotide sequence context, thus ignoring the 422 

information potentially harboured by farther adjacent nucleotides [77,78]. 423 

The work of Shiraishi et al. [35] can be seen as a quantum leap in the modelling of 424 

mutational signatures. Instead of belonging to a single mutation type, each mutation is 425 

modelled as having L distinct features, each with its own range of discrete values, and is 426 

therefore represented by a feature vector of length L. A signature Sn is characterised using an 427 

L-tuple of parameter vectors, Fn = [fn1,   fn2,  …, fnL], where fnl is the probability vector of the 428 

l-th feature in signature Sn, its length being equal to the number of possible values of the 429 

feature. In this model, single-base substitutions on a pentanucleotide context are represented 430 

using five features (substitution and four flanking bases). Each feature being an independent 431 

probability vector, this involves (6 – 1) + 4 × (4 – 1) = 17 free parameters, instead of 1535. In 432 

general, incorporating the n adjacent bases on each side of the mutated site requires only (5 + 433 

6n) parameters. Remarkably, this independent model of signatures can be considered as a 434 

generalisation of the full model; the latter would be the simplest case of independent model, 435 

where all the signature features have been collapsed into a single attribute, the ‘mutation 436 

type’, which contains all the possible feature combinations. 437 

Instead of using numbers of mutations, pmsignature models the contribution of a 438 

signature as the proportion of mutations attributed to it in each genome. Such proportions, 439 

denoted by   qgn, are termed ‘membership parameters’, due to the close relationship between 440 



this model of mutations and the so-called mixed-membership or admixture models [79] (also 441 

known as latent Dirichlet allocation models [80]), which have been extensively applied to 442 

population genetics and document clustering problems. In pmsignature, each mutation is 443 

assumed to be the result of a two-step generative model: first, a mutational signature is 444 

selected according to the membership parameters of the current catalogue; second, the 445 

features of the mutation are generated according to the multinomial distribution described by 446 

the chosen signature. Of note, informative parallelisms between NMF and admixture models 447 

have been previously noted by other authors [81], suggesting that current methods could 448 

benefit from the experience gained in applications of the latter. 449 

The central parameters of the independent model, namely the sample membership 450 

proportions,   qgn, and the signature parameters, Fn, need to be estimated from the observed 451 

catalogues; this is done by means of an EM algorithm [66]. In order to account for the 452 

tendency of EM to converge to different local maxima depending on the initial conditions, the 453 

algorithm is applied on multiple initial configurations, before choosing the solution that 454 

exhibits maximum likelihood overall. To model mutational opportunity, instead of using 455 

probabilistic coefficients, pmsignature employs a ‘background signature’ corresponding to the 456 

genome frequencies of the types of nucleotide association considered (e.g. pentanucleotides). 457 

However, this background signature is based on the human reference genome, thus negating 458 

incorporation of sample-specific variegation in opportunity. Regarding the estimation of the 459 

number of mutational processes, an analogous strategy to that implemented by Alexandrov et 460 

al. [34] is adopted, with N being manually chosen such that the likelihood is sufficiently high, 461 

and the standard errors of the parameters are sufficiently low. In addition, N is selected such 462 

that the resulting set of mutational signatures does not contain any pair of signatures which 463 

seem to correspond to the same mutational process (signatures exhibiting similar feature 464 

patterns and membership parameters). Hence, a more versatile strategy to automatically 465 

determine N would constitute a major improvement of the method. 466 



The consequence of adopting a simpler model in pmsignature, as reported by the 467 

authors [35], is a gain in power and stability, which allows inference of more-accurate and -468 

reproducible signatures from smaller sample cohorts. Moreover, the reduction in parametric 469 

complexity enables the incorporation of additional contextual features, such as extended 470 

sequence context, transcriptional strand, copy number and epigenetic states. The consequent 471 

gain in signature resolution can potentially prompt the unveiling of novel mutational patterns 472 

and associated biological insights. Nevertheless, it must be noted that an independent model 473 

of signatures is implicitly unable to reflect interactions between the different features of a 474 

signature, such as flanking bases and substitution type, which may exist in some signatures. 475 

In order to simplify the visualisation of signatures with multiple features, the authors 476 

have also introduced a novel graphical representation [35], closely related to sequence logos 477 

[82], that provides a schematic view of the distinctive characteristics of a signature. Albeit 478 

reliant on the illustration of probabilities as surface areas, which are often difficult to interpret 479 

visually [83], diagrammatic representations of this kind will likely become indispensable if 480 

the resolution of signatures is to be significantly enhanced, since the interpretation of 481 

mutational patterns expressed as plain probability distributions would soon become 482 

impractical. 483 

 484 

Mutational signature refitting 485 

From the perspective of the NMF model, the problem of refitting mutational signatures 486 

consists of estimating the exposures (E) of a given set of signatures (S) in a collection of 487 

mutational catalogues (M), with the actual number of operative processes (N) being known or 488 

unknown. Because S is known a priori, signature refitting is a much more tractable problem 489 

than de novo signature inference. In consequence, signature refitting does not suffer the 490 

requirement of large sample cohorts to achieve power and accuracy, being even applicable to 491 

individual genomes. 492 



The deconstructSigs R package, recently developed by Rosenthal et al. [84], is 493 

currently the only published method explicitly designed for mutational signature refitting. It 494 

adopts an iterative multiple linear regression strategy to estimate the linear combination of 495 

signatures that optimally reconstructs the mutational profile of each genome in M, imposing 496 

nonnegativity on the inferred signature exposures. Mutational catalogues are modelled as 497 

mutation proportions, instead of counts, and normalisation by mutational opportunity is 498 

enabled through the incorporation of the trinucleotide frequencies from the reference human 499 

genome. The iterative fitting algorithm, which is applied separately to each catalogue, starts 500 

by discarding those signatures in which a mutation type that is absent from the examined 501 

catalogue has a probability above 0.2. This prevents consideration of signatures that, 502 

according to their mutational profiles, are unlikely to be present in the tumour. An initial 503 

signature is then selected, such that the sum of squared errors (SSE) between the signature 504 

and the mutational profile of the catalogue is minimised. The exposure value that minimises 505 

the SSE for the chosen signature is set as the only positive exposure. In successive iterations, 506 

each of the remaining signatures is evaluated to find the exposure value that minimises the 507 

SSE between the reconstructed profile (including the previously incorporated exposures and 508 

the candidate one) and the mutational profile of the tumour. The signature achieving 509 

minimum SSE is selected, and its optimal exposure is incorporated to the reconstructed 510 

profile. The process continues until the difference in SSE before and after an iteration falls 511 

below an empirically determined threshold of 10–4 ; the estimated exposures are then 512 

transformed to proportions. Finally, any exposure lower than 0.06 (6%) is discarded, in order 513 

to exclude spurious signatures; this minimum exposure threshold was also empirically 514 

determined from simulation studies. 515 

An iterative regression strategy has important associated risks, the most prominent 516 

being the impossibility of reducing or removing the contribution of a signature after it has 517 

been selected. Consequently, a signature that is actually absent from the sample might be 518 

unalterably chosen in the initial iterations, only because it fits the overall profile of the tumour 519 



better than any other signature. This is not a rare situation, since one-third of the currently 520 

published mutational signatures [31] (all of which are by default included in S) are mostly 521 

composed of cytosine-to-thymine (C>T) changes. Thus, for example, a mutational profile 522 

arising from the combination of two given signatures may initially be best fitted by a third 523 

signature which does not actually contribute to the mutational profile, but which significantly 524 

resembles it. Two measures to minimise the risk of misfitting are: (a) carefully selecting the 525 

signatures to include in S, preferring those that have been already associated with the 526 

examined tumour type; and (b) considering knowledge about additional genomic features 527 

linked to the activity of a mutational signature in a genome. Limiting the set of candidate 528 

signatures also lessens the risk of overfitting, especially given that the number of signatures, 529 

N, is indirectly determined in this method through the empirically set thresholds for change in 530 

SSE and minimum exposure value. On the other hand, the described measures increase the 531 

opportunity for the biases of the investigator to influence the outcome. 532 

Despite such concerns, the identification of mutational signatures in individual 533 

tumours through refitting harbours extreme potential, as emphasised by Rosenthal et al. [84] 534 

and demonstrated by the number of studies that have adopted their method in the short time 535 

since its publication [54,85–88]. When used for refitting well-validated signatures in specific 536 

cancer types, deconstructSigs has the power to detect mutational processes that operate only 537 

in small subsets of genomes, without the complexity or requirement of large cohorts that 538 

characterise de novo approaches. Some remarkable applications are the comparison between 539 

processes operative across different cancer subtypes, and the analysis of variegation in 540 

signature activities over time within a single tumour, or between primary and metastatic sites 541 

in a same patient. As genomic examination of individual malignancies is gradually 542 

incorporated into clinical practice, a straightforward method to ascertain which mutational 543 

processes operate in a cancer genome, and to what extent, potentially including their temporal 544 

and spatial evolution, will constitute an invaluable instrument for the advancement of 545 

personalised cancer therapy. 546 



 547 

Alternative approaches 548 

Apart from the ones described here, both de novo inference and refitting of mutational 549 

signatures are amenable to many other computational approaches, including purely Bayesian 550 

techniques (e.g. hierarchical Dirichlet processes), global optimisation metaheuristics (e.g. 551 

simulated annealing), and nonlinear optimisation algorithms capable of handling the sum-to-552 

one constraint of signature distributions (e.g. sequential quadratic programming). When 553 

considering the design of novel methods for the analysis of mutational signatures, the special 554 

properties of each technique, such as propensity for overfitting, sensitivity to initial 555 

conditions, computational cost and scalability, should be thoughtfully considered. In the near 556 

term, fresh methodologies are likely to arise which build upon either the mathematical models 557 

of signatures already developed, or entirely new ones. Furthermore, because signature 558 

refitting poses a much simpler mathematical problem than de novo signature deconvolution, 559 

approaches based on well-established mathematical or statistical paradigms could be 560 

implemented with little effort, as substantiated by works that have already accomplished 561 

signature refitting through some of the aforementioned techniques [27,89,90]. 562 

 563 

Discussion 564 

In the relatively short time since its first reported application [33,43], the deconvolution of 565 

mutational signatures has proven a successful analytical technique. Numerous authors have 566 

highlighted the potential of mutational signature analysis in the settings of cancer treatment 567 

and prevention. The proposed applications thus far include the use of signatures (a) as genetic 568 

biomarkers of early malignancy or exposure to carcinogenic agents, especially in combination 569 

with ‘liquid biopsy’ diagnostic techniques [23,26]; (b) to stratify patient cohorts into 570 

subgroups indicative of distinct dominant aetiological factors, with the aim of suggesting 571 

targeted therapies that may benefit some subgroups on the basis of the molecular mechanisms 572 

involved [19,22,24,27,91]; (c) to discover or support causative links between exposure to 573 



known or novel carcinogens and the development of particular cancer types, by determining 574 

the extent to which those carcinogens contribute to mutagenesis [25,26,92,93]; (d) to evaluate 575 

the safety of chemotherapeutic agents, some of which have been shown to contribute to the 576 

mutation burdens in exposed patients, with a view toward minimising the mutagenic impact 577 

of novel therapies, especially in relation to potential resistant clones [19,20]; (e) to drive 578 

novel molecular research directed at establishing links between mutagens or molecular 579 

processes and currently unexplained (‘orphan’) signatures [19], or to tease apart the 580 

individual fingerprints hidden in composite mutational patterns, such as that of the complex 581 

chemical mixture in tobacco smoke [26]; (f) to estimate the cancer risk posed by germline 582 

variants affecting genes in DNA repair or detoxification pathways, which may induce the 583 

appearance or reinforcement of characteristic mutational patterns [94]; and (g) to contribute 584 

toward public awareness and education of the cancer risk associated with preventable 585 

exposures to certain mutagens (currently, mainly tobacco smoke, ultraviolet light, aristolochic 586 

acid, aflatoxin B1 and some pathogen infections) [2,25,26,92,93]. 587 

From a biological standpoint, the potential of mutational signature analysis to identify 588 

and quantify the contributions of mutagenic processes operative in cancer genomes makes it 589 

an outstanding tool for further delving into the fundamental causes and mechanisms of 590 

tumorigenesis [7,93]. For instance, by contrasting the mutational mechanisms that operate in 591 

normal and cancer genomes, the study of signatures has helped to settle the long-standing 592 

debate around whether the mutation rates and processes shaping the genomes of normal cells 593 

can account for the aberrations found in cancer genomes [23,95]. Another example is the 594 

study of mutational processes affecting both cancer and normal cells, some of which are 595 

associated with biological age [28,96]. 596 

The WTSI Mutational Signature Framework, with a considerable number of 597 

successful applications in large-scale genomic studies of cancer [2,22,24,25,27–598 

30,32,33,43,92,97], represents the current state-of-the-art of the NMF approach to signature 599 

deconvolution. Consequently, it acts as a de facto ‘gold standard’ in the field. In spite of this, 600 



the method has several conceptual limitations, especially the requirement of extensive cohorts 601 

of genomes, and harbours potential for further methodological refinements [34]. Different 602 

enhanced flavours of NMF have been proposed [46,72,98–106] which might hold the key to 603 

improving the effectiveness of the WTSI Framework’s model, for example by incorporating 604 

additional sparsity constraints. Other distinct statistical approaches to signature inference 605 

have been proposed with a view towards overcoming the limitations of conventional NMF, 606 

which turn to either Bayesian approximations to NMF [71,74] or entirely probabilistic models 607 

[35,61,84]. Interestingly, independent works [25,27] have performed direct comparisons 608 

between some of these methods and reported notable coherence between their outcomes, in 609 

spite of their divergent mathematical frameworks. Other approaches, while still adhering to 610 

the classic NMF formulation, intend to facilitate signature analysis by means of user-friendly 611 

graphical interfaces [57] or integration in popular bioinformatic frameworks [48]. As a 612 

mounting number of medium-scale studies aspire to probe the mutational mechanisms 613 

operating in specific cancer types or subtypes, methods that enable simple and accurate 614 

analysis of signatures are definitely welcome contributions to the field. 615 

The identification of mutational signatures in cancer genomes remains a daunting 616 

endeavour, despite the breakthroughs it has spurred. In the short term, some of the 617 

computational strategies reported here will likely be subjected to significant refinement, or 618 

extended through the release of new software, while fresh approaches to signature discovery, 619 

using yet-unexploited techniques, are also sure to arrive. In the longer term, it must be noted 620 

that current methods base their signature models exclusively on mutational profiles, and fail 621 

to incorporate other experimental and clinical knowledge about mutational processes. Instead, 622 

current studies rely on a manual, informal consideration of the additional biological features 623 

associated with certain signatures. Such features should be quantified and formally 624 

accommodated in mathematical models, if methods for identification are to be further 625 

sharpened. At the same time, the pursuit of high-resolution mutational signatures by 626 

accounting for additional contextual features might be hindered by the limitations of current 627 



models. It can be argued that innovative models assuming niether complete mutual 628 

independence nor non-independence between the features of a signature could prove key to 629 

achieving the ideal compromise between flexibility and complexity that is warranted for 630 

powerful, stable and accurate delineation of mutational signatures. 631 

As current and forthcoming approaches shed light on the mathematical properties of 632 

mutational signature discovery, the study of somatic mutation patterns will surely be extended 633 

through the addition of new signatures, aberration classes, contextual features, and previously 634 

unexamined cancer types. Meanwhile, the insights yielded by advances in this field will 635 

further our understanding of the causes, mechanisms and evolution of human malignancy, and 636 

provide new opportunities for cancer prevention and treatment. 637 

 638 

Key points 639 

• The somatic mutations in a genome are the result of the activity of one or more 640 

mutational processes, some of which imprint a distinct mutational signature. 641 

• Nonnegative matrix factorization (NMF) is the most widely used method for 642 

identifying mutational signatures. 643 

• Alternative approaches include partly and fully probabilistic models, as well as NMF 644 

implementations offering greater ease of use. 645 

• The study of mutational signatures can prove useful for cancer prevention and 646 

treatment efforts, including patient stratification and identification of novel mutagens. 647 

• The field will likely be expanded with the inclusion of additional techniques, mutation 648 

classes, biological features and tumour types. 649 
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Fig. 1. Mathematical modelling and deconvolution of mutational signatures. (a) Diagram 662 

illustrating the modelling of mutational signatures as probabilistic relationships between mutation types 663 

and mutational processes operative in genomes, for a general case with K mutation types, N mutational 664 

processes and G genomes. The notation of signatures, exposures and mutational catalogues follows that 665 

used in the main text. The varying widths of the links between mutation types and signatures (mutation 666 

probabilities), and between signatures and catalogues (signature exposures) represent the observation 667 

that varying values of skn and eng reflect the specific mutational profile of each signature and the 668 

exposure composition of each genome. Nonnegativity constraints for mutation probabilities and 669 

signature exposures are specified directly below them. (b) Example of de novo signature extraction, for 670 

a case with K = 6 mutation (single-base substitution) types, N = 3 mutational signatures and G = 4 671 

mutational catalogues. Starting from the set of catalogues (depicted here as mutational profiles, each 672 

bar corresponding to a distinct mutation type), de novo extraction methods determine the set of 673 

mutational signatures (represented as consensus mutational profiles) and exposures (depicted here as 674 

proportions of the mutations in each catalogue, for simplicity) that reconstruct the original mutational 675 

catalogues with minimal error. 676 

 677 
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Table 1. Published software packages for mathematical inference of mutational signatures. 679 

(Abbreviations: EM: expectation–maximisation; MCMC: Markov chain Monte Carlo; NMF: 680 

nonnegative matrix factorisation; WTSI: Wellcome Trust Sanger Institute.) 681 

Software Mathematical 
framework 

De novo 
signature 
extraction 

Incorporation of 
mutational 
opportunity 

Notable aspects  Programming 
language(s) Reference(s) 

WTSI Mutational 
Signature 
Framework 

NMF Yes No 

• First mathematical model 
of signatures 

• Extensive development 
and application 

• ‘Gold standard’ status 

MATLAB [34] 

SomaticSignatures NMF Yes No 
• Ease of use 
• Integration in 

Bioconductor 
R [48] 

MutSpec NMF Yes No • Ease of use 
• Graphic user interface 

R, Perl  
(Galaxy 
platform) 

[57] 

EMu 
Probabilistic 
(EM, Poisson 
model) 

Yes Yes  
(tumour-specific) 

• First probabilistic model 
of signatures 

• First modelling of 
mutational opportunity 

• Automatic estimation of 
number of signatures 

C++ [61] 

BayesNMF 

Bayesian 
NMF 
(Poisson 
model) 

Yes No • Automatic estimation of 
number of signatures R [70,71] 

signeR 

Bayesian 
NMF 
(MCMC EM, 
Poisson 
model) 

Yes Yes 
(tumour-specific) 

• Automatic estimation of 
number of signatures 

• Differential exposure 
analysis 

• Unsupervised sample 
classification 

R, C++ [74] 

pmsignature 

Probabilistic 
(EM, 
independent 
model) 

Yes Yes 

• Simplified mathematical 
model 

• Increased number of 
signature features 

• Alternative visual 
representation 

R, C++ [35] 

deconstructSigs Multiple linear 
regression No Yes 

• Analysis of signature 
activities in individual 
tumours 

R [84] 
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