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ABSTRACT 

Increased application of radiation in health and security sectors has raised concerns 

about its deleterious effects. Ionizing radiation (IR) less than 10cGys is considered low 

dose ionizing radiation (LDIR) by the National Research Committee to assess health 

risks from exposure to low levels of IR.  

 

It is hard to extract the effects of mild stimulus such as LDIR on gene expression 

profiles using simple differential expression. We hypothesized that differential 

correlation instead would capture the effects of LDIR on mutual relationships between 

genes. We tested this hypothesis on expression profiles from five inbred strains of mice 

treated with LDIR. Whereas ANOVA detected little effect of LDIR on gene expression, a 

differential correlation graph generated by a two stage statistical filter revealed gene 

networks enriched with genes implicated in radiation response, DNA damage repair, 

apoptosis, cancer and immune system. 

 

To mimic the effects of radiation on human populations, we profiled baseline expression 

of recombinant inbred strains of BXD mice derived from a cross between C57BL/6J and 

DBA/2J standard inbred strains. To establish a threshold for extraction of gene networks 

from the baseline expression profiles, we compared gene enrichment in paracliques 

obtained at different absolute Pearson correlations (APC) using graph algorithms. Gene 

networks extracted at statistically significant APC (r≈0.41) exhibited even better 

enrichment of genes participating in common biological processes than networks 

extracted at higher APCs from 0.6 to 0.875.  

 

Since immune response is influenced by LDIR, we investigated the effects of genetic 

background on variability of immune system in a population of BXD mice. Considering 

immune response as a complex trait, we identified significant QTLs explaining the ratio 

of CD8+ and CD4+ T-cells. Multiple regression modeling of genes neighboring 

statistically significant QTLs identified three candidate genes (Ptprk,Acp1 and Lamb1-1) 

explaining 61% variance of ratio of CD4+ and CD8+ T cells. Expression profiling of 

parental strains of BXD mice also revealed effects of LDIR and LDIR*strain on 

expression of genes related to immune response. Thus using an integrated approach 

involving transcriptomic, SNP and immunological data, we have developed novel 

methods to pinpoint candidate gene networks putatively influenced by LDIR. 
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CHAPTER 1 : INTRODUCTION AND LITERATURE REVIEW 
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IONIZING RADIATION AND ITS EFFECTS 

There is considerable interest in the effects of radiation because of its clinical 

applications as well as its harmful effects. Radiation has been extensively employed for 

diagnostics (X- rays, CT scans) as well as therapeutic purposes (radiotherapy of 

cancers). Conversely, the energy in the radiation can damage bio-molecules such as 

proteins, DNA and lipids.  Radiation capable of evicting electrons from its target atoms 

is called ionizing radiation. High energy alpha (positively charged helium nuclei) and 

beta (negatively charged electrons) particles, gamma-rays (high energy photons) and X-

rays (high energy photons) are examples of ionizing radiation.   

The intensity of radiation is measured and reported in different units quantifying either 

its energy content or its ability to damage biological tissues. The energy absorbed by a 

unit mass of biological tissue from the ionizing radiation is called “absorbed dose” that is 

measured in Gray. One Gray is equivalent to absorption of 1 Joule of energy per 

kilogram of biological tissue.  Different types of radiations are capable of transferring 

energy to biological tissues at different rates along their path. Electromagnetic 

radiations such as X-rays and gamma rays cause comparatively less damage since 

they spread their deleterious effects along a longer path by moving faster. Conversely 

heavier alpha particles move slowly and transfer more energy to the molecules 

encountered on their path. Therefore, energy absorbed from alpha particles may cause 

more damage to biological tissues than the same amount of energy delivered by 

gamma radiation. The effective dose measured in Sieverts (Sv) puts all the radiations 

on equal footing in terms of potential biological damage caused by them. To get the 
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intensity of radiation in Sieverts the energy absorbed per unit of biological mass is 

multiplied by a radiation weighting factor. For beta, gamma and X-rays this factor is 1 

and for alpha particles it is 20. Hence, same magnitude of energy absorbed from the 

alpha particles is estimated to cause 20 times more damage to biological tissues as 

compared to gamma rays [1]. 

SOURCES OF IONIZING RADIATION 

Ionizing radiation is emitted by both natural and man-made sources. Natural sources of 

radiation include cosmic rays and radon.  Artificial sources include radiation emission 

from medical/laboratory equipments (X-rays, CAT scan), body scanners at airports, 

nuclear research, nuclear power, nuclear weapon programs, and nuclear disasters 

(Chernobyl nuclear power plant in Ukraine, 1986 and Fukishima Daiichi Nuclear Power 

Plant in Japan, 2011).  

Cosmic radiation accounts for 15% exposure to natural radiation at sea level. The 

exposure increases at higher altitudes and in aircrafts. Average exposure to cosmic 

radiation at the cruising height of a commercial aircraft varies between 0.003 mSv and 

0.008mSv per hour that is twice the amount at sea level. Another major source of 

natural exposure is the radon-222 gas that is produced as a decomposition product of 

uranium-238. Radon accounts for nearly 50% of radiation exposure due to natural 

sources [2]. The annual average background radiation from natural sources is estimated 

to be 2.4 mSv [3]. The average radiation levels at some places, for example Ramsar in 
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Iran,  Karunagappally in Kerala, India and Yangjiang in Guangdong, China) have much 

higher background radiation levels than average [4, 5].  

Medical exposure accounts for 98% of exposure from all the artificial sources of 

radiation and 20% of exposure from all the sources of ionizing radiation.  Exposure to 

radiation from the diagnostic medical techniques is increasing with the increasing 

availability of these techniques over the last few years especially in developed world. 

The average per capita exposure due to medical diagnostic techniques stands at 

0.62mSv to 1.92mSv for the period 1997 to 2007[3]. Dose of less than 10cGy (100 mSv 

or 100 mGy) is considered as Low dose Ionizing Radiation (LDIR) by the National 

Research Committee (NRC) to assess health risks from exposure to low levels of 

ionizing radiation [6].   The committee divided all the countries into four levels based on 

number of physicians per 1000 persons. Level 1 corresponded to countries with highest 

number of physicians and level 4 corresponded to countries with lowest number of 

physicians. In level 1 countries exposure due to medical diagnostic techniques was as 

high as 1.92 mSv per capita (Figure 1-1). In some countries the average exposure due 

to medical diagnostic techniques has become higher than the previously known largest 

source of ionizing radiation i.e. background radiation from nature [3]. The average adult 

effective radiation dose from some of the medical imaging procedures can be very high 

(Table 1-1). 
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Figure 1-1: Average per caput annual exposure to Ionizing radiation due to 
medical and dental examinations (1997-2007).Data from countries with varying health 
care levels (Health care facilities decrease with increasing level). (Redrawn from: United 
Nations Scientific Committee on the Effects of Atomic Radiation: Sources and effects of 
ionizing radiation Radiation: Volume I, 2008 [3] )  
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Table 1-1 Average adult effective radiation doses from various medical 
procedures 

Procedure Average Adult 

Effective Dose (in 

mSv) 

Estimated Dose 

Equivalent  (Number 

of Chest X-rays) 

Dental X-ray   0.005 to 0.016a  0.25 to 0.5 

Chest X-ray   0.02    1 

Mammography  0.4   20 

CT    2 to 16b   100 to 800 

Nuclear Medicine  0.2 to 41c  10 to 2050 

Interventional 

Fluoroscopy 

5 to 70d  250 to 3500 

 

a 0.005 mSv for an intraoral dental x-ray & 0.01 mSv for a panoramic dental x-ray.  

b 2 mSv is for a CT exam of the head & 16 mSv for CT coronary angiography exam. 

c 0.2 mSv for  lung ventilation exam using  99mTc-DTPA & 41 mSv for a cardiac stress-
rest test using thallium 201 chloride. 

d 5 mSv for a head and/or neck angiography exam & 70 mSv for a transjugular 
intrahepatic portsystemic shunt placement. (Source: Initiative to reduce unnecessary 
radiation exposure from medical imaging, February 2010, Center for devices and radiological 

health, U.S. Food and Drug Administration [7]) 
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EFFECTS OF IONIZING RADIATION 

Higher doses of radiation are known to cause deterministic health hazards such as 

development of blisters on skin, damage in bone marrow and gastro intestinal tract, 

chromosomal aberrations, apoptosis, cancers etc. A dose of 5 gray received 

instantaneously is lethal without medical intervention. A dose above 20 gray is lethal 

even with medical intervention [1].  Exposure to lower doses for a longer period of time 

has been associated with DNA damage and development of cancers or birth defects. 

However most of the evidence for development of these diseases has been obtained 

from the epidemiological studies.  

At cellular level high energy radiation can ionize and damage biological molecules by 

direct deposition of energy. But usually the effects of the radiation are a consequence of 

increase in free radicals that persist for few milliseconds and cause oxidative damage to 

DNA, proteins and lipids [8]. Radiation induced alterations in the genome can have 

adverse effects if they are passed on to the next generation of cells. Cells try to 

maintain the genomic integrity by initiating DNA damage responses that include cell 

cycle arrest and DNA repair. Irreparable cells are removed by apoptosis [9].  

LINEAR NO THRESHOLD MODEL (LNT MODEL) 

The most common model used to explain the effects of lower radiation doses is the 

“Linear No Threshold” model. The LNT model assumes that even a small dose of 

radiation could potentially be harmful, and that there is no minimal threshold for 

deleterious effects of radiation. The harmful effects of the radiation are believed to be 
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directly proportional to the intensity of radiation (Figure 1- 2). Hence, according to this 

model the harmful effects of low doses of radiation can be estimated by extrapolating 

the known effects of higher doses of radiation. There is evidence for, as well as against, 

the applicability of the LNT model to lower doses of radiation.  The LNT model is based 

on the fact that even a single high energy radiation particle (like a photon or alpha 

particle) is capable of ejecting electrons from their target molecule. A chance collision of 

these particles with a biological molecule like DNA could disrupt its structure.   

Accumulation of damages by repetitive exposure to lower doses of radiation may 

culminate in harmful effects such as chromosomal aberrations [10]. Similarly a linear 

relationship is believed to exist between dose of radiation and breast cancer [11]. In the 

case of solid cancers, the LNT model provides the most suitable explanation for a 

relation between dose and incidence of cancer [6, 12].  

HORMESIS AND ADAPTIVE RESPONSE 

The opponents of the LNT model cite hormesis (beneficial effects) and adaptive 

response to radiation as evidence against it. According to the hormesis model, lower 

doses of radiation are believed to be beneficial to an organism. Hormesis may be 

caused due to adaptive response to radiation i.e. decrease in vulnerability of cells to 

higher doses of radiation after they are pre exposed to lower doses [13-15]. The 

adaptive response of cultured cells is usually observed when cells are pre-exposed to 

lower doses of radiation between 10 to 200 mGy. Exposure between 200 mGy and  

 



 

Figure 1-2: Linear No Threshold (LNT) 
radiation.  (Adapted from Prise KM 
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: Linear No Threshold (LNT) and other models explaining the effects of 
Prise KM [16] and  NRC [6] )  

 

s explaining the effects of 
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500mGY may also effectuate adaptive response but a dose greater than 500 mGy does 

not elicit adaptive response in the cells [17]. Adaptive response is most often used to 

describe decreased chromosomal damage and increase in survival rates of cells pre-

exposed to LDIR when confronted with higher doses of radiation. Decrease in 

chromosomal damage and aberrations in response to high doses of X-rays was 

observed in lymphocytes when they were pretreated with lower doses of radon [13, 15]. 

Olivieri et al observed increase in survival of U1-Mel and Hep-2 neoplastic cells if they 

were primed with low dose of X-ray before being treated with higher dose [14]. Adaptive 

response to radiation may also enhance the capability of cells to cope with oxidative 

stress when confronted with higher doses of radiation. LDIR exposed lymphoblastoid 

cells exhibited higher activity of anti-oxidant enzymes after exposure to HDIR  as 

compared to those that were directly treated with HDIR[18]. Similarly human colon 

carcinoma cells exhibited an increase in levels of SOD2 (Superoxide dismutase 2) when 

they were pretreated with LDIR (10cGy) before being exposed to HDIR [19].  Priming 

with low doses of radiation may also decrease neoplastic transformation and 

development of cancer caused by high doses of radiation [20]. Decrease in lung cancer 

in humans has been associated with increase in intensity of low dose radiation from 

inhalation of radon [21]. Hormesis may also be exhibited in the form of increased 

proliferation of cells. An increase in division of mesenchymal cells  was observed when 

they were  treated with 75mGy of ionizing radiation  [22]. 

Low doses of radiation are also believed to have a stimulatory effect on the immune 

system. Mice exposed to LDIR exhibit significant change in cytokine profiles suggesting 
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changes favoring stimulation of innate immune system[23]. Differences in genetic 

background have also been shown to elicit differential immune response after exposure 

to low doses of radiation. The immune response was stimulated after exposure to low 

dose of radiation in case of C57BL/6 as exhibited by increase in proliferation of 

spleenocytes and decrease in expression of p53 and apoptosis. On the other hand 

BALB/c mice exhibited exactly the opposite effects i.e. decrease in spleenocytes and 

increase in expression of p53 and apoptosis [24].  

Both adaptive responses and radiation damage have been reported in populations that 

are exposed to chronic levels of low dose of ionizing radiation.  Ramsar in Iran is an 

area with high levels of natural background radiation. The volunteers from this area 

exhibited stimulated immune system (increased levels of IG-E and higher proportion of 

activated T-cells) as compared to volunteers from outside this area [25]. Blood 

mononuclear cells treated with 4 Gy of gamma-radiation exhibited lower micronuclei 

formation and higher apoptosis levels in case of volunteers from Ramsar as compared 

to those from outside this area [26].  On the other hand higher aberrations and breaks 

were found in chromosomes of peripheral lymphocytes from hospital workers exposed 

to low doses of radiation as compared to controls [27]. 

LOW DOSE HYPERSENSITIVITY 

Some studies indicate that the biological systems exhibit increase in apoptosis after 

exposure to ionizing radiation because they are hypersensitive to it. This 

hypersensitivity may develop because damages caused by LDIR may not be strong 
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enough to activate DNA damage response pathways like ATM for repair of DNA. The 

exposed cells may therefore accumulate DNA damages over a period and become 

unviable. They are eventually eliminated by apoptosis. Cells exposed to higher doses 

respond by activating the DNA repair pathways preventing hypersensitive response to 

radiation [28-30].   

INFLUENCE OF RADIATION BEYOND THE TARGETED CELLS 

The effects of radiation are not limited to its target cells alone. The influence of radiation 

can be spread in space to non-targeted neighboring cells by bystander effects. 

Radiation can also pass its effects to a different time point through genomic instability 

that appears in progeny of the targeted cells. 

Bystander Effect 

It was initially believed that the radiation influences cells that are in its direct path 

through mutations, DNA damage, chromosomal aberrations, apoptosis etc. However in 

last few years it has been observed that cells that are not in the path of ionizing 

radiation may be affected by bystander effect i.e. they receive signals from the cells 

targeted by the radiation and get influenced by them. The bystander effect is manifested 

in many ways in the cells influenced by it. These effects include increased ‘sister 

chromatid exchange’ [31] , micronuclei formation [32],   mutations [33, 34]  and 

neoplastic transformation [35] of the cells under its influence. Such an effect can even 

be observed in un-irradiated cells grown in media from irradiated cells [35-37]. Medium 

from irradiated cells may also promote division in the cells grown in it due to bystander 
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effect  [38]. Medium from cells exposed to relatively low doses of radiation (0.073, 1 and 

2 Gy from silicon ion Si490) also induces bystander effects. Un-irradiated cells grown in 

this medium exhibited chromosomal instability [37].  

Communication through gap junctions and oxidative metabolism have been used to 

explain the bystander effect of radiation [39]. Gap junctions are inter-cell communication 

channels that selectively allow transmission of some molecule over the others. There is 

evidence of role of gap junctions in transmission of damage signals from radiation 

targeted cells to the un-targeted cells [34, 40, 41] . Reactive oxygen species (ROS) are 

produced by the oxidative metabolic processes in cells. Disruption of balance between 

ROS and antioxidants is responsible for the manifestation of various pathological 

conditions and ageing [42]. The balance between ROS and antioxidants in a cell can be 

disrupted by radiation exposure since a single alpha particle traversing through a 

mammalian cell can generate tens of thousands of ROS [39]. The role of ROS in 

generating bystander effects has been shown by inhibition of ROS mediated sister 

chromatid exchange [31], DNA mutations and gene expression [32] by using 

antioxidants.  Bystander effect may even be pro-mitotic for cells grown in medium of 

irradiated cells [38]. 

Genomic instability 

Genomic instability is a characteristic feature of most cancers and ageing .It includes 

appearance of ‘new mutations’, ‘chromosomal aberrations’, ‘neoplastic transformations’ 

and ‘increased cell death’ etc. [43, 44]. The effects of radiation are not limited to direct 

damages to the genetic material that are passed on to the descendents of the target 
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cell. The genome of descendent cells may also exhibit diverse changes that are not 

present in the irradiated parent cells. A single cell may therefore produce a progeny of 

cells with diverse mutations and cytogenetic defects as in genomic instability. These 

changes may appear even after many cycles of cell division. New chromosomal 

aberrations have been observed in descendants of cells exposed to radiation [45-47]. 

Besides chromosomal aberrations the cells descending from the irradiated cells exhibit 

low platting efficiency [48], increased transformation [49, 50] and new mutations [48, 

49].  Genomic instability has also been reported in descendents and bystanders of cells 

irradiated with low dose of ionizing radiation [37].  The mechanism of generation of 

genomic instability following irradiation is poorly understood. It is unlikely that the 

genomic instability could be due to a mutation in a gene responsible for maintenance of 

the genome. This is because the rate of random mutation due to radiation (10-4 per cell 

per Gy) is much lower than that of radiation induced genomic instability (10-1 per cell per 

Gy) [51].  The possible reasons advanced to explain the phenomenon of genomic 

instability include malfunction of mitochondria, epigenetic mechanisms and 

inflammatory response [51, 52].  The descendants of the irradiated cell may have 

malfunctioning respiratory processes in mitochondria that may cause oxidative stress 

resulting in mutations [53, 54].  Exposure to radiation also causes dose dependent 

epigenetic changes like hypomethylation of DNA. Hypomethylation of DNA has been 

associated with appearance of breaks in chromosomes and increase in expression of 

proteins essential for DNA maintenance [52, 55, 56].  
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RADIATION AND CANCER 

Various experimental as well as epidemiological studies have associated diagnostic, 

therapeutic as well as accidental exposures to radiation with increased risk of cancer.  

Elevated numbers of skin, lung, thyroid and breast cancers have been reported in the 

survivors of Atomic bomb [57, 58] .    Thyroid is one of the most radiation sensitive 

organs especially in children [59]. Increased incidence of thyroid cancer has been 

observed in children from contaminated areas after Chernobyl accident [60]. Chernobyl 

cleanup workers show increased risk of leukemia and hematological malignancies [61].  

Carcinogenic effects may appear after a long latency period (20 to 70 years) after 

exposure to ionizing radiation [62-64]. 

Therapeutic use of radiation has also been associated with cancers. In 1950’s radiation 

therapy was used to treat tinea capitis, a fungal infection of the scalp. Persons treated 

with ionizing radiation to cure tinea capitis exhibited fourfold increase in skin cancers 

(mainly basal cell carcinoma) and threefold increase in benign tumors of skin later in 

their lives [65] . The risk of development of the basal cell carcinomas decreased with 

increase in age.  Following two reasons could possibly explain increased susceptibility 

to radiation at a younger age. 

i) the cells are more actively dividing at a younger age and 

ii)  longer period of remaining life increases the probability of synergistic effects with 

other carcinogens such as UV radiation [65].   
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Even radiation therapy for cancers can increase chances of development of secondary 

cancers due to exposure of healthy tissues [66, 67].  

Recent years have witnessed a substantial increase in exposure to LDIR on account of 

increased use of radiation based therapeutics, medical imaging and increased scanning 

at airports [68-70] . Considering the harmful effect of radiation there is growing concern 

about increase in usage of radiation based diagnostic methods. There is conflicting 

evidence based on epidemiological studies about the effect of lower doses of radiation. 

Some epidemiological studies have linked cancers with LDIR used for diagnostic 

purposes (X-ray and CT-scan) [71-73]. Dose dependent relationship was observed 

between LDIR exposure from cardiac imaging and therapeutic procedures and 

subsequent risk for cancer [73]. Increase in malignancies have also been reported in 

eight counties of Sweden exposed to LDIR  from fallout of Caesium-137 released in 

atmosphere after Chernobyl accident [74]. Higher frequency of cancers appeared in 

thyroid glands exposed to low average dose of 9.8 cGy in persons receiving radiation 

therapy for tinea capitis [64]. The carcinogenic effects of radiation may also be variable 

in a population. Variability in predisposition to thyroid cancer has been found in the 

population exposed to low doses of ionizing radiation after Chernobyl accident [75].   

Conversely, many studies have not supported carcinogenic role of LDIR below 100mSv. 

This could be explained either by the fact that the effects of LDIR are too little to be 

detected statistically at a feasible sample size or it may be possible that there is some 

minimum threshold of dose below which cancer is not manifested. Accordingly there is a 

belief that extension LNT to LDIR is counterproductive. Adherence to such a belief 
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could even be detrimental to public health because of underutilization of available 

radiation based diagnostic methods [76, 77].  

OTHER EFFECTS OF RADIATION  

Radiation has also been associated with many other ailments including fatigue, DNA 

and chromosomal damage and cardiovascular disease. Many cancer patients 

experience fatigue after radiotherapy [78].  Fatigue has been reported in CD-1 mice 

exposed to a single low dose gamma radiation (50cGy and 200cGy) [79]. Increased 

incidence of cataracts and cardiovascular diseases have been reported among the 

workers involved in cleanup work after Chernobyl  accident [61]. Similarly an increase in 

DNA damage and chromosomal aberrations have been reported in people chronically 

exposed to low doses of radiation like hospital workers [80] , radiologic technologists 

[10] and residents of geographical areas with higher natural background radiation [81-

83]. Changes in transcription profiles of genes have been reported to be induced by 

radiation including LDIR [84].  Radiation also induces changes in translation by 

influencing recruitment of RNAs to polysomes [85]. 

REACTIVE OXYGEN SPECIES 

Reactive oxygen species (ROS) are produced during metabolic processes in the 

mitochondria as well as by various oxidizing enzymes such as NADPH oxidase, 

xanthine oxidase, amino acid oxidases, cytochrome P450, flavoprotein dehydrogenase , 

glycollate oxidase etc. It is estimated that about 1% of O2 taken in by the mammalian 

cells are converted to ROS in mitochondria [86]. Bio-molecules  like proteins and DNA 
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can be damaged by their oxidation through reactive oxygen species (ROS) such as 

peroxide (H2O2, ROOH), oxygen ions (O2-) and hydroxyl ions radicals (OH*) [8]. The 

deleterious effects of ROS are neutralized by physical barriers (histone molecules 

surrounding DNA) as well as enzymatic and non-enzymatic molecules.  Enzymes  such 

as superoxide dismutase, glutathione peroxidase, glutathione transferase, catalase etc. 

and non enzymatic molecules (pyruvate, Vitamin A, E and C) keep the cellular 

environment in the desired reduced state [87]. The balance between oxidants and 

antioxidants is disturbed by external agents such as radiation by generating excess of 

ROS and the consequent oxidative stress. The inability of the protective methods to 

cope with increased levels of ROS result in increased probability of unrepaired DNA 

damages in the cells.  The damage due to radiation could be different from the damage 

resulting from day to day metabolic processes. Radiation induced damage may have 

phosphate or phosphoglycolate at the 3’ end instead of the hydroxyl group that should 

be repaired so that the  phosphodiester bond of the backbone could be formed [88].  

The difference arises from the fact that the ionizing radiation can produce hydroxyl 

radicals concentrated at one place.  The concerted attack of these highly reactive 

hydroxyl radicals within a limited distance concentrates lesions close to each other on 

DNA producing Locally Multiply Damaged Sites (LMDS) [89].  Since the hydroxyl ions 

are highly reactive it has been estimated that those formed within 3 nm of DNA 

molecule could potentially interact with it [90].  
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DNA DAMAGE REPAIR 

 Ionizing radiation causes damage to DNA either by ROS or by direct deposition of 

energy on the DNA molecule. Damages may be caused to the bases in DNA or to the 

sugar phosphate backbone to form Single Strand Breaks (SSBs). If two SSBs are 

produced closely on opposite strands within 10-20 base pairs there is a chance of 

breaking the DNA molecule into two pieces to produce the Double Strand Break (DSB) 

[91]. The double strand breaks may result in chromosomal aberrations such as 

deletions, inversions and insertions. If the cells containing damaged DNA are allowed to 

multiply and proliferate they may lead to diseases such as cancer. It is therefore 

imperative to maintain the genomic integrity. This is achieved either by stopping the cell 

cycle and repairing the damaged DNA or by initiating  suicidal apoptotic response [9]. 

Molecular responses to radiation induced DNA damage include different but overlapping 

pathways such as base excision, SSB and DSB repair pathways. 

Base Excision Repair (BER) 

BER pathway repairs single base lesions caused by metabolic ROS or by ionizing 

radiation. The pathway starts by recognition of damaged base by DNA glycosylases. 

The glycosylase then removes the damaged base by breaking its bond with sugar 

phosphate backbone to create an apurinic/apyrimidinic (AP) site. The 5’ end of this 

abasic site is then removed by APE1 (apurinic/apyrimidinic endonuclease 1). 

Polymerase beta and ligase 3 are then attached to XRCC1 (a scaffold protein) at the AP 

site. After an appropriate nucleotide is attached to DNA at the AP site by polymerase 

beta the gap is sealed by ligase 3 [92, 93]. Sometimes instead of repairing a single DNA 
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molecule a longer patch of DNA is replaced. In this case any of polymerase- beta, 

polymerase-delta or polymerase-epsilon may be used for inserting appropriate 

nucleotides at the site.   The overhanging DNA flap is then removed from the broken 

strand after simulation of FEN1 protein by PCNA. The strand is then ligated by ligase 1 

[94, 95]. 

Single Strand Break Repair (SSB repair) 

SSB repair sites are initially stabilized by a protein PARP1 (poly ADP-ribose 

polymerase-1). Thereafter different BER enzymes are used depending on nature of 

ends of SSB [96, 97].  If 3’ end is hydroxyl and 5’ end is phosphate or deoxyribose 

phosphate then polymerase beta recognizes it and removes the deoxyribose 

phosphate. There after the gap is filled by polymerase beta and the strand is ligated by 

XRCC1 and ligase-3. On the other hand if the end points of the SSB are modified then 

they are first converted back to usual 3’ hydroxyl and 5’ phosphate. The ends are 

processed by PNK or APE1in case of modification of 3’end to phosphate or 

phosphoglycolate respectively. Thereafter the SSB repair is completed by polymerase 

beta and  XRCC1-ligase 3 [96].  

Double Strand Break Repair (DSB repair) 

DSBs are the most dangerous damages caused to the genome by genotoxic agents 

such as radiation and ROS produced during metabolic changes etc. The probability of 

generation of chromosomal aberrations (deletions, loss of heterozygosity, 

translocations, inversions) due to DSBs is very high because they break the DNA into 

two separate pieces.  
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 The DSBs are sensed by a conserved trimer of three proteins Mre11, Rad50 and Nbs1 

(MRN complex) that activate the protein serine/threonine kinase ATM (ataxia 

telangiectasia mutated) [98]. ATM exists as an inactive dimer in nucleus. In response to 

DSBs it auto-phosphorylates to an active monomer [99] that participates in 

phosphorylation of over 30 targets [100].  ATM helps DSB repair process in many ways 

that include activation of apoptosis to remove cells with irreparable DNA, activation of 

the cell cycle check points to provide time for DNA damage repair and recruitment of 

BRCA1 complex required for DSB repair [101-107]. 

Activated ATM phosphorylates histone protein H2Ax enabling it to bind with MDC1. The 

attached MDC1 is also phosphorylated by ATM to form a complex with RNF8 and 

UBC13 at the DSB site.  MDC1-RNF8-UBC13 complex ubiquitylates H2Ax. 

Ubiquitylated H2AX is poly-ubiquitylated by RNF168-UBC13 dimer. Poly-ubiquitylated 

H2Ax is then attached with BRCA1-A complex required for DBS repair [101, 102]. 

Monomer ATM also activates p53 by phosphorylating it and its repressor MDM2 [103]. 

A hetero-dimer consisting of proteins Brca1 and Bard1 is also required for ATM induced 

phosphorylation of p53 [104]. Active p53 in-turn activates p21 (Cdkn1a) that suppresses 

Cdk2 and Cdk4 culminating in cell cycle arrest in G1 phase [105].  Similarly the 

phosphorylation of Nbs1 and Chk2 by ATM triggers arrest of cell cycle in S-phase [108]. 

Activated Chk2 also phosphorylates Cdc25. Phosphorylated Cdc25 binds with protein 

14-3-3 and this complex is removed from nucleus to cytoplasm. Cdc25 is responsible 

for dephosphorylation of cdc2 a step required for G2 to M phase transition. 
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Phosphorylation of Cdc25 by Chk2 and subsequent removal from nucleus inhibits the 

transition from G2 to M phase [109]. 

ATM mediated arrest of cell cycle in one of the stages of interphase provides an 

opportunity to repair processes to rectify the damaged DNA.  DSB repairs are carried 

out by two different mechanisms 1) Non Homologous end joining and 2) Homologous 

recombination.  

Non Homologous end joining (NHEJ):  In case of NHEJ the DSBs are joined together 

without necessarily matching the opposite strands. This process is therefore error prone 

and is responsible for appearance of translocations in the chromosome.  Two different 

pathways have been identified for carrying out NHEJ. They are the classical (c-NHEJ) 

and alternative (A-NHEJ) pathways.   

The c-NHEJ pathway is believed to be flexible in order of its occurrence. Usually after 

detecting a DSB, a heterodimer protein Ku (consisting of Ku-70 and Ku-86) attaches to 

the broken ends of DNA to protect it from exonucleases.  Thereafter DNA-PKcs (DNA 

protein kinase catalytic subunit) joins Ku to form a trimer DNA-PK.  DNA-PK activates 

another protein Artemis that cleans up the ends of broken DNA. This is followed by 

ligation of two broken ends by another trimer consisting of DNA ligase IV, XRCC4 (X-

ray cross complementing 4) and XLF (XRCC4-like factor) [110, 111].   

 In A-NHEJ pathway the two DSB ends are first joined by overlaps of at least a few 

bases (microhomologies) in the opposite strands. Though the pathway is not fully 

known it employs a number of proteins including XRCC1, PARP1 (Poly ADP Ribose 
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polymerase 1, DNA ligase III, Polynucleotide kinase (PNK) , Flap endonuclease 1 

(Fen1), Mre11, Rad50 and Nbs1 [111-113].   

Homologous recombination: In homologous recombination the broken end of a DSB is 

joined to its correct partner by using the information in the sister chromatid (in G2 

phase), homologous chromosome or a similar repeat in the DNA. This pathway is 

started by recognition of the DSB by MRN complex. The Mre11 protein of MRN complex 

is also a nuclease that is involved in generation of 3’ single strand overhangs at the 

DSB site [114]. These single stranded DNA overhangs are coated with RPA [115]. 

Rad51 and ATP are then attached to RPA coated single strand of DNA to form right 

handed filament. Rad51 helps in the repair processes by directing the single strands 

towards their homologue. This process is aided by a number of other proteins such as 

Rad51B, Rad51C, Rad51D, Xrcc2 and Xrcc3 and BRCA2. Since DSB repair by 

homologous recombination involves matching of complimentary strands the process is 

more reliable as compared to NHEJ [116, 117].   

The dependence of homologous recombination based repair on the availability of an 

existing template strand (usually provided by sister chromatids) makes it more useful 

during  S and G2 phases of cell cycle [118]. On the other hand NHEJ is active 

throughout the cell cycle [119] and  is more frequently  employed in repair of radiation 

induced DSBs [118].   

Radiation influences balance of proapoptotic and antiapoptotic forces 
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Exposure to ionizing radiation can act as trigger to cause apoptosis of the cells either 

through activation of p53 dependent pathway or p53 independent pathways.  

P53 dependent apoptosis 

 P53 is a transcription factor that helps in maintaining the integrity of genome by either 

stopping the progress of cell cycle at one of cell cycle check points or by inducing 

apoptosis. Inhibition of progress in cell cycle provides time to rectify defects in DNA by 

one of the DNA repair mechanisms. This decreases the chances of passage of 

defective DNA to next generation of cells.  Cells with severe defects are removed from 

the pool by p53 induced apoptosis. Under normal conditions the levels of p53 are kept 

in check by a feedback mechanism in combination with another protein MDM2. P53 

increases the levels of mdm2 protein by stimulating its gene. An increase in p53 results 

in formation of MDM2-p53 heterodimer that prevents it from stimulating the transcription 

of Mdm2 gene.  MDM2 also stimulates ubiquitylation of p53 culminating in its 

proteolysis. Exposure of cells to genotoxic chemicals or IR results in phosphorylation of 

p53 and MDM2 by ATM preventing them to join thereby causing accumulation of p53. 

Higher levels of p53 initiate pathways of apoptosis or cell cycle inhibition [106, 107]. P53 

is also activated by phosphorylation by HIPK2 in a quaternary complex consisting of 

Axin/Hipk2/Daxx/p53 [120].  

Activated P53 promotes the transcription of pro-apoptotic genes such as Puma, Noxa 

and Bax [121-123].  Pro-apoptotic protein Bax forms a heterodimer with antiapoptotic 

protein Bcl2 (B cell lymphoma 2) and inhibits its activity [124].   Similarly P53 

transactivates PUMA that forms a complex with Bcl2 and Bclx resulting in release of 
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cytochrome c from mitochondria leading to cell death [120]. P53 is also known to 

promote the transcription of TNF receptors like Fas [125] that in combination with their 

adapter protein (like Fadd) activates caspases leading to cell death [126].   

P53 independent apoptosis  

In p53 independent pathway the cell membrane initiates a signaling process that leads 

to production of ceramide. Ceramide (a tumor suppressor lipid) is a secondary 

messenger that is produced by hydrolysis of sphingomyelin by sphingomylenases and 

causes apoptosis by stimulating a number of kinases [127-129].  

Antiapoptosis 

 DNA damaging agents such as gamma radiation and oxidative stress also activate 

antiapoptotic proteins like Bcl2 as a protective mechanism [130-133]. Both p53 

independent as well as p53 dependent pathways are countered by antiapoptotic 

proteins such as Bcl2 [134-136].  Proapoptotic proteins also try to neutralize 

antiapoptotic proteins. For example, p53 promotes the expression of Bax protein that 

forms a heterodimer with Bcl2 (B cell lymphoma 2) and inhibits its antiapoptotic activity 

[124].  P53 also transactivates other proapoptotic proteins such as puma and noxa to 

overcome the antiapoptotic effect of Bcl2.  The fate of the cell is therefore determined 

by a complex interplay between proapoptotic and antiapoptotic forces [137].  
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GENE EXPRESSION PROFILING USING MICROARRAYS 

Microarrays are tools for analyzing the transcriptional profiles of multiple genes 

simultaneously.  The microarray technology became popular because it enabled us to 

observe the changes in transcription profiles of many genes induced by differences in 

treatment (control and treatment), time (time course) and space (different tissues).  

Although various types of microarrays have been developed over last many years, the 

basic principle of the technology remains unchanged i.e. they consist of an array of 

DNA probes (either cDNA or chemically synthesized oligonucleotides) corresponding to 

all or a desired set of genes from the organism under study.  To determine the level of 

expression of genes in the biological tissue under investigation its mRNA is reverse 

transcribed to cDNA (complimentary DNA). The cDNA is hybridized to the probes on the 

microarray. Microarray technology started with two color microarrays. In two color 

microarrays cDNA from control and the treatment groups were labeled with fluorescent 

dyes such as Cy3 and Cy5. The two samples were then mixed and hybridized on a 

single microarray. The proportion of colors emitted by these two dyes indicated the ratio 

of expression of control and treatment group. In recent years, mostly one color 

microarrays are being used. 

ONE COLOR MICROARRAYS 

 In one color microarrays a dye of single color is used to label all the samples. Only one 

labeled sample is hybridized on each array.  The expression levels of genes under 

different conditions are then determined by comparison of intensity of their probes in the 

scanned image of microarrays. The use of a single color in these microarrays provides 



27 
 

higher flexibility in the design of experiments and obviates the need to rectify the 

problem of dye bias associated with the use of two colors. Their downside is the 

requirement of double the number of arrays than the two color arrays. One color arrays 

are available from commercial vendors such as Affymetrix and Illumina.  In Affymetrix 

array each gene is represented by 10-12 different probes of 25-base oligonucleotides. 

The probes are synthesized in-situ by photolithography.  In Affymetrix platform each 

probe is of two types called perfect-match (PM) and mismatch (MM) probes. PM probe 

is perfect complement of the gene it represents. On the other hand, the MM probe is 

complementary at all positions except one base in the centre. The MM probes are 

intended to detect the non specific hybridization. On the other hand in Illumina platform 

each gene is represented by probes consisting of 50 oligonucleotides attached on 

beads. Each bead contains many copies of same oligonucleotide. There are 30 copies 

of each bead. The beads are positioned randomly on the microarray. These miniature 

beads provide higher packing density of probes and also prevent the position effects on 

hybridization and scanning.  Hence a decoding step based on a molecular address of 

each bead is needed to determine the gene represented by that bead. Unlike Affymetrix 

in case of illumina multiple arrays are placed on the same platform that allows their 

processing in parallel [138, 139]. The image obtained from both of these microarrays 

are processed by their proprietary imaging software that convert the intensity values 

associated with various probes into numerical values. 
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PREPROCESSING OF MICROARRAY DATA  

The data obtained from microarray imaging software cannot be directly interpreted 

because there are chances of introduction of variation in data due to non biological 

reasons that include dye bias, background fluorescence, differences in scanning, 

difference among technicians etc. Dye bias is defined as intensity differences between 

samples attributable to the differences between dyes instead of transcription differences 

[140]. The problem is more relevant to two color arrays where it is usually tackled by 

swapping the dye between samples [141]. 

Background noise refers to fluorescence from the places on microarray where there are 

no probes due to unspecific hybridization or contamination.  It is believed that signal 

from the probes may actually be a combination of true signal and the background noise. 

One approach used to eliminate background noise from the true signal is to subtract a 

global value calculated for the complete array based on overall background signal.  

Another approach is to subtract different value from each probe based on background 

signal in the neighborhood of that probe. Both of these approaches may result in 

negative expression levels since sometimes the background signals are higher than the 

actual signal from the probes. Accordingly in some studies background correction is not 

applied since it leads to increase in noise levels [142]. 

Transformation 

The difference in intensity of fluorescence from different probes corresponds to different 

magnitude of expression by genes corresponding to those probes. The probes with 

higher expression values tend to have higher variance as compared to those with lower 
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expression value. Hence, it is a common practice to transform the data to mitigate the 

differences in variances (heteroskedacity) and to normalize it for application of various 

statistical methods such as ANOVA, regression etc [143, 144]. The most commonly 

used method is to log2 transform the data.  Though log2 transformation reduces the 

variance at higher magnitudes of expression it increases the variance at very low values 

especially the values close to background signals. Another popular type of 

transformation is Variance Stabilizing Transformation (VST) that tries to stabilize the 

variance across whole range of data [144, 145]. 

Normalization 

 As stated above the expression levels of transcripts reported by the imaging software 

may contain systematic biases between arrays that are introduced by non-biological 

factors such as unequal quantities of starting RNAs, differences in hybridization, biases 

due to differences in time and space for the experiment etc. Normalization is carried out 

to remove these systematic biases. Most normalization methods are based on the 

premise that the level of expression of majority of genes remains unchanged by the 

treatment. Among the genes that change some are up-regulated and others down-

regulated.  Hence, average change in the expression level of all the genes on a 

microarray is expected to be very low [146]. Accordingly, the simplest method of 

normalization is to standardize the expression values by rescaling them on each array 

so as to set sum of expression values on each array to a desired common value. This is 

achieved by dividing expression value of each gene on the array by sum of expression 
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values of all the genes on that array and multiplying them with the desired common 

value.  Other commonly used normalization methods are discussed below. 

MAS5 

 MAS5 is both a background correction and normalization algorithm developed by 

Affymetrix. It uses intensity of hybridization from the perfect match as well as mismatch 

probes present on the Affymetrix microarrays. The algorithm divides the array into 16 

regions and the dimmest 2% intensities of each region are used to detect the 

background noise. The background correction of all the probes is done depending upon 

their respective distance from centre of these 16 squares. The algorithm ensures that 

the expression value is positive after background correction. Tukey-biweight algorithm is 

then applied to the log of background corrected data [147]. 

Quantile Normalization 

 Quantile normalization assumes that all samples have the same distribution. Briefly, in 

this normalization the probe intensities are ordered in each array. The values in each 

row are then replaced by the average of that row. These average values are then 

arranged according to original order of the probes [148]. The simplicity and 

computational efficiency has not only made it one of popular algorithm for normalization 

of microarray data but also a basis for development of a variety of other normalization 

methods such as RMA (Robust Multichip Average) [149], GCRMA[150] and RSN 

(Robust Spline Normalization) [151]. The disadvantage of forcing same distribution on 
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all the samples and replacing the values with averages is that small differences in 

expression may be lost.  

RMA (Robust Multichip Average) 

 The RMA normalization is commonly employed for normalization of data from 

Affymetrix arrays. The RMA algorithm includes three steps including i) background 

correction ii) quantile normalization and median polishing. For background correction 

RMA uses the perfect match probes and ignores the mismatch probes of Affymetrix 

arrays. The background noise is believed to be proportional to intensity of the perfect 

match probes. The algorithm assumes that the true signal is exponentially distributed 

and the background noise is normally distributed.  Quantile normalization is done on the 

background corrected expression values. There after median polishing is performed so 

that the medians of expression values for each row and column is close to each other 

[149].  

GCRMA 

GCRMA is a variant of RMA algorithm where sequence information (differential bond 

energy between GC pair and AT pair) of the probes is used to estimate the affinity of the 

probes to nonspecific binding. The background correction is done according to this 

affinity. After background correction quantile normalization and median polishing 

methods of RMA are used [150]. 
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RSN (Robust Spline Normalization) 

 Robust spline normalization combines of quantile normalization with ability of loess 

normalization to fit the data continuously [151]. The quantile normalization is simple and 

computationally efficient algorithm that preserves the rank order of genes. But it forces 

all samples to same distribution and also results in loss of ability to distinguish between 

small changes in expression. Loess or spline normalization on the ether hand does not 

preserve the rank of genes but fits the data continuously [152].   

EXTRACTION OF GENE CO-EXPRESSION NETWORKS  

A variety of methods have been employed for extraction of gene co-expression 

networks using transcriptomics data obtained by microarrays. These include Boolean 

networks, Bayesian networks, clustering and relevance networks.  

Boolean networks 

Boolean networks assume that genes are present in two discrete states i.e., on and off.  

Due to this assumption the Boolean models are computationally very efficient. Lang et 

al. developed a mutual information based algorithm to extract gene regulatory networks 

from gene expression data represented in a binary state of on and off [153]. The main 

drawback of Boolean networks is the lack of intermediary stages of gene expression. 

Binary representation of gene expression is a biologically untenable assumption. 
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Bayesian networks  

Bayesian networks use directed acyclic graphs to establish probabilistic relations 

among the genes. They establish dependence structure between genes based on their 

expression levels. Thus the edges between genes represent conditional dependencies 

among them. The ability of Bayesian methods to determine the causality of interaction is 

a major advantage of these methods  [154]. On the other hand learning Bayesian 

networks is computationally very expensive. Hence they either employ heuristic 

algorithms or prior knowledge of networks to make them efficient[155].  

Clustering Microarray Data 

Cluster analysis is a set of data mining methods used to aggregate observations of the 

data into groups based on some criterion for evaluating similarity or dissimilarity 

between the observations. For analysis of gene expression profiles clustering is a 

commonly employed method to group genes and/or samples. The genes / samples that 

are similar in their expression profiles are placed in same or closer clusters. The 

dissimilar genes/ samples are placed in different clusters. The distance between 

clusters is proportional to the dissimilarity between members of the clusters. The 

measures used to determine the distance between clusters include Euclidean distance, 

Manhattan distance, correlation (Pearson and Spearman), Kullback–Leibler divergence 

[156] etc.   

Euclidean distance is the shortest straight line Pythagorean distance between two 

points in an n-dimensional space. Manhattan distance is the walking distance between 
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two points. Whereas Euclidean distance between two points in an n-dimensional space 

can be tracked by simultaneous movement among all dimensions the Manhattan 

distance can be traced by movement along one dimension at a time. 

Correlation measures the similarity or dissimilarity in trends in expression of genes. The 

most commonly used measure of correlation is the Pearson’s correlation. Another 

measure of correlation is the non-parametric Spearman’s rank correlation.  Like 

Pearson’s correlation it varies between -1 and 1 but instead of using the values of 

observations the relative ranks of the observations are used for calculating it. 

SUPERVISED AND UNSUPERVISED CLUSTERING 

 Supervised clustering methods require prior knowledge of number of clusters in the 

data. The clustering algorithms under this category then allocate the genes to one of the 

clusters.  Unsupervised clustering does not require prior knowledge of number of 

clusters. The number of clusters is derived from the data itself [157].  

Popular clustering algorithms that have been applied to clustering of microarray gene 

expression profiles include K-means [158], hierarchical clustering [159] and Fuzzy 

clustering [160, 161].  . 

K MEANS CLUSTERING 

 In K-means clustering the number of clusters ‘K’, is predefined by the user. Each of the 

K clusters is initiated by one observation as its mean. Thereafter following steps are 

followed [162]. 



35 
 

a. Each observation is assigned to the cluster whose mean is closest to that 

observation.  

b. After assignment of all the observations the means of each cluster are 

recalculated from the current members of that cluster.  

c. The observations are then reassigned to the clusters based on their distance 

from the new means. 

Steps ‘b’ and ‘c’ are iterated till distance of observations from the means of the clusters 

is minimized. 

K-means clustering is prone to effects of outliers since mean can be influenced by even 

a few outlier observations. To overcome the influence of outliers, K-medoids clustering 

uses the observation closest to mean as a reference point for aggregation. The distance 

of other observations from this reference point is used as a criterion for membership of 

this cluster [163].  Though simple in their implementation the main drawback of the K-

means and K-medoid clustering is the requirement of an appropriate ‘K’ [162]. 

Especially in the case of gene expression profiles it is difficult to prejudge the number of 

groups amongst thousands of genes. 

FUZZY CLUSTERING   

Most clustering algorithms divide the data into distinct non-overlapping clusters. On the 

other hand gene networks are all interconnected as one gene may participate in more 

than one biological function (pleiotropy).  Fuzzy clustering tries to resolve this by 

allowing observations (genes) to be associated with more than one cluster. Fuzzy-C 

means clustering is the most popular of these clustering algorithms. It is similar to K-
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means clustering except that it assigns probabilities (varying from 0 to1) that determine 

the membership of the objects to various clusters [160, 161].  The standard K-means 

clustering assigns every gene to a single cluster. On the other hand fuzzy-C means can 

assign a gene to multiple clusters with varying degrees of membership [161].  To 

determine the extent of overlaps this algorithm requires specification of a fuzziness 

parameter (>1) in addition to parameter K for the required number of clusters.  Values of 

fuzziness parameter closer to one imply distinct and isolated clusters. Higher values 

result in higher overlap amongst the clusters. The algorithm also requires a parameter 

for convergence of clustering.  Pre-specification of all these parameters and their tuning 

is a downside of this algorithm.  

HIERARCHICAL CLUSTERING 

Hierarchical clustering arranges all the objects in a tree like structure called dendrogram 

without pre specification of number of clusters. After creation of dendrogram the number 

of clusters can be decided by choosing an appropriate level to cut the tree [159, 164]. 

The main advantage of this approach is the ability to visualize complete dataset and 

then determine the number of clusters based on both statistical methods as well as the 

domain knowledge.  For example, in microarray data both the genes and samples can 

be represented as dendrogram that can be cut at specific levels to place them in 

appropriate clusters. Hierarchical clustering of data can be achieved by following both 

top down and bottom up approach. In top down approach (dissociative) all the objects 

are initially placed in a single cluster. Thereafter the clusters are successively divided till 

the number of clusters is equal to number of objects being clustered. In bottom up 
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approach (agglomerative) each object is initially placed in a separate cluster. These 

clusters are then repeatedly merged and subsumed into bigger clusters until a single 

cluster encompassing all the objects is achieved. Various mathematical measures such 

as correlation (1-r), Euclidean distance, Manhattan distance, mutual information etc. 

could be used as criteria for evaluating the distance among objects/clusters.  Based on 

the reference point in the clusters from where the distance is measured various 

algorithms of hierarchical clustering are used. These include average linkage (average 

of distances between all points in one cluster with all points in the other cluster), 

centroid linkage (Euclidean distance between centroids of two clusters), complete 

linkage (distance between farthest points in two clusters) and single linkage (distance 

between closest points in two clusters). Hierarchical clustering has often been used to 

produce two-way clustering of expression data i.e. simultaneous clustering of genes and 

conditions that enables visualization of gene clusters under different experimental 

conditions [165, 166]. 

Relevance networks 

Relevance networks start by employing measures of similarity such as correlation and 

mutual information amongst all the gene pairs in a transcription profile. This pair-wise 

similarity network is filtered by employing a suitable threshold to retain only strong 

associations [167-169].  Extraction of biologically meaningful information from a large 

network representing pair-wise association among thousands of genes requires efficient 

computational algorithms. Graph algorithms provide a means to extract dense and 

highly connected regions from these networks[168]. The main advantage of relevance 
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networks is their ability to allow multiple relations among genes. They can handle 

positive as well as negative correlations between genes and easily combine information 

from data of diverse types [167, 170, 171]. 

Graph algorithms 

Biological networks such as metabolic pathways, protein interactions and gene 

regulation networks can be easily be represented as graphs where biological entities 

like genes, metabolites and proteins etc. are represented as vertices and the 

relationships between them is represented as edges. Accordingly, graph theory has 

been employed in various fields of computational biology such as prediction and 

comparison of protein structure [172-174], prediction of reactions in metabolic pathways 

[175], representation of functional relationships between genes as in gene ontology 

(GO) database[176-178], creation of bioinformatics tools [179-181] and for extraction of 

dense and interconnected portions of biological networks such as cliques, paracliques, 

hubs, bipartite networks, network motifs. Our group has also developed [182-186] and 

applied [169, 179, 181, 187, 188]  graph theory algorithms for extraction of putative 

gene networks from gene expression data.    

CLIQUES AND PARACLIQUES 

A Clique is a subgraph such that every pair of its vertices is connected by an edge 

between them. In case of gene expression networks a clique models a group of tightly 

co-regulated genes that may be participating in a common biological pathway or are 

influenced by a common stimulus in a case control study. For extracting cliques from 

microarray data, first the gene expression profile is represented as a complete graph. 
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Each gene in the graph is represented as a vertex and is connected with every other 

gene on the graph by an edge. The edges between the vertices represent the strength 

of relation between the genes [169]. As in the case of clustering methods, the strength 

of relationship between genes can be evaluated in terms of distance measures such as 

correlation (Pearson or Spearman), Euclidean distance, Mutual information etc. A 

threshold is applied on the complete graph to retain only highly correlated genes and 

the edges connecting them. Various methods [169, 183, 185] have been proposed to 

threshold the graph but most commonly a high pass correlation threshold [169] typically 

in the range of 0.8 to 0.875 is used to remove edges of low correlation. The filtered, un-

weighted and undirected graph is used to extract maximal cliques using fixed parameter 

tractability (FPT) algorithms. To imitate the natural biological networks cliques can be 

relaxed by allowing it to miss a few edges. These relaxed cliques are termed 

paracliques. Paracliques try to compensate the inherent noise in the microarray data 

and stochastic nature of biological processes [169].   

HUBS AND BETWEENNESS CENTRALITY 

Hubs are nodes of high degree found in a graph. In biological networks they reflect 

genes, proteins or metabolites that interact with and influence many other genes or 

proteins. Common examples of hubs include transcription factors, kinases, transferases 

etc. that are known to have many targets. Hub genes or proteins are critical for function 

of biological networks [169, 189, 190]. Though biological networks are robust, the 

disruption of hubs is more likely to be lethal to organism, often termed as central 

lethality [191].   
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Another set of biologically significant vertices in a graph are those with high 

‘betweenness centrality’.  A vertex that is in the shortest path of a large number of other 

vertex pairs is said to have high betweenness centrality.  Proteins with high 

betweenness are believed to be functionally and evolutionarily significant [192].  

NETWORK MOTIFS 

Network motifs are patterns of interconnections that are present in biological networks 

at a frequency higher than that possible by random chance. Directed graphs were used 

to identify such motifs in gene regulation networks [193].  

BIPARTITE GRAPHS 

  A bipartite graph is an undirected graph consisting of two subsets of vertices U and V. 

Each edge E of this graph connects a vertex in U with a vertex in V. Bipartite graphs 

have been employed for extracting relationships between genes and phenotypes [181, 

187], assembling and identifying proteins from peptides generated by mass 

spectrometry [194], matching regions of brain in different brain atlases [195], identifying 

drug and target interaction [196], associating protein domains with proteins [197],  

integrating drugs with genetic information for predicting drug and target interaction [198] 

and for determining evolutionary significance of metabolites and metabolic reactions 

[199]. 

Multiple test correction 

Large scale transcriptomics experiments typically test the affects of change in condition, 

strain or time on the expression levels of thousands of genes simultaneously.  The 
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change in expression levels of genes are statistically tested by repetitive application of 

algorithms such as ANOVA (analysis of variance).  The repetitive hypothesis testing 

increases the probability of rejecting a null hypothesis by random chance resulting in 

increase in false positives. Increase in false positives due to multiple testing is rectified 

by application of multiple test correction methods that either control Family Wise Error 

Rate (FWER) or False Discovery Rate (FDR).   

FWER 

FWER methods control the probability of false positives among all hypotheses tested. 

Bonferroni correction controls FWER by dividing the desired alpha by number of 

tests[200]. In case of microarray and other high throughput methods it is too restrictive 

since the number of tests is usually in thousands. This makes the desired alpha too 

small and increases the number false negatives.  

BENJAMINI AND HOCHBERG FDR 

Benjamini and Hochberg introduced the concept of false discovery rate (FDR) for 

controlling false positives due to multiple hypothesis testing. The FDR method controls 

the probability of false positives among the tests declared significant. Benjamini and 

Hochberg method takes into consideration the number of hypothesis tested and relative 

rank of pvalues amongst the population of pvalues obtained from all the tests[201].   
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Q-VALUE 

Storey introduced another FDR based method for multiple test correction that 

introduces q-value (a Bayesian posterior of p-value)[200]. Q-value estimates the FDR 

by taking into consideration proportion of true null hypotheses. The proportion of true 

null hypotheses is estimated from the distribution of pvalues by assuming that the 

pvalues are uniformly distributed [202]. 

Gene Ontology Database 

Gene ontology (GO) is a tripartite database consisting of controlled vocabulary that 

defines the functions of genes. Three aspects of gene function that are included under 

the GO are:  

i) cellular component i.e. physical space in the cell where the gene is expressed,  

ii) biological process in which the gene is known to participate and the 

iii) molecular function of the gene [176].  

A directed acyclic graph (DAG) is used to represent each aspect of gene function. 

Terms relating to gene function are arranged in a hierarchy in each of DAG. The root 

node (Cellular component, Biological process or Molecular function) is the highest term 

in hierarchy for that DAG.  The terms become more and more specific as we move 

away from the root node [176]. Each term in DAG may be a descendent of multiple 

parent terms. Likewise, each term may have multiple child terms. Similarly, a gene may 

be associated with multiple terms and a term may be associated with multiple genes 

[176]. GO not only provides uniformity of terminology for description of gene function but 
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also enables automation of functional analysis of groups of genes that forms the basis 

of many studies of gene enrichment.  

Usually gene ontology database is employed to detect GO categories over represented 

in a list of genes derived by one of the clustering or gene network extraction methods. 

Statistical methods such as hypergeometric test, Fisher’s exact test and Chi-square test 

are employed to detect the GO categories [203-205] that are over represented in the 

queried gene set. Another method that is frequently employed to interpret functional 

similarity among a group of genes is to determine the semantic similarity of the GO 

terms corresponding to the genes in the cluster. A high correlation between gene 

expression and semantic similarity of GO terms annotating those genes indicates 

functional similarity of the genes [206]. 
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CHAPTER 2 : REVEALING PUTATIVE GENE NETWORKS 

PERTURBED BY LOW DOSE IONIZING RADIATION USING 

DIFFERENTIALLY CORRELATED GRAPH GENERATED BY A 

TWO STAGE STATISTICAL FILTER 
 

(This manuscript will be submitted for publication in PLoS ONE with following authors 
Sudhir Naswa, M.A. Langston, Rachel M. Lynch, Suchita Das, Arnold Saxton, B.H. Voy) 
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ABSTRACT 

 
Strong stimuli elicit changes in gene expression that can be detected with statistical 

methods for differential expression such as ANOVA. In contrast, more modest stimuli 

induce changes in gene expression that may confer significant biological impact but are 

difficult to detect by ANOVA, especially in the presence of background genetic variation. 

We hypothesized that capturing mutual relationships of genes by their differential co-

expression (correlation) would uncover effects of modest biological stimuli that might be 

missed by traditional differential expression approaches. To test this hypothesis we 

used a two stage statistical filter to generate a differential correlation graph (DCG) that 

identifies differences in gene networks between control and treatment groups. We 

applied this approach to microarray data produced from five strains of inbred mice 

exposed to a single low dose of ionizing radiation. The exposure level (10 cGy) is 

consistent with exposures obtained during increasingly common diagnostic CT scans, 

which may increase cancer risk. RNA was extracted from spleen of control and 

irradiated mice 24 hours after exposure and profiled using the Illumina microarray 

platform. After producing the DCG, random selection tests were used to identify 

statistically significant network hub genes with higher connectivity than would be 

expected by chance.   Whereas differential expression methods identified few 

differences between control and irradiated mice, differential co-expression revealed 

gene networks highly enriched with genes implicated in radiation response, DNA 

damage repair, apoptosis and cancer with hub membership enriched in members of the 
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BRCA complex. These findings illustrate the value of differential correlation for 

extracting the biological response to subtle environmental stimuli.    
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INTRODUCTION 

Technologies for profiling the expression of genes are getting faster, cheaper and 

efficient enabling us to generate huge amount of data in a very short time. Availability of 

high throughput methods has facilitated development of strategies for extraction of 

information about inter-relationships of genes in biological networks. Genetic networks 

maintain a homeostatic relationship among genes. Maintenance of this steady state 

relationship among genes is critical for the survival of an organism.  A powerful external 

stimulus that disrupts vital parts of a gene network or causes its total breakdown may 

lead to disease or death. Such strong external stimuli also effectuate relatively higher 

changes in magnitude of expression that can easily be detected with statistical methods 

for differential expression such as ANOVA. On the other hand biological organisms 

survive most sub-lethal external stimuli. Relatively lower changes in gene expression by 

such stimuli make it difficult to detect by differential expression methods especially 

because of lower sample sizes and hence statistical power. This difficulty is often 

compounded by differences in genetic background amongst the subjects of treatment.   

We believe that genes readjust their mutual relationships after exposure to external 

stimuli and these readjustments can be captured by differential co-expression 

(differential correlation) among genes. Differential co-expression methods used for 

extraction of gene networks from transcription profiles have been classified by Tesson 

et al. [207] into two types: targeted [208-211] and untargeted [169, 207, 212-215]. In 

targeted approach the emphasis is on finding differential co-expression among 
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predefined clusters of genes whereas untargeted methods cluster genes based on 

differential co-expression between them.  

Our group has developed [182-186] and applied [169, 181, 187, 216] graph theory 

based methods for extraction of co-expressed as well as differentially expressed 

putative gene networks from gene expression profiles.  Here we use an untargeted 

differential correlation method based on graph algorithms for extraction of differentially 

coexpressed gene networks. The previously proposed untargeted method by Tesson et 

al. [207] uses a variable tuning parameter for determining differential correlation 

between genes under different conditions. They recommend choosing a tuning 

parameter that either makes the gene networks scale free or maximizes the difference 

in correlation between the genes under different conditions. Similarly, Van Nas et al. 

use a tuning parameter that makes the gene correlation network scale free [214]. In 

another untargeted method Southworth et al. use a fixed value (0.75) of hierarchical 

clustering height parameter to cluster the genes based on differential correlation. Cho et 

al.[208] highlight inability of untargeted method to detect differential correlations to 

justify the targeted method developed by them. In their untargeted method they used a 

single cutoff based on Bonferroni multiple test correction to determine the significance 

of correlation pvalues for control, treatment and difference in correlation between control 

and treatment. They use too strict a cutoff  because of two reasons  i) Bonferroni 

correction is known to be very conservative and ii) the number  of tests for detecting 

difference in correlations should be much less than the number of tests for determining 

the significance of correlation under each condition since comparison of  insignificant 
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correlations is unnecessary. Moreover, just comparing the gene pairs that are significant 

under both the conditions misses a lot of information. The knowledge derived from 

comparison of gene pairs that are uncorrelated under one condition and correlated 

under the other is equally vital.  Altay et al.[213] used a differential co-expression 

method that needs specification of user defined parameter based on rank value of 

mutual information of each gene with its neighbors. Yu et al. [215] use q value to filter 

the nonsignificant correlations and there after use maximum or log correlation values to 

determine differentially correlated genes. Here we use a two stage statistical filter by 

employing multiple test corrections at each stage to generate a differentially correlated 

graph since the possibility of false positives due to multiple testing arises at two stages. 

One at the stage of deciding significance level of correlation under two conditions and 

second at the stage of comparison of correlation of gene pairs under different 

conditions. We use q-value for multiple test correction at each of these stages. Q value 

controls the false discovery rate but is not too restrictive like family wise error rate 

correction method by Bonferroni [202].   

We begin by generating a graph that has edges between pairs of genes that exhibit 

statistically significant multiple test corrected correlation under at least one of two 

experimental conditions and multiple test corrected differential correlation under 

different experimental conditions. Thus our method not only ensures that the correlation 

coefficients are significant but also the difference between them is significant and FDR 

corrected. We use graph algorithms to extract dense regions of the graph such as 

connected components, cliques and hubs from this differentially correlated graph. 
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Graph theoretical methods for mining gene networks are advantageous over other 

clustering methods because they do not impose restriction on topology of network and 

can simulate biological reality of overlaps and interconnections between biological 

pathways. They can easily be used for targeted as well as untargeted methods and can 

be adapted to integrate biological data of diverse types such as gene expression, SNP, 

proteomics and phenotype [169, 187, 217, 218].    

 We employ aforementioned differential co-expression method to determine the effects 

of Low dose ionizing radiation (LDIR) on the gene networks. Ionizing radiation up to 

10cGY (centi Gray) is classified as low dose radiation by US department of energy. 

Sources of exposure to LDIR include medical imaging techniques like CT-scan, certain 

occupations (nuclear waste clean-up, nuclear power plant) and non lethal nuclear 

accidents. There is evidence of harmful [219] as well as beneficial effects [220] of LDIR. 

Annotation of the extracted networks with Gene Ontology, Kegg pathways and literature 

search show that the gene networks extracted by our method are highly enriched with 

radiation sensitive genes and processes. Whereas differential expression method using 

ANOVA detected very little effect of LDIR, differential co-expression revealed gene 

networks highly enriched with genes implicated in radiation response, DNA damage 

repair, apoptosis and cancer. 
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RESULTS AND DISCUSSION 

GENERATION OF DIFFERENTIALLY CORRELATED GRAPH 

 We used gene expression data obtained from spleen cells of five different strains 

(129S1/SvImJ, NOD/LtJ, CBA/J, CAST/EiJ and WSB/EiJ) of genetically diverse mice as 

a part of our ongoing effort to elucidate gene networks influenced by LDIR following a 

systems genetic approach. Illumina microarrays were used to measure the expression 

profiles of control (sham-irradiated) and radiated (treatment) mice. The mice were 

irradiated with single low dose of ionizing radiation (10 cGy of gamma radiation) and the 

spleen cells were harvested for expression profiling on illumina microarrays. The 

microarray data was preprocessed using variance stabilized transformation followed by 

robust spline normalization.  Following the belief that stimulus induced perturbations in 

gene networks are reflected in readjustment of correlations amongst the genes we 

employed graph algorithms to investigate the differences in inter-gene correlations 

between control and radiated mice.  We focused on changes in pair wise linear 

correlations between genes and used Pearson correlations to extract gene networks 

that correlate differentially after exposure to radiation. The gene networks were initiated 

by creating a gene to gene correlation matrix for both the control and radiated mice. 

After creation of correlation matrices, we used a two stage statistical filtering process to 

generate a differential correlation graph (DCG) as depicted in Figure 2-1.  First we 

obtained a multiple test corrected two tailed p-value for significance of correlation 

coefficients of gene pairs for both control and radiated data. Multiple test correction was 

done by controlling false discovery rate by using  Q-value [202]. Q-value cutoff of 0.05  
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Figure 2-1: Generation of differential correlation graph (DCG) using two-stage 
statistical filtration process. 
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was used to get multiple test corrected p-values of 0.00276 and 0.00667 for control and 

radiation data respectively.  A joint significance pair list (JSPL) was then created by 

keeping all the gene pairs that were significantly correlated in at least one of two 

conditions.  A second filter was applied to retain only those gene pairs of JSPL that had 

statistically different correlations for control and radiated mice. Difference between 

control and radiation correlation coefficients of a gene pair was determined by first 

transforming them to Z-scores using Fisher’s z transformation and then testing the 

significance of difference between the two Z scores against a null hypothesis of no 

difference.  Q value was used to get a multiple test corrected p-value for differences in 

correlation coefficients.  Only those pairs of JSPL were retained that had a multiple test 

corrected p-value of less than 0.00051 corresponding to a q-value of 0.05. The gene 

pairs of JSPL that survived the double filtration process were converted into a 

differentially correlated graph (DCG) by representing each gene with unique vertex. An 

edge was placed between genes of each pair in the double-filtered JSPL.   Effectively, 

the DCG consisted only of vertices (genes) that survived double filtration process. An 

edge was placed between two vertices if and only if they met the following two 

conditions: 

i) Correlation between the two vertices was statistically significant in control and/or 

radiated mice.  

ii) The difference between the correlations of the two vertices under control and 

radiation was statistically significant. 
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This differentially correlated graph had 20438 edges and 5707 vertices with mean 

vertex degree of 7.162. We plotted distribution of edge weights (absolute difference in 

gene pair correlation between control and radiated mice) in the DCG (Figure 2-2).   The 

mean and median edge weights were 1.18 and 1.21 respectively.  Most (99.5%) of 

these edge weights were greater than 0.57. A shift of 0.57 and above in the absolute 

value of correlation coefficient suggests readjustment of mutual relationships among 

genes of DCG after exposure to radiation. 

As depicted in Figure 2-2 the exposure to radiation causes statistically significant shifts 

in correlation coefficient between gene pairs suggesting emergence, disruption and 

inversion of relationships between them.  After exposure to LDIR 11587 gene pairs 

exhibited ‘correlation emergence’ (non significant correlation in control becomes 

significant) and 8634 gene pairs showed ‘correlation disruption’ (significant correlation in 

control becomes non significant) events.   LDIR also resulted in inversion of correlation 

relation between genes in 217 pairs (significantly positive correlation becomes 

significantly negative after exposure to LDIR or vice versa). 113 of these LDIR induced 

inversions were positively directed (negative correlation of control becomes positive) 

and 104 were towards negative direction (positive correlation of control becomes 

negative).  The distribution of edge weights for both the correlation emergence as well 

as correlation disruption events closely follows the overall distribution of edge weights in 

the DCG. As expected the mean and medians of edge weights for the more drastic 

inversion events are higher (Table 2-1). 
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Figure 2-2: Frequency distribution of edge weights in differentially correlated 
graph. 
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Table 2-1 Classification of edges and distribution of their edge weights in the 
differentially correlated graph. 

Edge type Number of Percentiles of Edge Weights  Mean Edge 

weights 
Vertices Edges 25

th
 50

th
 75

th
 

All edges 5707 20438 1.1 1.21 1.28 1.18 

Correlation emergence 4508 11587 1.12 1.22 1.29 1.19 

Correlation disruption 3802 8634 1.08 1.19 1.26 1.16 

Correlation inversion 296 217 1.45 1.48 1.52 1.49 
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ENRICHMENT ANALYSIS OF LARGEST CONNECTED COMPONENT OF DCG 

As a first glance into DCG we extracted its connected components. A connected 

component is a subgraph in which each vertex can be connected to every other vertex 

through a path consisting of edges and other vertices in the graph. The largest 

connected component of the DCG consisted of almost all the edges (20389/20438= 

99.76%) and vertices (5618/5707 = 98.44%) in the DCG. The interconnectedness of 

almost all the genes underscores that at systems level changes in correlation of one 

pair may lead to changes elsewhere in the network.  GO analysis of this connected 

component indicated its extreme richness in genes participating in various metabolic 

processes (FDR corrected p-value <E-100). Surprisingly it was also highly enriched in 

radiation sensitive genes with an FDR corrected p-value (fPval) of 2.37 E-9.  64 genes 

(Tables A2-1 & A2-2) in this connected component belonged to the GO category 

“response to radiation”.   26 out of these 64 genes were annotated with GO category 

“response to ionizing radiation” with an fPval of 8.63 E-6. 31 genes were annotated with 

the GO category response to UV radiation with an fPval of 1.6728E-8. Enrichment of 

radiation sensitive genes in the largest connected component of the DCG suggests a 

shift in relationships of these genes with their neighbors consequent upon exposure to 

LDIR.   This largest connected component was also enriched in other GO categories 

reflecting processes relevant to radiation response such as apoptosis, response to 

biotic and abiotic stimuli, response to DNA damage stimulus, response to oxidative 

stress, signal transduction, immune system process, lymphocyte mediated immunity, 

cellular homeostasis, protein synthesis and transport, DNA metabolism and Cell cycle. 
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Enrichment of genes pertaining to a large number of biological processes suggests that 

LDIR effects change in relationships of many genes. To delve into the influence of LDIR 

on gene networks, we decomposed the DCG to extract hubs and maximal cliques.  

EXTRACTION OF HUB NODES FROM THE DCG 

A hub in a graph is a vertex with high degree (many neighboring vertices). Extraction of 

hubs in DCG enabled us to concentrate on radiation sensitive genes that changed their 

correlation with a large number of other genes after exposure to LDIR. We performed 

1000 random selection tests to determine the size of hubs that had a significant 

probability of formation in the DCG. In each test 5000 genes were randomly selected 

from DCG and probability of vertex degree of a randomly selected gene was 

determined. A randomly selected gene never had a vertex degree greater than 29 at a 

p-value of 0.05 in the 1000 runs. Therefore, a vertex degree of 30 was used as a cutoff 

for selection of hub genes. We focused on hubs formed by radiation sensitive genes. 

Two of the 64 radiation sensitive genes viz. Bcl2 (B-cell leukemia) and Rnf168 had 

vertex degrees of 47 and 36 respectively.  

Bcl2 (B cell lymphoma 2) Hub 

Bcl2 is a radiation sensitive anti apoptotic gene implicated for its role in cancers of 

breast, lungs, thyroid, oropharynx, ovaries and prostrate [221-226].  It protects the cells 

from the effects of ionizing radiation [131] , oxidative stress [130] and  facilitates DNA 

damage repair [132]. Many genes of this hub are involved in processes relevant to 

radiation response such as nucleic acid metabolism, DNA replication, B and T cell 
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lineage commitment and apoptosis. These include Il33 (interleukin 33), Fkbp5 (Fk506 

binding protein 5), Rpa1 (replication protein A1), Tubb2c (tubulin beta 2C), Tsc22d1 

(Tsc22 domain family member 1) and Mfng (Mfng O-fucosylpeptide 3-beta-N-

acetylglucosaminyltransferase).  

 Il33 has been associated with lung [227] and skin [228] cancers.  UV radiation is known 

to induce it to higher levels in skin cancers [228].  It has also been reported to increase 

the expression of  Bcl2 in liver of BALB/c mice [229] and neonatal cardiomyocytes of rat 

[230]. Our data indicates that LDIR changes the correlation of Bcl2 and Il33 from 

negative (r = -0.83) to slightly positive (but statistically not significant with r =0.27) 

(Figure 2-3, a and b). It could be speculated that LDIR tutors these two genes towards a 

better cooperation in expectation of a higher dose of radiation.  

Fkbp51 aka Fkbp5, another gene of this hub is a member of group of genes 

synthesizing highly conserved proteins immunophilins. Fkbps’ are known to play role in 

protein folding/transportation, receptor signaling, T-cell activation, apoptosis and 

modulation of oxidative stress [231] .  Fkbp5 is also implicated in providing resistance to 

apoptosis in melanoma cells by activating Nf-κB (nuclear factor of kappa B) in response 

to ionizing radiation [232]. The correlation between Fkbp5 and Nf-κB (Nf-κB1) changed 

(p-value<0.004) from slightly negative (r=-0.413, p-value =0.12) to positive (r=0.635, p-

value =0.01) to confirm their cooperative behavior in response to LDIR. It has been 

reported that activation of Nf-κB induces expression of Bcl2 [233].  
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 Figure 2-3: Change in correlation of genes after irradiation in Bcl2 Hub (Each 
colored dot represents mice of a particular strain).  
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The correlation between Bcl2 and NF-κB1 increased slightly from 0.54 (p-value<0.05) to 

0.66 (p-value<0.008). Since Nf-κB is a transcription factor that is activated and inhibited 

by many factors and in turn regulates a large number of genes the slight change in 

correlation with one of its target is not surprising. Increased correlation of Fkbp5 with Nf-

κB and emergence of very high positive correlation between Bcl2 and Fkbp5 (r=0.904) 

after LDIR treatment (Figure 2-3 c-f) may therefore suggest their increased cooperation 

to counter the apoptotic effects of LDIR. Bcl2 is known to interact with another 

immunophilin FKBP38, and provide resistance to apoptosis [234]. 

Another gene of Bcl2 hub, Rpa1 is a conserved protein that is active during DNA 

replication, repair and recombination processes [235] that are quite common in post 

radiation damage to genetic materials. It is also involved in DNA damage double strand 

repair and prevention of apoptosis following exposure to IR [236]. Polymorphisms in this 

gene are associated with cancer [237]. Mice with heterozygous mutations of Rpa1 are 

reported to develop lymphoid tumors and defects in repair of DNA double strand breaks 

whereas its homozygous mutations result in embryonic lethality [238]. Besides its 

presence in this hub Rpa1 was also a part of a maximal clique of four genes that is 

discussed below in a separate section.  

Bcl2 hub also includes other cancer associated genes such as Tubb2c, Tsc22d1 and 

Mfng.  Expression levels of Tubb2c (tubulin beta 2C) have been reported to vary in 

tumor cells [239]. Tsc22d1 (Tsc22 domain family member 1) is a transcription factor 

believed to induce apoptosis in cancer cells [240, 241]. High doses of ionizing radiation 

are known to up regulate it in human keratinocytes [241]. It has also been associated 
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with formation of spontaneous pulmonary adenoma in female mice [242]. Mfng (Mfng O-

fucosylpeptide 3-beta-N-acetyl glucosaminyl transferase) is expressed in human tumor 

derived cell lines and its over expression in 3T3 cells made them tumorigenic [243]. 

Changes in correlation of antiapoptotic and proto-oncogenic BCL2 gene with other 

genes involved in apoptosis, cancer and DNA damage responses indicates their 

concerted response to face the challenge posed by LDIR. 

Rnf168 (ring finger protein 168) hub  

Rnf168 is a radiation sensitive ‘ubiquitin ligase’ that participates in DNA damage repair 

by facilitating Rnf8 mediated histone ubiquitylation [101, 244-246].  Radiation induced 

double strand break foci were salvaged by its ectopic expression in lymphoblastoid cells 

with homozygous  nonsense mutation in Rnf168 gene [247]. Loss of Rnf168 in mice 

results in increased sensitivity to radiation, immunodeficiency and genomic instability. 

Rnf168 deficiency along with p53 inactivation enhanced tumor formation in mice [248]. 

A member of this hub, Cbx5 (chromobox homolog 5) also known as HP1a 

(Heterochromatin protein 1-alpha), is recruited to DNA damage site after UV and IR 

exposure and its deficiency is associated with increase in DNA damage and genomic 

instability [249-251]. The emergence of correlation between Rnf168 and Cbx5 (r= -0.378 

for control and r = 0.785 after LDIR) confirms similarity in their response to radiation 

(Figure 2-4). Two other members of this hub, Ccng1 (Cyclin G1) and Gltscr2 (Glioma 

tumor suppressor candidate region gene 2) participate in p53 response to radiation.  
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Figure 2-4: Change in correlation of CBX5 and Rnf168 after irradiation (Each 
colored dot represents mice of a particular strain). 
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Ccng1 is a target of tumor suppressor transcription factor p53  [252] and participates in 

p53 related processes in response to DNA damage such as apoptosis and check point 

regulation. It interacts with p53 ubiquitinylation protein Mdm2 and regulates 

accumulation of p53 at DNA damage site after gamma irradiation [253]. Gltscr2 (also 

known as Pict1) is also involved in regulation of Mdm2-p53 pathway and tumor growth 

[254].  

Among other genes of this hub are Map1lc3 (Microtubule associated protein 1 light 

chain 3) that is involved in formation and activity of autophagic vesicles [255, 256] and 

Tlk2 (a homologue of tousled gene in Arabidopsis thaliana)  that has been linked to cell 

cycle and DNA replication [257]. Accordingly genes of this hub are enriched in radiation 

response related GO processes such as ‘DNA damage response’, ‘nucleic acid 

metabolism’, ‘DNA replication’, ‘cellular response to stress’, ‘cell cycle’, ‘signal 

transduction’ and apoptosis. The differential expression of genes in these hubs 

highlights the impact of LDIR on DNA damage repair processes. 

INTERCONNECTED RADIATION SENSITIVE HUBS 

To understand the connections between radiation genes we extracted a network 

consisting of interconnected radiation sensitive hub genes (IRSH). Initiating IRSH with 

hubs Bcl2 and Rnf168 we iteratively merged other radiation sensitive hub genes that 

shared their peripheral genes with one of the current hubs of IRSH. The resultant IRSH 

(Figure 2-5) had 311 vertices and 330 edges.   
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Figure 2-5: Interconnected radiation sensitive hub genes. Radiation sensitive genes 
are shown in red color. Green ellipses are other genes. Black edges connect gene pairs 
with very low APC(< 0.25) in one condition and significant APC in other. 
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IRSH was enriched with nearly 58% (37 out of 64) of GO annotated radiation genes 

present in DCG.  Expectedly, the GO category “response to radiation” had a very low 

fPval of 2.69 E-36 since nearly 12% (37/311) of genes in IRSH are radiation sensitive. 

Other GO categories enriched in this network indicated presence of genes related to 

processes which are usually expected in a radiation response. These include response 

to stress (51 genes, fPval =1.94E-16), DNA damage(34 genes, fPval =4.011E-23), cell 

cycle (34 genes , fPval= 6.78E-14), regulation of apoptosis (33 genes, fPval =1.2E-10), 

chromosome organization (21 genes, 2.46E-8), histone modification (9 genes, fPval 

=3.89E-8), protein phosphorylation (20 genes, fPval =1.84E-5), oxidative stress (8 

genes, fPval = 4.97E-4),  protein ubiquitination (12 genes, fPval = 2.04E-5) , 

hemopoises (12 genes, fPval = 1.19E-4),  immune system processes (20 genes, fPval = 

4.6E-4) including B  and T cell activation & regulation of interleukin production , 

intracellular signal transduction(23 genes, fPval = 2.36E-05), signal transduction in 

response to DNA damage (6 genes fPval =  5.18E-5).  

Interestingly three of the radiation sensitive genes belonging to IRSH are related to well 

known breast cancer gene Brca1 that is also involved in initiation of DNA damage 

response  following exposure to ionizing radiation [258]. Two of these genes, Brcc3 

(with 29 neighbors) and Bre/Brcc45 (with 23 neighbors) are part of Brca1 complex [259]. 

The third gene, Rnf168 (with 36 neighbors) is required for recruitment of Brca1 complex 

at DNA damage site [245]. GO enrichment of these genes and their neighbors indicated 

that they are involved in radiation response related biological processes such as “stress 

response”, “response to ionizing radiation”, “apoptosis” ,”nucleic acid metabolism”, “cell 
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cycle”, “response to DNA damage stimulus” ,”double strand break repair”, “DNA integrity 

checkpoint” and ” chromatin modification”.  For independent confirmation of relationship 

between genes from these three hubs we used GeneMania prediction server [260] to 

ascertain interactions among them. Out of 90 genes belonging to these hubs 

Genemania database had annotation for 56 genes connected together by 151 edges 

(58.6% coexpressed, 4.1 % interacted physically, 15.1 % colocalized and 8.5% 

predicted interaction).  Human orthologs of 67 out of 90 genes of these 3 hubs were 

connected together with 344 edges (70% coexpressed, 19.2 % interacted physically, 

5.2 % colocalized and 5.5% predicted interaction) i.e. on an average, each of these 67 

genes had evidence for connection with over five other genes of this network. 27 out of 

67 (40.1%) genes formed a connected graph with previous evidence of physical 

interaction. 

Like Rnf168 (described above), Brcc3 is a radiation sensitive gene involved in DNA 

damage repair. Genes connected to Brcc3 hub are enriched in GO categories such as 

"nucleic acid metabolic process", "response to ionizing radiation", "cell cycle", "response 

to stress" and “chromosome organization”. Brcc3 is known to interact with Bre, a novel 

stress response, anti-apoptotic gene that is up-regulated in hepatocellular and 

esophageal carcinomas [261, 262] and tumors. Both of them also potentiate the 

ubiquitin ligase activity of Brca complex and their deficiency increases the sensitivity to 

ionizing radiation [259]. Neighbors of Bre including Ssrp1, Nkiras2, Hrmt1l2/ Prmt1, 

Rhobtb2 and Lyl1 are also involved in processes relevant to radiation response such as 

cancer, DNA damage repair and apoptosis. Ssrp1(structure-specific recognition protein 



68 
 

1) may have a role in DNA damage prevention as cancer cells deficient in Ssrp1 

become more sensitive to cisplatin, a DNA damaging anti-cancer chemotherapy drug 

[263, 264].  Similarly, Prmt1 (protein arginine N-methyltransferase 1) has a role in 

maintenance of integrity of DNA and its loss has been reported to be associated with 

increase in DNA damage, checkpoint defects and chromosomal aberrations [265]. It 

also cooperates in transcriptional activation by p53 [266]. Rhobtb2 (Rho-related BTB 

domain containing 2) is a pro apoptotic tumor suppressor gene of breast cancer [267, 

268].  Nkiras2 (Nf-κB inhibitor interacting Ras-like protein 2) aka κB-Ras2 is known to 

suppress NF- κB1 (NF- κB). The correlation of Nkiras2 and NF- κB1 changed from   

0.664 to -0.365 after LDIR exposure.  As stated previously the correlation between NF- 

κB and its activator Fkbp5 changed in the opposite direction from -0.413 to 0.635.  As 

expected the correlation of the activator and the repressor of NF- κB changed in 

opposite direction. The smaller magnitudes of the correlation coefficients can be 

explained by the fact that NF- κB is a very busy protein interacting with over 150 

inducers and 150 targets [269].   

One of the neighbors of Bre is an oncoprotein Lyl1 (lymphoblastic leukemia gene), that  

is ubiquitously expressed transcription factor [270] . The correlation of Lyl1 and Bre 

changes forms almost zero (0.04) in control to highly positive (0.91) (Figure 2-6).  Bre 

and Lyl1 are both cancer genes hence the change in their correlation following 

exposure to radiation is worth noticing. Over-expression of this pro-leukemic gene is 

known to increase the number of T-cells and hematopoietic progenitors in bone marrow 

of mice [271] and also causes B and T-cell lymphomas [272].  
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Figure 2-6: Change in correlation of Lyl1 with BRE before (left) and after (right) 
irradiation  (Each colored dot represents mice of a particular strain). 
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Lyl1 and its 61 neighbors are enriched in genes belonging to GO category leukocyte 

differentiation (fPval= 0.0452).  Since radiation is believed to have effect on immune 

system and population of leukocytes like T and B cells we further explored the 

neighbors of this gene by lowering the threshold of differentiation.  From the genes in 

DCG we extracted those that had minimum absolute correlation of 0.6 with Lyl1 in either 

control or radiation and also had a difference of correlation of 0.6 with Lyl1 between 

radiation and control. The 737 neighbors of this relaxed hub of Lyl1 are highly enriched 

in immune system genes and genes involved in differentiation of lymphocytes as is 

evident from their GO enrichment. This hub is enriched with  genes related to immune 

processes (42 genes, fPval= 1.21 E-6), regulation of apoptosis (53 genes, fPval=7.48 E-

11), regulation of B cell activation ( 8 genes, fPval= 9.4 E-4), B cell homeostasis ( 5 

genes, fPval= 1.1 E-4), B cell apoptosis ( 3 genes, fPval= 7 E-3),  regulation of T cell 

differentiation ( 6 genes, fPval=9 E-3), T cell activation ( 8 genes, fPval= 2.67 E-2) and 

T cell homeostasis ( 3 genes, fPval= 4.45 E-2).  Out of the 42 genes relating to immune 

system in this hub 17 are hematopoietic. Following exposure to radiation, 15 out of 

these 17 genes get negatively correlated with Lyl1 and two are positively correlated 

(Figure 2-7). The shift in correlation among so many hematopoietic genes following 

exposure to LDIR indicates that it effectuates changes in genes pertaining to this 

system in spleen. 

 

 



71 
 

 

 

 

 

 

 

Figure 2-7: Change in correlation of Lyl1 and other hematopoietic genes before 
(left) and after (right) irradiation. Lyl1 gets differentially correlated with 17 genes after 
irradiation. 
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To further explore DCG we examined the types of its edges. Only a slight difference in 

percentage of edge types existed between DCG and IRSH. LDIR effectuated 60.84% 

correlation emergence and 38.86% correlation disruption events in IRSH as against 

56.69% and 42.24% respectively in DCG. Since two of the hub genes (Rev1 AND 

Apobec1) of IRSH exhibited correlation emergence with all of their neighbors we 

investigated them further. 

Rev1 Hub 

 Rev1, a Y family DNA polymerase, participates in DNA translesion synthesis by error 

prone incorporation of deoxycytidine at DNA damage sites in eukaryotes and 

prokaryotes [273, 274]. Rev1 also plays a role in introducing somatic hyper mutations in 

the variable region of immunoglobulins [275]. It is also implicated for its role in DNA 

damage repair. Introduction of mutations in Rev1 or its depletion caused defects in 

ionizing radiation induced mutagenesis, increase in chromosomal aberrations, residual 

DSBs and sites of homologous recombination repair [276, 277]. Inactivation of Rev1 in 

DT40 chicken cells led to increase in apoptosis and sensitivity to DNA damaging agents 

[278]. Caspase-2, a neighbor of Rev1, is a conserved gene involved in radiation 

induced apoptosis [279, 280]. The correlation between Rev1 and Caspase-2 changed 

from non significant (r=0.377) in control mice to significant negative (r= -0.801) after 

irradiation. Similarly the correlation between Rev1 and Ercc5 (excision repair cross-

complementing rodent repair deficiency, complementation group 5) also changed from 

0.15 to -0.833. Ercc5 is DNA excision repair gene required for induction of LDIR 

induced adaptive response to higher doses of gamma radiation [281]. Negative 
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correlation between Caspase-2 and Rev1 can be explained by the fact that Rev1 is anti-

apoptotic and Caspase-2 is pro-apoptotic. In irradiated mice caspase2 got positively 

correlated (r = -0.63266314 for control and r = 0.63266314 for radiated) with another 

pro-apoptotic proteolytic gene Srgn (Serine Glycine). Srgn is known to play a role in 

granule mediated apoptosis by cytotoxic T lymphocytes [282]. Srgn remained negatively 

correlated with Rev1 under both the conditions (r=-0.78296878 for control and r = -0.68 

for radiation). The changing correlations of these genes with Rev1 suggest 

readjustment of balance among pro-apoptotic and anti-apoptotic forces in response to 

LDIR. 

Apobec1 Hub 

Apobec1 (apolipoprotein B mRNA editing catalytic subunit 1), a radiosensitive gene, is a 

cytidine deaminase capable of introducing somatic mutations in mRNA and DNA [283, 

284]. It provides protection against radiation as demonstrated by decrease in survival of 

gamma-irradiated Apobec1 (-/-) intestinal stem cells [285]. Over-expression of Apobec1 

results in development of  tumors in transgenic mice [286]. Apobec1 exhibited 

correlation emergence with genes implicated for their role in cancer, apoptosis and DNA 

damage repair like Rras-2 (related RAS viral oncogene homolog 2), Mcm7 

(minichromosome maintenance deficient 7), and Cbx5 (chromobox homolog 5). Rras-2 

(also known as TC21), a member of ras family of genes, has a high degree of sequence 

identity with N-terminal catalytic domain of Ras proteins [287, 288] . Mutations have 

been observed in this gene in cancer cells in human. Mutant forms of Rras-2 induce 

cellular transformation and promote cell survival. [287]. Mcm7 is needed for recruitment 
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of cell cycle check point and DNA damage repair protein ATR (ataxia telangiectasia and 

rad3 related) to DNA damage sites [289, 290].  Decrease in level of Mcm7 increases 

DNA damage [289].Cbx5 also known as  HP1a (Heterochromatin protein 1-alpha) is 

recruited to DNA damage site after UV and IR exposure and its deficiency is associated 

with increase in DNA damage and genomic instability [249-251].  Apobec1 had nearly 

zero correlation with Mcm7 (r=-0.06) and Cbx5 (r=0.07) in control. On the other hand, in 

LDIR exposed mice Apobec1 (Figure 2-8) had a very significant negative correlation 

with Mcm7 (r=-0.94) and Cbx5 (r=-0.93). Since Apobec1 is potentially mutagenic, 

emergence of strong negative correlation of this gene with two of DNA damage repair 

genes after LDIR exposure is interesting. 

PATHWAYS INFLUENCED BY RADIATION 

We used annotations from all the pathways in Kegg database to determine the effect of 

LDIR on relationships of genes in biological pathways. Comparison of genes in the DCG 

with KEGG pathways revealed that 15 genes (11 gene pairs) relating to cancer 

pathways and 11 genes (9 gene pairs) pertaining to Mapk pathway (mitogen activated 

protein kinase pathway) were present in the DCG. Mapk pathway is closely related to 

cancer pathways. Nine out of 11 genes pertaining to Map kinase pathway formed a 

connected graph (Figure 2-9). Ten out of 15 genes of the cancer pathway were also 

connected to the nine genes of Map Kinase pathway forming a connected graph of 18 

genes (Mapk1 is present in both the pathways).  
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Figure 2-8: Change in correlations of APOBEC1 with CBX5 and MCM7 after 
irradiation  (Each colored dot represents mice of a particular strain). 
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Figure 2-9: Cancer (triangles) and MAP Kinase (diamonds) genes change their 
relationship after exposure to radiation. Mapk1 shown as V belongs to both 
pathways.  Radiation sensitive genes connected to this network are shown in red color.  
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We did random sampling of DCG to determine the probability of finding connection 

among genes by chance alone.   We selected nine genes from the DCG ten million 

times. None of these tests returned a connected graph of 9 randomly selected genes (p-

value <1.0E-7). The connection between genes belonging to these two pathways 

indicates that low dose radiation might be instrumental in readjustment of relations 

between genes belonging to Mapk signaling pathway and cancer pathways.  Three 

genes (Apobec1, Rnf168 and Pml) connected to this network are annotated as 

“sensitive to radiation” in GO. Apobec1 and Rnf168 were attached to Rras2 gene of 

Mapk pathway. Pml is a member of cancer pathway. Three genes of cancer pathway, 

viz. Pml (promyelocytic leukemia), Daxx (Fas death domain-associated protein) and 

Mapk1 (Erk2), cooperate to promote apoptosis. The exact mechanism of promotion of 

apoptosis is not fully understood, but phosphorylation of Pml helps formation of 

apoptosis promoting Daxx-Pml complex. Mapk1 is known to phosphorylate Pml in 

response to arsenic tri-oxide treatment. Phosphorylated Pml forms a complex with Daxx 

which promotes apoptosis [291, 292]. Pml is also phosphorylated after exposure to 

gamma radiation and plays a key role in gamma radiation induced apoptosis [293]. The 

change in correlation of these three genes after exposure to LDIR was intriguing. The 

Daxx-Pml correlation was reduced from 0.482 to almost zero (-0.1). Daxx-Mapk1 is 

reduced from 0.87 to almost zero (-0.17) and Pml-Mapk1 correlation changes from 

positive (0.58) to negative (-0.68). The relatively low positive correlations of Pml with 

Daxx and Mapk1 under control can be explained by absence of a strong apoptosis 

inducing stimuli. Moreover, Pml is regulated at  various transcriptional, post transcription 
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and translational levels depending on  cellular context and external stimuli [294]. Hence, 

it would be difficult for it to become highly correlated to a single gene. The change of 

Mapk1 and Pml correlation from positive to negative after exposure to LDIR suggests a 

possible feedback inhibition which may also lead to disarray in correlations of Pml with 

the other two genes. The overall LDIR effect on the relationship between these three 

needs to be investigated further.  

Two other genes of cancer pathway, HDAC2 (histone deacetylase 2) and GSK-3β 

(glycogen synthetase kinase 3 beta), changed their correlation from -0.7 to +0.7 after 

exposure to LDIR. Both of these genes are involved in radiation response. Cells 

depleted of HDAC2 are known to be sensitive to radiation and exhibit defective DNA 

damage response [295]. It has been shown that inhibition of GSK-3β reduces radiation 

induced apoptosis in endothelial cells. GSK-3β is inactivated by phosphorylation of its 

serine9 under the influence of AKT after exposure to IR [296, 297]. HDAC2 is also 

known to be involved in phosphorylation of GSK-3β via Inpp5f and AKT. In H9c2 rat 

ventricular myocytes decrease in HDAC2 led to increased Inpp5f and decrease in 

phosphorylation of GSK3β [298].  Close coordination of these two genes for regulation 

of apoptosis may explain development of positive correlation between HDAC2 and 

GSK3β (Figure 2-10) following LDIR.  
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Figure 2-10: Change in correlation of HDAC2 and GSK3B after irradiation. (Each 
colored dot represents mice of a particular strain). 
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MAXIMAL CLIQUES 

A clique is a subset of vertices in a graph that are all interconnected by edges. A 

maximal clique is a clique of largest size which is not subset of any other clique in the 

graph. We extracted all the maximal cliques of size four and above. Due to sparse 

connections in DCG only 51 maximal cliques of size four were present. One of 

interesting maximal clique consisting of Rpa1, H2afz (H2A histone family, member Z), 

Fkbp2 (FK506 binding protein 2) and Npm3-Ps1 (nucleoplasmin 3, pseudogene 1) 

exhibited correlation emergence amongst all its genes (Figure 2-11). Correlation among 

its genes changed from non significant to significant (towards positive direction) under 

LDIR (Figure 2-12 and 2-13).  Rpa1, one of the genes in this maximal clique, also 

belonged to Bcl2’s hub. Rpa1 is known to be active during DNA replication, repair and 

recombination [235], DNA damage double strand repair and prevention of apoptosis 

following exposure to IR [236]. Heterozygous mutations of Rpa1 resulted in 

development of lymphoid tumors and defective repair of DNA double strand breaks in 

mice. Homozygous mutations of Rpa1 caused embryonic lethality in mice [238]. Fkbp2 

is an immunophilin that interacts with C1q protein of C1 complement suggesting its role 

in the complement system [299]. It has been demonstrated that IR elevates the classical 

complement system in blood of rat [300]. H2afz is a variant of H2a, a nucleosomal 

protein involved in transcriptional control. It has been established that double strand 

break induced phosphorylation of H2av, a member of H2az family, prevents radiation 

induced apoptosis in imaginal disc cells in Drosophila larvae [301]. Npm3-ps1 is 

designated as a putative pseudogene of nucleoplasmin 3 [302].  
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Figure 2-11: A maximal clique (in green) with 4 genes exhibiting emergence of 
correlation among its members.  Red circles represent radiation sensitive genes.  
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Figure 2-12: Emergence of correlation between NPM3-PS1 and four other genes. 
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Figure 2-13: Change in correlation of RPA1 and FKBP2 with their neighboring 
genes. 
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Nucleoplasmins are known to improve survival of cells exposed to ionizing radiation 

[303]. Besides exhibiting correlation emergence with other members of its maximal 

clique, Npm3-ps1 exhibited emergence of very high correlation with Rad54l (Rad54-like) 

gene after exposure to LDIR (r= 0.01505143 for control and r= 0.90344726 after 

exposure to LDIR). Rad54 is an evolutionarily conserved member of Snf2/Sw12 family 

involved in various stages of homologous recombination [304, 305] and DNA repair 

including double strand break repair [304, 306]. Cells with disruptions in Rad54 gene 

had lower survival rate than those with functional Rad54 [305].  Correlations of Npm3-

Ps1 with other radiation response genes may therefore suggest its role in sensitivity 

towards LDIR. The shift towards positive correlation of all the four genes suggests a 

concerted protective response of these four genes to LDIR.  

In view of the LDIR affiliated response of the genes in this maximal clique we 

investigated its neighboring genes. The resultant gene network consisting of 299 genes 

and 487 edges was highly enriched in GO categories such as response to stress (44 

genes , fPval=6.3 E-12), cell cycle(42 genes, fPval =1.54E -20), apoptosis (20 genes, 

fPval=1.65 E-6), DNA metabolism (29 genes, fPval= 2.1E-15), response to DNA 

damage (22 genes, 4.36E-11), response to oxidative stress (9 genes, fPval=1.12E-4), 

protein transport, response to radiation (6 genes, fPval=3.6E-2) and cellular 

homeostasis.  This further suggests that the genes belonging to this clique are relevant 

to LDIR response. Six (Sgk1, Cdkn2d, Bcl2, Tipin, Aqp1 and Rad54l) out of 64 GO 

annotated radiation response genes exhibited emergence of correlation with members 

of this maximal clique after exposure to LDIR.  Out of these six genes 4 of them 
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changed their relationship with Fkbp2. Fkbp2 is also the largest hub gene of the DCG 

with 267 neighbors that makes it a suitable candidate for investigation of its role in 

LDIR. The other two radiation response genes Bcl2 and Rad54L change their 

relationship with Rpa1 and Npm3-Ps1 respectively.  The LDIR induced changes in 

interrelationships of genes in this network need to be investigated further.  

To conclude, we have demonstrated that the two stage statistical filtration method used 

here detected gene networks that are differentially coexpressed (correlated) after 

exposure to a stimulus. We used graph theory to extract relatively dense portions of the 

differentially correlated graph. Differential correlation revealed gene networks highly 

enriched with genes implicated in radiation response, DNA damage repair, apoptosis 

and cancer with hub membership enriched in members of the BRCA complex. Though 

we used microarray data this method can easily be adapted to gene expression data 

obtained from any high throughput method including next generation sequencing (NGS) 

and exon arrays.  Our two stage filtration method generates a network consisting only of 

statistically significant differential correlations among genes. The generation of this 

graph does not require a predefined threshold for determining the inter-relationship of 

genes. The threshold is determined statistically in a data dependent manner. A 

relatively sparse network created with rigorous statistical filter makes it attractive and 

suitable for NGS and exon array methods that generate huge data and enable 

exploration of the correlation between not only genes but also the variants of genes. 

After extraction of differentially correlated portions of the gene network we can always 
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explore the rest of gene network to comprehend the pathways and signaling networks 

impacted by them.  

METHODS 

EXPRESSION PROFILING 

 Five strains of mice (129S1/SvImJ, NOD/LtJ, CBA/J, CAST/EiJ  & WSB/EiJ) were used 

for gene expression profiling using illumina microarrays. 3 mice of each strain irradiated 

with 10cGy of γ-radiation using a 137Cs source. Control mice (3 mice for each strain 

except 129S1/SvImJ.2 mice for 129S1/SvImJ.) were sham irradiated. Mice were 

sacrificed 24 hours following exposure and spleen cells of all the mice were stabilized 

using  in RNAlater (Sigma-Aldrich, St. Louis, MO) until RNA was extracted.  Illumina 

(San Diego, CA) Mouse WG-6 v1.1 BeadChips were used for expression profiling. 

Expression profiling was performed by Genome Quebec (Montreal, Canada) as 

previously described [187].  

GRAPH THEORY AND STATISTICAL TESTING  

Expression data from illumina microarray were preprocessed by Variance Stabilizing 

Transformation (VST) followed by Robust Spline Normalization (RSN) using lumi 

package [151] of Bioconductor [307]. Raw and Normalized data will be uploaded to 

GEO [308] database of NCBI. Only expressed probes with detection p-value less than 

0.05 were considered for analysis. Matlab scripts were used to calculate pair wise gene 

to gene Pearson correlations and their significance. Statistical differences in correlations 

were calculated after Fisher’s Z transformation of correlations using matlab. Multiple test 
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correction was done by q-value [202] package of Bioconductor.  Each gene in the DCG 

was represented by a unique vertex by retaining maximally connected probes. Edges 

were placed between two genes if they had statistically significant difference in 

correlation for sham irradiated (control) and LDIR treated mice. 9 statistically different 

edges with low magnitude in difference (<0.3) because of their near perfect correlation 

in both conditions were removed. Perl scripts were used for extraction of hubs and 

random selection tests for connected components and hubs from DCG. Maximal cliques 

were extracted using Grappa, a tool developed by our lab. Gene enrichment analysis 

was done using Cytoscape [180] package Bingo  [204] and perl scripts using Gene 

Ontology [176] annotation for biological processes.  Benjamini-Hochberg [201] false 

discovery rate-corrected p-values were used for enrichment analysis.  All source codes 

are available with the authors. 

CONCLUSIONS 

We have shown that the differential co-expression method is able to detect subtle 

changes in gene expression that could not be detected by differential expression 

method of ANOVA. Differential co-expression method extracted putative gene networks 

perturbed in response to LDIR. The extracted networks were enriched with genes 

implicated in radiation response, DNA damage repair, apoptosis and cancer with hub 

membership enriched in members of the BRCA complex.  
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APPENDIX 
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Table A2-1: Enrichment of gene ontology IDS (GOIDS) associated with biological 
processes in largest connected component of differentially correlated graph. 

GO-ID Benjamini-
Hochberg FDR 
corrected pvalue 

Number 
of genes 

Description 

42981 1.24E-63 345 Regulation of apoptosis 

6950 1.45E-60 457 Response to stress 

2376 8.98E-59 321 Immune system process 

22402 2.53E-43 209 Cell cycle process 

6259 1.38E-42 188 DNA metabolic process 

6974 4.66E-34 152 Response to DNA damage stimulus 

6281 2.35E-21 104 DNA repair 

6955 8.59E-19 119 Immune response 

2764 1.56E-16 63 Immune response-regulating signaling pathway 

6260 1.65E-16 64 DNA replication 

2253 2.93E-13 65 Activation of immune response 

6979 6.86E-12 59 Response to oxidative stress 

75 1.82E-10 40 Cell cycle checkpoint 

7050 1.93E-09 34 Cell cycle arrest 

9314 2.37E-09 64 Response to radiation 

2366 2.85E-07 26 Leukocyte activation involved in immune 
response 

2285 1.90E-06 18 Lymphocyte activation involved in immune 
response 

77 4.78E-06 21 DNA damage checkpoint 

42770 5.00E-06 22 Signal transduction in response to DNA damage 

31570 2.04E-05 21 DNA integrity checkpoint 

718 1.10E-04 11 Nucleotide-excision repair, DNA damage removal 

2429 1.25E-04 21 Immune response-activating cell surface receptor 
signaling pathway 

2703 1.48E-04 31 Regulation of leukocyte mediated immunity 

2313 3.13E-04 5 Mature B cell differentiation involved in immune 
response 

6873 4.02E-04 88 Cellular ion homeostasis 
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Table A2-1 (Continued from previous page) 

 

GO-ID Benjamini-
Hochberg FDR 
corrected pvalue 

Number 
of genes 

Description 

71158 9.73E-04 8 Positive regulation of cell cycle arrest 

30330 1.24E-03 13 DNA damage response, signal transduction by 
p53 class mediator 

42771 4.93E-03 9 DNA damage response, signal transduction by 
p53 class mediator resulting in induction of 
apoptosis 

42772 7.34E-03 6 DNA damage response, signal transduction 
resulting in transcription 

6297 9.69E-03 8 Nucleotide-excision repair, DNA gap filling 

6977 1.64E-02 4 DNA damage response, signal transduction by 
p53 class mediator resulting in cell cycle arrest 
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Table  A2-2: 64 Radiation sensitive genes in largest connected component of 
differentially correlated graph and their neighbors. 

 

Radiation 
sensitive gene 

Degree Neighbors 

HMGN1 13 CCDC50,   CCL19,  CCM2,  CXX1C,  D11WSU47E,  
D14ERTD668E,  GARNL3,  GJA4, LOC100043918, LTB, 
SAR1B, TBCA, USP37 

APOBEC1 10 9430065L19RIK, ABI1, CBX5, IL16, MCM7, MRPS34, PDAP1, 
RRAS2, STARD3, UPF1 

XRCC6 2 ACOT7, ADK 

INTS3 1 DSCR3 

AQP1 2 9330180L10RIK, FKBP2 

MEN1 12 2310014G06RIK, ACAT3, ATOX1, CAB39L, CCDC65, CDKN1B, 
D10WSU52E, GAB1, IER3, LOC666621, QTRT1, UPF1 

APP 1 NOLA2 

EAR2 2 DHX58, POR 

SLC1A3 1 4833426J09RIK 

CDKN2D 3 FKBP2, GTF3C5, MACROD1 

NR2F6 1 LOC223653 

EGR1 2 IQCB1, NDUFC1 

UBE2A 8 4833438C02RIK, AP2B1, C030048B08RIK, GOLM1, 
LOC100048613, MICAL1, NR1H2, SUHW4 

SGK1 5 FKBP2, KHK, MACROD1, P2RX1, TRIM41 

REV1 11 CASP2, CIAPIN1, ERCC5, HNRNPH3, LLGL2, LMAN2L, 
LOC100042405, LOC100047827, MKNK1, MLL1, YKT6 

BRCC3 29 1110055N21RIK, 2310079P12RIK, 2900010M23RIK, ANKMY2, 
BC085271, BRD7, BZW1, C130045I22RIK, DHX15, DMTF1, 
DNAJC5, EG382843, EIF3K, ETFA, EXOSC6, LOC277856, 
LOC380707, LOC432554, MRPL52, MYD88, NIPBL, PRKCBP1, 
PSMG2, PTPRE, ROBLD3, SBDS, SETD3, SLC12A6, VAMP8 

USP1 4 LOC100041864, LOC381448, TUBA1A, TUFM 

MECP2 2 ARNTL, ID2 

UBE2B 4 PJA1, SACM1L, SH3RF1, TAGAP 

XPA 4 FARSB, PARN, RPL26, TIMM44 

USP28 5 1110020P15RIK, CTSZ, FBXL5, GANAB, GGTA1 

CCND1 3 CD22, NFKB1, PTPLA 

ARRB1 6 5033414D02RIK, AP1S1, ARPC1B, ATP5O, FRRS1, MTF2 

IL12A 1 KHK 

DDB2 11 2610015J01RIK, ATP5L, B230386D16RIK, ENDOGL1, 
LOC100048508, LOC677551, NDUFS4, PPP1R9B, RNF213, 
RPL23, TMEM2 
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Table A2-2 (continued from previous page) 

 

Radiation 
sensitive gene 

Degree Neighbors 

MAPK9 2 SLC35D2, STK24 

DYNLRB1 2 C030048B08RIK, UPP1 

GADD45A 2 4833426J09RIK, CTPS 

MED1 12 0610007P14RIK, A530082C11RIK, CGEF2-PENDING, 
CHMP2A, GMIP, LOC100041725, LOC277856, LOC432554, 
LOC671641, NDUFB10, PANK4, PTP4A2 

BLM 4 AP1S1, ASNS, ATP5O, MTF2 

NEK1 10 1810008A18RIK, BC057552, FNBP1, HDGFRP2, MICAL1, 
MUM1, NDUFA1, NOLA2, PHKG2, PPA1 

TIPIN 3 CTPS, FKBP2, NDUFS7 

PML 9 DGKA, IFT140, LUC7L, MAPK1, PHKG2, PTPLA, RALY, 
SNRP70, ZFP654 

TXN1 6 BC057627, BC085271, GMPS, RNUXA, TMCC1, TPP2 

CHEK2 1 ZFP623 

KIT 4 ACAT3, BCAP29, CAPNS1, SCL0004175.1_57 

5430437P03RIK 2 LOC630242, MKKS 

ERCC5 5 BXDC5, GOLPH3L, MICAL1, NDUFA2, REV1 

PDE6D 3 ANAPC5, POLR2D, TMEM9B 

NIPBL 10 1110055N21RIK, AAAS, BRCC3, CUL1, EG433865, EPS15L1, 
IFI47, LRMP, PJA1, SQLE 

PDE1B 18 1200014J11RIK, 1810037I17RIK, 2310044H10RIK, 
2600005C20RIK, B3GALT4, C230091E03RIK, D10WSU52E, 
DNAJB6, EG625917, EVL, GORASP2, GOSR2, GRCC10, 
HDAC5, LOC635086, RRP1B, TMEM147, ZBTB7A 

BCL2 47 2700029M09RIK, 4930422G04RIK, ALDH2, BZW2, CAD, 
CAND1, CCDC53, COX7A2L, CTPS, EG432721, EG433865, 
EG633692, FKBP5, GPR89, HRMT1L2, IL10RB, IL33, INTS10, 
INTS7, LOC100046793, LOC100047749, LOC381649, MBNL2, 
MFNG, MTERF, N4WBP5-PENDING, NKIRAS2, NOL5, 
NUP133, ORC5L, PLOD3, PRICKLE3, PRPS2, RAB32, RPA1, 
SAPS1, SCHIP1, SEPP1, SERBP1, SRGN, SSRP1, STAU2, 
TMEM176A, TSC22D1, TUBB2C, WIPI2, ZFAND3 

BCL3 5 BAT2, BC038822, SF1, SUHW4, TMEM177 

NFATC4 2 BCL9L, NCOA6 
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Table A2-2 (continued from previous page):  

 

Radiation 
sensitive gene 

Degree Neighbors 

RNF168 36 ABI1, AK2, ARL8A, ATP6V1C1, B930006L02RIK, CBX5, 
CCDC53, CCNG1, CCNT1, CNOT1, EEF1B2, EG384525, 
EG432721, EG625917, GLTSCR2, H13, IGK-V38, ITM2B, 
KIF1B, LIMA1, LOC100039786, LOC100046343, LOC545396, 
LOC545487, MAP1LC3B, NDUFS3, OS9, PAPOLA, PDAP1, 
RHOT2, RRAS2, TCEB3, TLK2, VKORC1, YWHAB, ZCCHC6 

ERCC3 3 0610012G03RIK, PPIB, SUHW4 

ERCC4 1 AHCYL1 

PIK3R1 2 0610038F07RIK, SLFN2 

TRP53 9 0610007P22RIK, 4933404K08RIK, BAT2, CPSF1, CRELD1, 
D10WSU52E, GRCC10, UCHL3, YIPF3 

MSH6 1 TMEM177 

UBE4B 1 ARL2BP 

BRCA2 1 EIF2AK2 

RAD54L 9 2210016F16RIK, 6720463L11RIK, AP1S1, ATP5O, LOC383897, 
MAP3K8, NPM3-PS1, SEC61B, ZC3H7A 

CDC25A 1 AP1S1 

SOD2 3 DOLPP1, SENP1, SSBP1 

OBFC2B 10 AP2B1, BRD2, BSCL2, FAM113B, HGS, LOC100048613, 
MED25, NDUFC2, RNF145, ZRANB1 

RNF8 7 CNO, ETFA, GRIPAP1, MRPS28, RAB1, RNPEP, SEC61B 

UACA 1 2610036D13RIK 

SFRP1 2 NDUFA8, NIT2 

MAPK14 1 2310011J03RIK 

BAX 2 C030046I01RIK, UFC1 

USP47 1 PUF60 

BRE 23 2310036O22RIK, B930004C15RIK, CCDC53, CHMP4B, 
D10ERTD641E, DGAT1, HRMT1L2, HS3ST3B1, LOC676724, 
LYL1, MBNL2, MRTO4, MTIF3, NKIRAS2, PRPS2, PSMC5, 
RHOBTB2, RNASEN, RPS2, SSRP1, STAU2, UBE2Q1, 
ZFAND3 

CIRBP 1 LOC381774 
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CHAPTER 3 : CORRELATION THRESHOLD FOR EXTRACTING 

GENE NETWORKS FROM BASELINE GENE EXPRESSION 

PROFILES FROM MICROARRAY DATA 
(This Manuscript will be submitted for publication with following authors: Sudhir Naswa, 
Dr Arnold Saxton, Dr Brynn H Voy, Charles Phillips, Dr. Michael A. Langston) 
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ABSTRACT  

Pearson correlation is often used by clustering and graph theoretical algorithms to 

extract putative genetic networks from gene to gene correlation matrices derived from 

high throughput gene expression data. Higher correlation coefficients (r=0.875) are 

frequently employed by these algorithms to establish relationship among genes. Higher 

number of samples in recently popular system genetics and genetical genomics 

methods enable us to test the feasibility of employing lower correlation coefficients for 

extraction of gene networks from expression data.  Following this hypothesis we 

gradually reduced the absolute Pearson correlation (APC) threshold from conventionally 

used high value to a low but statistically significant (pvalue <0.01) value to investigate 

gene enrichment in microarray data from liver and spleen tissues of BXD mice. Graph 

algorithms were used to extract paracliques from the thresholded graph.                                                                                                                                         

The graphs generated at significant APCs of 0.413 for liver data and 0.41 for spleen 

data had higher number of paracliques with bigger size as compared to graphs 

generated at higher APCs of 0.6, 0.75 and 0.875. Paracliques extracted at significant 

APCs of 0.41 (liver) and 0.413 (spleen) were more enriched with biological processes 

as compared to paracliques at higher thresholds of 0.6, 0.75 or 0.875. 
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BACKGROUND  

High throughput gene expression data generated through large scale ‘omics’ 

technologies such as microarray, next generation sequencing techniques and SAGE 

(serial analysis of gene expression) have enabled us to extract information about 

biological pathways and gene regulatory networks using powerful statistical and 

computational algorithms.  High quality putative gene regulatory networks can be 

extracted from expression profiles because correlated expression patterns are believed 

to be co-regulated and involved in common biological pathways ( guilt by association). 

The gene networks extracted from transcription profiles by employing measures of 

similarity such as correlation and mutual information amongst all the gene pairs are 

called relevance networks [167].  The relevance networks allow multiple relations 

among genes, can handle positive as well as negative correlations between genes and 

easily combine information from data of diverse types [167, 170, 171]. Extraction of 

biologically meaningful information from a large network representing pair-wise 

association between thousands of genes requires efficient computational algorithms. 

Graph algorithms provide a means to extract dense and highly connected regions from 

these networks[168].  We have developed [182-186] and applied [169, 179, 181, 187, 

216]  graph algorithms for extraction of putative gene networks from gene expression 

data.  Gene networks can be represented as a graph where each gene is placed on a 

single vertex and the correlation between these genes are depicted as edges. Edges 

above a suitable threshold are retained in the graph. After removing the edges below 
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threshold, the dense regions of the graph such as cliques and hubs are extracted to 

model putative gene networks. A clique is well known graph theory conception where all 

vertices are connected to one another by edges.  In biological context a clique models a 

group of tightly co-regulated and hence correlated genes that may be participating in a 

common biological pathway or may be influenced by a common stimulus in a case 

control study. To further imitate the natural biological networks we relax the clique by 

allowing it to miss a few edges. We call these relaxed cliques  paracliques [169]. This 

relaxation tries to compensate for the inherent noise in the microarray data and 

stochastic nature of biological processes. 

Various methods have been used to derive a correlation threshold for filtering the gene 

networks. These include use of an arbitrary high absolute correlation [309], retention of 

top 1% correlates of each gene [310], selection by spectral graph theory [185], doubling 

of number of paracliques [183], values exceeding the correlations of buffer spots with 

genes [169] and permutation testing [170, 171]. The thresholds obtained by these 

methods have been applied to derive co-expression networks from gene expression 

data [169, 183, 185] as well as from a combination of expression profiles with drug 

response data [170, 171]. These methods usually suggest use of a high absolute 

Pearson correlation (APC) threshold varying between 0.7 and 0.9. An approach 

employing a high APC coefficient  filter  [169] followed by clique centric and other 

clustering methods has served well for many case control studies where a perturbed 

biological system causes stimulus-sensitive genes to be either up or down regulated 

simultaneously resulting in very high correlation among them. The choice of higher APC 
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coefficient in such studies also safeguards against false positives, because case control 

studies usually contain fewer microarrays so that lower correlations may be neither 

statistically significant nor biologically relevant to the stimulus. Due to recent popularity 

of system genetics and genetical genomics [311-313] the experiments profiling gene 

expression of panel of unperturbed organisms are becoming popular. Recombinant 

Inbred (RI) lines of mice are used commonly for such studies. RI lines are derived by 

mating inbred lines of mice. BXD mice belong to RI lines derived by brother sister 

mating of F2 generation of C57BL/6J and DBA/2J strains of mice. The fact that they are 

inbred makes them a suitable model for studies across time and space. Since the mice 

in a panel of RI lines are inbred progenies of genetically different ancestral strains, they 

exhibit genetic diversity as a result of random repetitive recombination of genomes of 

these strains. This genetic diversity makes RI lines model genetic reference populations 

for unearthing metabolic  pathways and gene interaction networks that influence 

complex traits relating the central nervous system[313], the hematopoietic system[312] , 

the immune system [187] and so forth. On the other hand the diversity may also reduce 

the correlation of genes among the organisms of a panel of RI strains. Lack of a 

stimulus deriving these expression profiles may also be a reason for relatively lower 

correlations among genes involved in common genetic networks and metabolic 

pathways. Availability of expression profiles from a higher number of organisms 

associated with genetical genomics studies provides us with better statistical power to 

extract genetic networks and pathways even at a lower APC. Here we compared the 

enrichment of gene networks obtained at high thresholds with networks obtained at a 
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low but statistically significant APC (p-value < 0.01). The decrease in APC threshold 

resulted in increase in enrichment of biological processes in gene networks in liver and 

spleen tissues of BXD RI mice. 

METHODS 

Gene expression profiles of spleen (EPS) and liver (EPL) tissue of BXD mice were used 

for this study. A detailed description of the experimental procedures relating to 

acquisition of EPS from 38 BXD mice and its preprocessing is available in [187]. Briefly, 

total RNA from spleens of BXD mice was isolated and expression profiling was done on 

Mouse WG-6 v1.1 Beadchips from Illumina Inc. Expression data were preprocessed 

using Variance Stabilizing Transformation (VST) followed by Robust Spline 

Normalization (RSN) using the lumi package [151] in R/Bioconductor [307]. Raw and 

normalized microarray data are available in NCBI’s GEO database 

(http://www.ncbi.nlm.nih.gov/projects/geo; Accession GSE19935). Lowess normalized 

EPL pertaining to 39 BXD male mice was downloaded from GEO (GSE17522) [314].  

The data for mouse gene to gene interaction pairs were downloaded from Biogrid [315], 

Amadeus compendium [316], Integrated Transcription Factor Platform [317] and 

LymphTF database [318]. Biological pathways data and gene regulatory network data 

were obtained from KEGG [319], MGI MouseCyc [320, 321], T cell Gene Regulatory 

networks[322] and  Transcriptional Regulatory Element Database[323].  Data from 

various sources were integrated using mySQL database.  APC coefficients were 

calculated for the gene pairs obtained from these databases. Mean gene correlation 
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was calculated for each of the pathway and gene regulatory networks. Matlab scripts 

were used for enumerating the vertex degrees of hub genes, their percentile 

distributions and for generating edge lists for graphs. 

To extract paracliques we started with a graph obtained from Pearson's correlation 

matrix amongst all the genes and filtered it by using four different thresholds.  APC 

coefficient thresholds corresponding to p-value of 0.01 were used for EPS (r=0.413) and 

EPL (r=0.41) for generating one graph (G0) each from spleen and liver data. APC 

coefficient thresholds of 0.6, 0.75 and 0.875 were used to generate three more graphs 

G1, G2 and G3 respectively for EPS as well as EPL. For each gene with degree greater 

than 500 in G0 we calculated APC corresponding to its 90th percentile. Edges above 

the 90th percentile of a gene were retained if the 90th percentile of that gene was greater 

than 0.6.  These additional edges were merged with edge lists for G2 and G3 to obtain 

two enhanced graphs (EG2 and EG3).   

Paracliques were extracted from these graphs using Grappa, a graph algorithms toolkit 

developed at University of Tennessee. Grappa uses FPT based algorithms for 

extraction of paracliques as described previously [169].  Gene enrichment analysis was 

done using Cytoscape’s[324] package Bingo[204] and perl scripts using Gene Ontology 

(GO)[325] annotation for biological processes. Percentiles of APCs were regressed 

against degree of genes using the statistical software JMP [326].  Benjamini-Hochberg 

false discovery rate [201] corrected p-values were used for enrichment analysis.  All 

source codes are available from the authors. 
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RESULTS 

 We used t-test to determine the statistical significance of Pearson’s correlation between 

gene pairs at a p-value of 0.01 for both the expression profiles (EPS and EPL).  This 

corresponded to APC (Absolute Pearson Correlation) of 0.413 and 0.41 for EPS and 

EPL, respectively. Using these thresholds we generated one graph each for EPS and 

EPL (G0). From G0 we extracted the edges having evidence of interaction in literature 

(Transcription factor-Target pairs and other gene-gene interaction pairs obtained from 

Biogrid and Amadeus). The distribution of APCs of these gene pairs varied from 0.413 

to 0.98 for EPS. The mean and median of this distribution were 0.61 and 0.57 

respectively (Figure 3-1 a). Similarly, for EPL the APC varied between 0.41 to 0.97 with 

a mean and median of 0.53 and 0.51 respectively (Figure 3-1 b). Only 10.16% and 

0.2% of these gene pairs had an APC greater than the traditionally used threshold of 

0.875 in EPS and EPL data respectively. In both the tissues the distribution of APCs 

was skewed towards lower value indicating higher number of gene pairs with lower 

correlation.  

Further we investigated the distribution of APCs of genes associated with known 

pathways and gene regulatory networks (GRNs). We selected pathways from KEGG 

and known gene regulatory networks for which we had data for at least five genes and 

ten edges. 
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Figure 3-1: Distribution of Absolute Pearson Correlations of gene pairs in EPS 
(Expression Profile of Spleen) and EPL (Expression Profile of Liver). For EPS (a) 
the mean and median of the distribution were 0.61 and 0.57 respectively. The mean and 
median of APCs for gene pairs from EPL (b) are 0.53 and 0.51 respectively.  

0.4 0.5 0.6 0.7 0.8 0.9 1

a) Absolute Pearson Correlation
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 In EPS 189 pathways/GRNs met this criterion. Similarly, 248 pathways/GRNs were 

selected for EPL. Distributions of means of APCs among pathways/GRNs in EPS and 

EPL were plotted. For EPS this distribution varied between 0.47 and 0.74. The mean 

and median of this distribution was 0.52 and 0.53 respectively (Figure 3-2 a). The range 

of mean APCs for 248 pathways/GRNs relating to EPL varied from 0.47 to 0.65.  Both 

mean and median of this distribution equaled 0.52 (Figure 3-2 b). The distribution of 

APCS for genes belonging to known pathways and GRNs suggests existence of 

important biological information at low APCs. 

Gene networks are believed to be enriched with genes of high degree called hubs.  We 

evaluated the relationship between degree (number of neighbors) of a gene and APC 

coefficients of that gene with its neighbors in G0 to investigate the influence of hub 

genes . The degree of genes was regressed against the 50th, 70th, 75th, 80th, 85th and 

90th percentiles of APCs of that gene with its neighbors. Regression analysis revealed a 

significant positive relationship between degree of genes and APCs at an alpha of 0.01 

for both the tissues. The vertex degree explained 61 to 82 percent of variance in the 

percentiles of APCs in EPS (Figure 3-3) and 47 to 76 percent of variance in the 

percentiles of APCs in EPL (Figure A3-1). To rule out the possibility of random 

relationship between degree of genes and percentiles of APCs we extracted 400 

random samples of edges varying from size 1 to 5000 from G0. None of 50th, 60th, 70th, 

80th, 85th or 90th percentiles of the random samples exhibited an increase in correlation 

value with increasing size of sample in any of the two datasets (Figures A3-2 and A3-3).  
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Figure 3-2: Distribution of mean absolute Pearson correlations among genes of 
biological pathways and gene regulatory networks. The mean of the distribution 
was 0.52 in EPS (a) and EPL (b). The median of the distributions were 0.53 and 0.52 for 
EPS and EPL respectively.   
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Figure 3-3: Relationship between vertex degree of each gene and percentiles of 
its absolute Pearson correlations with its neighbors in expression profile of 
spleen. A best fit least squares regression line is shown in blue.  
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This suggests that the increase in APC percentiles with increasing degree of genes is 

not an artifact of the data and may indicate biological information in the hubs. In view of 

the positive relationship between degree of genes and their APCs with their neighbors 

we investigated the effect of inclusion of hubs on enrichment of genes pertaining to 

common biological processes.  We selected hub genes with high degree (>500) and 

high APCs (90th percentile of APC of the hub gene with its neighbors>0.6). For each 

hub the edges with APC greater than 90th percentile of that hub were retained.  These 

additional edges were merged with edge lists for the graph with threshold 0.75 and 

0.875. We called these two graphs as hub enhanced graphs. In effect two hub 

enhanced graphs were constructed by merging  edges with top 10 percent APCs from 

the selected hubs with graphs obtained at a threshold of 0.75 (EG2)  and 0.875 (EG3).  

Graph algorithms were used to extract the paracliques from each of six graphs (G0, G1, 

G2, G3, EG2 and EG3). GO IDs were used to determine enrichment of biological 

processes in the extracted paracliques. As expected, the enhanced graphs EG2 and 

EG3 had higher number as well as higher size of paracliques as compared to G2 and 

G3 respectively (Figure 3-4 and Figure A3-4).  Paracliques from EG2 were enriched 

with higher number of GOIDs pertaining to biological processes (4979 in EPS and 9075 

in EPL) than paracliques from G2 (2110 in EPS and 3804 in EPL) in both the datasets.  

Similarly EG3 was enriched with higher numbers of GOIDs relating to biological 

processes (4716 in EPS and 9085 in EPL) as compared to G3 (547 in EPS and 845 in 

EPL)  (Figure 3-4 and Figure A3-4).  
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Figure 3-4: Distribution of FDR corrected p-values associated with GOIDS 
corresponding to biological processes enriching the paracliques at different 
thresholds in expression profile of spleen. Left panel: Paraclique wise distribution of 
GOIDS relating to biological processes in EPS. The paracliques were extracted from the 
graphs G0, G1, EG2, G2, EG3 and G3 (shown serially from bottom to top).The 
paracliques are enumerated along x-axis for each graph. GOIDs associated with each 
paraclique are represented by a dot above that paraclique’s number. The position of 
each GOID along the Y-axis indicates FDR corrected p-value for the enriched biological 
process corresponding to that GOID. Right panel: Overall distribution of log of FDR 
corrected p-values associated with GOIDs corresponding to biological processes 
enriching all the paracliques obtained from the graphs G0, G1, EG2, G2, EG3 and G3 
(shown serially from bottom to top).  
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Association of higher number of GOIDs with enhanced graphs EG3 and EG2 as 

compared to G3 and G2 respectively indicates enrichment of higher number of 

corresponding biological processes in enhanced graphs. The increased enrichment of 

genes belonging to related biological processes in EG2 and EG3 reconfirms the 

importance of hub genes in the network. The paracliques extracted from the graphs 

obtained at a threshold of 0.413 (G0) were significantly associated with highest number 

(9894) of GOIDS corresponding to biological processes in EPS (Figure 3-4). Similarly in 

case of EPL paracliques obtained at a threshold of 0.41 were associated with maximum 

number (14985) of GOIDS (Figure A3-4). This implies that amongst these six graphs, 

the one with the lowest threshold (G0) produces paracliques enriched with maximum 

number of biological processes.  

We also compared maximally enriched paraclique (those with maximum number of 

GOIDs associated with them) obtained from G0 (Pg0) with paracliques generated from 

G1, G2 and G3 that contain genes belonging to Pg0. Genes belonging to more than one 

paraclique from G1(Pg1s), G2 (Pg2s) or G3 (Pg3s) were present in  Pg0 in both the 

expression profiles (EPL and EPS).  Log of FDR corrected p-values associated with 

GOIDs corresponding to biological processes enriching both Pg0 and Pg1s were 

compared and plotted for EPS as well as EPL (Figure 3-5). Similarly log of FDR 

corrected p-values for GOIDS corresponding to biological processes were compared 

between Pg0 and Pg2s as well as Pg0 and Pg3s.  
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Figure 3-5: Comparison of significance of enrichment of biological processes in 
paracliques obtained at different threshold from expression profiles of liver (EPL) 
and spleen (EPS). Each figure compares log FDR corrected p-values associated with 
GOIDS common between maximally enriched paraclique in G0 (shown in blue, 
APC=0.41 in EPL and 0.413 in EPS) and paracliques in G1, G2 and G3 (shown in red, 
APC=0.6, 0.75 and 0.875 respectively) that contain subset of genes from G0.  Figures 
on left correspond to EPL and those on right relate to EPS. 
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It is apparent from Figure 3-5 that the FDR corrected p-values for biological processes 

for Pg0 was either better or comparable to Pg1s, Pg2s and Pg3s in EPS as well EPL. 

Comparison of Pg0 with Pg3s revealed that in case of EPS nearly 83% of GOIDs 

associated with biological processes had more significant pValue in Pg0 than in Pg3s. 

Among biological processes with less significant pValues in Pg0, 65% had higher 

number of genes in Pg0 as compared to Pg3s. Similarly, in case of EPL, over 83% of 

GOIDs associated with biological processes had more significant pValue in Pg0 as 

compared to Pg3s.  Among the GOIDS with less significant pValue in Pg0, over 96% 

had higher number of genes in Pg0 as compared to Pg3s.  Thus lower or equivalent p-

values in larger sized paraclique Pg0 in both EPS and EPL implies clustering of larger 

number of genes participating in common biological processes in Pg0 as compared to 

Pg1s, Pg2s and Pg3s. 

DISCUSSION 

We investigated the gene expression profiles from liver and spleen tissues of BXD RI 

mice by extracting paracliques from six graphs G0, G1, G2, G3, EG2 and EG3. We 

have demonstrated that paracliques extracted from the graph G0 generated at 

statistically significant (p value < 0.01) correlation thresholds of 0.41 (in EPL) or .413 (in 

EPS) were enriched with highest number of GOIDs corresponding to biological 

processes. The lower threshold not only increases the size of paracliques but may also 

increase the number of biologically relevant genes in those paracliques. This may be 

due to coalescence of biologically relevant parts of gene networks into larger 
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paracliques at the lower threshold. Both technical and biological reasons can explain 

relatively lower APC among the genes participating in common gene networks. 

Microarrays take a snapshot of gene expression profile at a given time and not across a 

time continuum. The gene to gene correlations on the other hand can be affected by 

time lag [327, 328]. Even a small time lag can result in decreased correlation. 

Relationship among the coexpressed genes may also be reflected as low APC because 

of complex interaction of genes in biological networks like presence of feedback loops.  

Some of the interactions are affected by inhibitors while some others may be controlled 

by silencing mechanisms such as micro-RNAs [329].  Genetic diversity of BXD 

population and absence of external stimulus in baseline gene expression profiles may 

also be factors contributing to lower APCs between genes in microarray data from 

genetical genomic studies. The availability of large number of arrays associated with the 

genetical genomic studies provides us an opportunity to extract biological signal by 

decreasing the threshold of APCs among the genes. 

CONCLUSIONS 

We chose statistically significant APC (pvalue<=0.01, r=0.413 for EPS and r=0.41 for 

EPL) threshold for investigating gene enrichment in two different datasets of BXD RI 

mice and compared them with higher APC thresholds of 0.6, 0.75 and 0.875. Graph 

generated at threshold of 0.413 (or 0.41 in EPL) resulted in higher number and bigger 

sizes of paracliques as compared to paracliques extracted from graphs thresholded at 

APCs 0.6, 0.75 or 0.875 in EPL (or EPS). The lower threshold improved the enrichment 
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of extracted gene networks than the higher threshold as indicated by increase in 

number and significance of biological processes associated with the paracliques.  

Enhancement of graphs with hub genes also enriches the paracliques with genes 

belonging to biologically related processes. Thus we have shown that a low statistically 

significant APC threshold can be used for extracting gene networks from baseline gene 

expression profiles obtained from a population of genetically different strains of BXD 

mice.  
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APPENDIX 
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Figure A3-1: Relationship between vertex degree of each gene and percentiles of 
its absolute Pearson correlations with its neighbors in expression profile of liver. 
A best fit least squares regression line is shown in blue.  
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Figure A3-2: Percentiles vs. Pearson Correlations of random samples of different 
sizes from EPS (expression profile of spleen). Percentiles do not increase with 
increasing number of randomly drawn edges. 
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Figure A3-3: Percentiles vs. Pearson Correlations of random samples of different 
sizes from EPL (expression profile of liver).Percentiles do not increase with 
increasing number of randomly drawn edges. 
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Figure A3-4: Distribution of FDR corrected p-values associated with GOIDS 
corresponding to biological processes enriching the paracliques at different 
thresholds in expression profile of liver (EPL).Left panel: Paraclique wise distribution 
of GOIDS relating to biological processes in EPL. The paracliques were extracted from 
the graphs G0, G1, EG2, G2, EG3 and G3 (shown serially from bottom to top) The 
paracliques are enumerated along the x-axis for each graph. GOIDs associated with 
each paraclique are represented by a dot above that paraclique’s number. The position 
of each GOID along the Y-axis indicates FDR corrected p-value for the enriched 
biological process corresponding to that GOID. Right panel: Overall distribution of log of 
FDR corrected p-values associated with GOIDs corresponding to biological processes 
enriching all the paracliques obtained from the graphs G0, G1, EG2, G2, EG3 and G3 
(shown serially from bottom to top). 
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CHAPTER 4 : SYSTEMS GENETICS APPROACH TO UNCOVER 

THE EFFECTS OF LOW DOSE IONIZING RADIATION 
 

     (This chapter gives a brief overview of two low dose ionizing radiation papers. The 

lead author of these papers is Rachel M. Lynch (Appendix following chapter 4 and 

[187]). Work related to regression analysis, eQTL analysis and identification of trans 

and cis QTL bands, microarray data analysis and differential expression was done by S. 

Naswa)  
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Radiation response effects large numbers of biological processes and genes related to 

immune system, apoptosis, cell proliferation, DNA damage, cancer, etc. There are 

conflicting beliefs about the biological effects of LDIR that vary from hormesis and 

adaptive response to harmful effects.  The low magnitude of LDIR, presence of 

background natural radiation and the inherent genetic variation at population level make 

LDIR response a suitable candidate for investigation using systems genetics approach. 

Here we investigated the effects of LDIR at a population level using systems genetic 

approach.   

Since the immune system is considered to be sensitive to ionizing radiation we began 

by investigating genetic signatures responsible for variability in immunophenotypes in a 

genetic reference population. We used recombinant inbred strains of BXD mice derived 

from a cross between C57BL/6J X DBA/2J mice to investigate the variability in various 

parameters of immune system. Variability in percentages of T cells and their subtypes 

(CD4+, CD3+, CD8+), B cells and the ratios of these cells (LN T: B and LN CD4: CD8) 

was collated with QTL analysis and gene expression profiles from BXD mice. Multiple 

regression modeling of the correlates of genes neighboring statistically significant QTLs 

revealed three candidate genes (Ptprk, Acp1 and Lamb1-1) explaining 61% variance of 

ratio of helper (CD4+) and cytotoxic (CD8+) T cells.  

After baseline expression profiling in BXD population, we investigated differences in 

response of the inbred parental strains (C57BL/6J & DBA/2J) to LDIR. Expression 

profiles in spleen tissue of irradiated (10cGy and 1Gy) and sham irradiated mice were 

obtained using Illumina microarrays. Analysis of variance (ANOVA) and post ANOVA 
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contrast tests were used to test effects of dose, strain and their interaction on gene 

expression. GO enrichment of genes differentially expressed in response to LDIR 

revealed that immune system processes exhibited radiation effect in DBA/2J. Genes 

related to neutrophil function were differentially expressed after exposure to LDIR in 

both the strains but in opposite direction. The parental strains also exhibited the effects 

of radiation on immune system at cellular level. LDIR significantly enhanced the 

percentage and activity of neutrophils in peripheral blood. 
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APPENDIX 

 

Systems genetics approach to low dose radiation sensitivity in BXD recombinant 

inbred mice 

(May be published in radiation research with following authorship) 

Lynch RM, Naswa S, Rogers GL, Jr., Kania SA, Das S, Chesler EJ, Saxton AM, 

Langston MA, Bogard JS, and Voy BH.  
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ABSTRACT 

Radiation protection guidelines are designed to protect the population from exposure to 

harmful doses of radiation. Defining a harmful dose is clear for exposures for which the 

effects permit epidemiological detection. However, defining the lower level of exposure 

that continues to have adverse effects is complicated. Low dose radiation (LDR) 

engages many pathways that mediate normal cellular functions, making it challenging to 

detect radiation-specific effects even in simplistic models such as tissue culture. In a 

population, assessing risk is further challenged by the complexity of in vivo exposures 

and by genetic variation inherent to individuals. We present initial results from modeling 

radiation sensitivity with a panel of recombinant inbred mouse strains and using 

systems genetics to extract mechanisms of heritable radiation sensitivity. Emphasis is 

on the immune system because of its inherent radiosensitivity and its potential to impact 

other processes including malignancy. We demonstrate that exposure to 10 cGy 

ionizing radiation significantly enhanced neutrophil phagocytosis across strains. In 

contrast, genetic background impacted LDR-induced changes in spleen superoxide 

dismutase activity. Transcriptome data from spleens of the BXD parental strains 

highlighted the impact of genetic background on LDR responses. These data highlight 

the need to consider genetic variation when assessing LDR outcomes. 

INTRODUCTION 

Average levels of radiation exposure over the past thirty years are estimated to have 

doubled, largely due to the widespread use of diagnostic imaging procedures such as 
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computed tomography (1). Escalating clinical use of radiation, coupled with recent 

concerns about exposure from airport security scanners and now from the earthquake-

driven radiation leaks from Japanese nuclear power plants, heightens concern about 

potential health effects of exposure to radiation at doses that are measurable and 

increasing, but still very low relative to those known to be carcinogenic. Determining the 

potential health consequences of low dose radiation exposure in a human population is 

complicated by a number of factors: the biochemical intersection between the effects of 

low dose radiation and many other environmental stressors, the differential effects of 

lifestyle variables that impact the response to stress, and the underlying genetic 

variation within a population. Current radiation protection guidelines are based on linear 

extrapolation of risk from dose. Biologically, however, low dose ionizing radiation elicits 

both molecular and higher order phenotypes that are not necessarily observed at higher 

doses (2-5). Therefore the physiological consequences of low dose exposures are not 

easily predicted using a linear model. 

The immune system illustrates the challenges in delineating health effects of low dose 

radiation exposure. High radiation doses (>1 Gy) suppress immune function through 

destruction of myeloid and lymphoid cell populations in bone marrow (6). In contrast, 

several studies suggest that low doses of radiation enhance functions of various 

immune cell populations that could be beneficial to the organism, at least acutely (7). 

For example, LDR has been shown to increase mitogen-induced lymphocyte 

proliferation (8-12), macrophage and natural killer cell activation (11, 13-16), and tumor 

surveillance (7, 14, 17-20). At the molecular level, LDR alters gene expression (21), 
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cytokine secretion (13, 22, 23), expression of surface molecules on immune cells (22, 

24), and apoptosis (12), which can lead to LDR-induced modification of leukocyte 

distribution (25). Relatively little is known, however, about how this sensitivity translates 

into efficacy of the immune system.  

Ultimately, risk of LDR exposure must be applied to a population, which requires an 

understanding of the contribution of genetic variation to radiation response. Mouse 

models provide the most direct evidence that genetic background confers inter-

individual differences in radiosensitivity that are acknowledged, but more difficult to 

study, in humans. Using inbred strains of mice, Roderick (1963) demonstrated the 

importance of genetic background on viability following daily 1 Gy doses of X-ray 

radiation; survival time in the most sensitive and resistant strains differed by more than 

two-fold (26). Since then, differences between strains at sublethal radiation doses have 

been reported for a number of outcomes, including radiation-induced apoptosis (27-31) 

and carcinogenesis (32-35). A more limited number of studies have reported differential 

effects of low radiation doses in inbred mouse strains and in cell lines derived from a 

panel of human donors (36, 37).  

Panels of recombinant inbred (RI) mouse strains provide the means to study the impact 

of environmental factors such as low dose radiation in the context of genetic variation 

and to simultaneously screen for loci that contribute to differential outcomes of the 

exposure. The BXD (C57BL/6J X DBA/2J) RI strain set is the largest existing set of 

inbred mouse strains. The parental strains (C57BL/6J and DBA/2J) differ in their 

sensitivities to LDR exposure (31, 38-40), making the BXD panel attractive for both 
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studies of LDR in a population-based model and for identification of genetic loci linked 

to variation in the LDR response. Here we report the first steps in using a systems 

genetics framework in the BXD panel to uncover the basis for differential genetic 

sensitivity to LDR exposure. Systems genetics is an analysis framework that exploits 

correlation between traits to assemble multi-level networks, from the molecular level 

through intermediate traits to overlying, systems level phenotypes (41-43). Our 

overarching goal is to iteratively assemble a systems level view of LDR sensitivity that 

encompasses both the initial response to radiation stress and later, potentially 

prolonged physiological outcomes that may include both hermetic and detrimental 

effects. Stable genetic reference populations, such as the BXD lines, are valuable tools 

for this approach because they allow data to be integrated over time and from multiple 

experiments. We began by addressing two objectives, the results of which are 

described herein. Our first objective was to test the consequences of LDR on peripheral 

blood mononuclear cell phagocytosis of bacteria, a functional measure of the innate 

immune systems that could be measured ex vivo after whole body irradiation without 

the need for cell culture. This objective was based in part on a previous study in our lab 

that suggested strain-specific effects of low dose X-ray exposure on genes related to 

immune function (44). Our second objective was to determine if genetic variation 

significantly altered the oxidative stress defense response to LDR, based on the central 

role of reactive oxygen species as mediators of radiation effects at lose doses (45-49). 

Efforts were focused on a limited number of biochemical and functional endpoints that 

could be assayed efficiently across a large number of mice. Existing genotype data 
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available for the BXD panel were used to identify putative genetic loci linked to 

differences in LDR traits. Transcriptomic profiling of spleen from the parental strains 

was included to screen for additional differences in LDR response between strains that 

will guide future studies of differential LDR sensitivity using the BXD strain panel.  

METHODS 

RADIATION EXPOSURE 

C57BL/6J and DBA/2J mice were obtained from the Jackson Laboratory (Bar Harbor, 

ME). A total of 39 BXD RI strains were used for this study. Stocks were obtained from 

The Jackson Laboratory and Drs. Lu Lu and Robert Williams at the University of 

Tennessee Health Science Center (UTHSC, Memphis, TN). This population represents 

a mixture of the strains from the original Jackson Laboratory strains (50, 51) and the 

advanced intercross strains developed at UTHSC (52). Mice were housed and 

propagated in the specific-pathogen-free (SPF) Russell Vivarium at Oak Ridge National 

Laboratory (ORNL) as previously described (53). Approximately 10 week-old mice were 

exposed to a single whole-body 10 cGy dose of radiation from a 137Cs source delivered 

at a rate of ~9 cGy/h. Each strain by treatment group consisted of an average of 4 

irradiated or 4 sham-exposed control mice per strain, and each group was balanced 

between males and females. Only 2 mice (1 irradiated and 1 sham control) per strain 

were exposed on any given day, and strains were randomized across the study. 

Following radiation or sham exposure, mice were housed for 48 h in a satellite facility 

prior to dissection. Blood was collected by retro-orbital sinus puncture into heprinized 
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tubes for neutrophil function assays. Spleens were harvested and snap-frozen in liquid 

nitrogen and stored at -80°C for subsequent biochemical assays.  

For spleen expression profiling, male C57BL/6J and DBA/2J mice were exposed to 

either a low dose (10 cGy, as described above), or a high dose (1 Gy) of whole-body γ-

radiation delivered by a 60Co source with a dose rate of ~6 Gy/min. Mice were sacrificed 

24 h following exposure, and spleens were stabilized in RNAlater (Sigma-Aldrich, St. 

Louis, MO) until RNA was extracted. All studies were approved by the Animal Care & 

Use Committee at Oak Ridge National Laboratory. 

NEUTROPHIL FUNCTIONAL ASSAYS 

Flow cytometry was used to assay neutrophil function in peripheral blood from 34 BXD 

strains 48 h after sham or radiation exposure. For both assays, red blood cells in the 

blood samples were lysed and leukocytes were fixed prior to flow cytometric analysis. 

DNA staining was used to distinguish between aggregation artifacts and murine cells. At 

least 10,000 leukocytes per sample were analyzed using a Beckman Coulter Epics XL 

flow cytometer and EXPO32 ADC Software (Beckman Coulter, Brea, CA). Neutrophils 

were gated for analysis based on forward and side scattering profiles. Gating based on 

fluorescence was set on unstimulated samples from each mouse to include 

approximately 10% of the evaluated cell population, and the same gating parameters 

were used to evaluate percentage and median channel fluorescence (MCF) of 

stimulated neutrophils exhibiting phagocytic or oxidative burst activity. Neutrophil 

phagocytosis (Phagotest Kit, Orpegen Pharma, Heidelberg, Germany) and oxidative 
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burst assays (Phagoburst Kit, Orpegen Pharma) were performed as previously 

described (54).  

BIOCHEMICAL ASSAYS 

 Response to oxidative stress was assayed by quantification of superoxide dismutase 

(SOD) activity, glutathione (GSH), and oxidized glutathione (GSSG) in spleens from 39 

BXD strains. Spleens were homogenized in 1mL of cold HEPES buffer (20mM HEPES, 

pH 7.2, with 1mM EGTA, 210mM mannitol, and 70mM sucrose). The homogenate was 

aliquoted for SOD, GSH, and Bradford assays. SOD activity was measured in the 

spleen extracts using an enzymatic assay (Cayman Chemical Company, Ann Arbor, MI) 

that reflects the combined activity levels of all three SOD isoforms (SOD1, SOD2, and 

SOD3), normalized to the protein concentration of the spleen extract (Bio-Rad Protein 

Assay, Hercules, CA), and reported as the units of SOD activity per mg of protein 

(U/mg). The percentage of GSSG to total GSH in deproteinated spleen extracts was 

determined with a kit which utilizes an enzymatic recycling method using glutathione 

reductase (Cayman Chemical Company). GSSG levels were assayed separately from 

the determination of total GSH levels; both were assayed according to manufacturer’s 

instructions using the end-point method. The percentage of GSSG to total GSH was 

determined, as well as the GSSG and total GSH concentration normalized to the protein 

concentration of the original spleen lysate. 
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QTL MAPPING 

Quantitative trait loci (QTL) mapping was performed on SOD activity in sham and LDR-

exposed BXD mice. SOD activity data adjusted for assay date differences by the 

models described below were used for QTL mapping. QTL analysis was performed 

using nearly 3,800 single-nucleotide polymorphisms (SNPs) and microsatellite markers 

for the BXD panel obtained from GeneNetwork database 

(http://www.genenetwork.org/dbdoc/BXDGeno.html). The genotype information was 

based on the markers originally reported by Shifman et al. (55) which were re-aligned 

with National Center for Biotechnology Information (NCBI) Build 36. QTLs were 

identified using WebQTL (56), which creates a linkage map using Haley-Knott 

regression and interval mapping. Genome-wide significance thresholds were calculated 

based on 1,000 permutations (57), and the cut-off p-values for significant and 

suggestive loci were P = 0.05 and P = 0.63, respectively (58). Multiple-QTL modeling 

was performed using stepwise linear regression in SAS; a p-value of 0.05 was used as 

the threshold for terms to remain in the final model. 

PARENTAL GENE EXPRESSION PROFILING 

Transcriptome profiling in C57BL/6J and DBA/2J spleens (24 h post-exposure) was 

performed by Genome Quebec (Montreal, Canada) using the Mouse WG-6 v1.1 

BeadChip on the Illumina platform (San Diego, CA) as previously described (53). Four 

mice per strain per radiation exposure (i.e. control, low dose, high dose) were used for 

transcriptome profiling, except there were only three DBA low dose radiation exposed 

samples. Quantitative polymerase chain reaction (Q-PCR) was used to confirm the 
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microarray results of differential expression of several genes in the parental strains 

following radiation exposure. Reverse transcription was performed on 500ng of RNA 

using the Bio-Rad iScript cDNA Synthesis kit from Bio-Rad. QuantiTect primers were 

used in conjunction with the QuantiTect SYBR Green PCR kit (Qiagen) on a CFX96 

real-time PCR detection system (Bio-Rad). All samples were analyzed in triplicate; gene 

expression was normalized to hypoxanthine guanine phosphoribosyl transferase (Hprt) 

expression. Microarray analysis and Q-PCR confirmed that Hprt expression did not vary 

across our experimental groups. Fold changes were calculated based on the ∆∆Ct 

method and differences between groups were tested using ANOVA. 

Statistical testing  

Statistical testing was performed using SAS (SAS Institute, Cary, NC). For biochemical 

and neutrophil function assays, Proc Mixed was used to test for strain, radiation, and 

strain by radiation interaction effects (strain*radiation), using the assay date as a 

random variable. The “assay date” term was included because the radiation exposures 

and assay dates were performed across several weeks to accommodate the large 

population of mice used in this study. If the strain*radiation term was not significant (P > 

0.05), then a reduced model was rerun using only the strain and radiation terms. All 

neutrophil function and biochemical data reported are least squares means from the 

Proc Mixed model. 

Expression data from Illumina bead chips were normalized using Variance Stabilizing 

Transformation (VST) followed by Robust Spline Normalization (RSN) using the 

R/Bioconductor (59) package lumi (60). Fold changes were calculated using the 
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inverseVST function in the lumi package. Raw and normalized expression data are 

available through NCBI’s GEO database (http://www.ncbi.nlm.nih.gov/projects/geo, 

Accession GSE21562). SAS procedure GLM was used for analysis of variance 

(ANOVA) to test the effects of strain, dose and their interaction on expression. Post 

ANOVA contrast tests were used to compare the groups. An alpha of 0.05 was used for 

all statistical tests. False discoveries due to multiple comparison testing were controlled 

by using q-value (61). Differential expression was considered significant if both p and q 

values were < 0.05 and fold change ≥ |1.5|. DAVID (62, 63) was used for gene ontology 

(GO) enrichment analysis of differentially expressed genes. Benjamini-Hochberg false 

discovery rate-corrected p-values are reported (64).  

RESULTS 

NEUTROPHIL FUNCTION 

Phagocytosis of foreign material by neutrophils provides a first line of defense through 

which the innate immune system protects the body against invading pathogens (65, 66). 

Ex vivo measures of phagocytosis provide a means to profile functional activity of the 

innate immune system (67). Phagocytosis and oxidative burst were measured across a 

panel of irradiated and control BXD mice to determine if LDR altered functional activity 

of peripheral blood neutrophils and, if so, if genetic variation differentially impacted this 

response. LDR exposure significantly increased both the percentage of phagocytic 

neutrophils (i.e., phagocytosis of one or more FITC-labeled bacteria per cell; P = 0.044) 

and the median channel fluorescence (MCF) of phagocytic neutrophils, reflecting the 
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number of bacteria phagocytosed per E.coli-positive cell (P = 0.019, Figure A4-1). The 

radiation effect translates into approximately a 4% increase in the number of cells 

undergoing phagocytosis and an 11% increase in the number of bacteria engulfed by 

those cells, relative to sham controls. In addition to a main effect of radiation, both 

measures of phagocytic activity showed significant effects of strain (% Phagocytic 

Neutrophils, P < 0.001 and Phagocytic MCF, P = 0.002), indicating genetic variation in 

phagocytic function in the BXD panel. Despite the wide range of baseline variation 

across strains, genetic background did not significantly modify the effect of LDR on 

phagocytic activity (strain*radiation, P > 0.05).  

Flow cytometry also was used to measure the generation of intracellular reactive 

oxygen species (ROS) generated during oxidative burst. The percentage of oxidative 

burst-positive neutrophils (%OB Neutrophils) was analyzed as well as the MCF of 

positive neutrophils (measurement of enzymatic activity). While both %OB Neutrophils 

and OB MCF varied significantly by strain (P = 0.020 and P < 0.001, respectively), 

radiation and strain*radiation interaction effects were not significant (P > 0.05).  

ANTI-OXIDANT DEFENSE SYSTEM 

Superoxide dismutase, catalase and the tripeptide glutathione act as an endogenous 

system of defense against oxidative stress, including that which is produced by ionizing 

radiation (46, 68). Genetic variation in the ability to mitigate oxidative stress has been 

linked to increased susceptibility to inflammatory disorders and to the effects of 

environmental stimuli that increase free radical production (Reviewed in (69)). SOD  
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Figure A4- 1. Effect of radiation on neutrophil function. Peripheral neutrophils were 
assayed using flow cytometry 48 h after irradiation; N ≥ 66 mice / group (A) A greater 
percentage of neutrophils from radiation-exposed mice engulfed FITC-labeled E. coli 
compared to those of controls (P = 0.044). (B) E. coli-positive neutrophils from radiation-
exposed mice had a greater median channel fluorescence (Phagocytic MCF, indicating 
more bacteria engulfed per cell) compared to those of control (P = 0.019). Error bars 
reflect the SEM. 
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activity and oxidized and total GSH were assayed in spleen from control and irradiated 

BXD mice to simultaneously screen for genetic variation in baseline oxidative defense 

capacity that could alter radiation sensitivity and to determine if LDR altered SOD 

activity, and in a manner that depended upon genetic background. Total SOD activity in 

spleen varied significantly across the BXD strain panel (P < 0.001). Genetic background 

further altered the SOD response to LDR, as indicated by the very significant 

strain*radiation interaction (P < 0.001). Unlike for phagocytosis, the main effect of 

radiation was not significant (P > 0.05). Neither the GSSG levels nor percentage of 

oxidized (GSSG) to total glutathione (GSH) levels significantly differed among strains or 

between radiation and sham-exposed mice within strains (all P-values > 0.05). When 

total GSH levels were normalized to the protein concentration in the spleen lysate, a 

significant strain effect was observed (P = 0.001), but there was no radiation main effect 

or strain*radiation interaction effect (P > 0.05).  

The significant interactive effect of strain and radiation on SOD activity demonstrates 

that genetic background modulates the antioxidant response to low dose radiation 

exposure. We performed QTL analysis to identify loci associated with this differential 

response to LDR, using genotype data readily available for the BXD panel (55). QTL 

analysis (Figure A4- 2) revealed a significant QTL on Chromosome (Chr) 15 (@ 74Mb, 

LOD = 3.54), as well two suggestive QTLs on Chr 16 locus (@ 69Mb, LOD = 2.34 and 

@ 93Mb, LOD = 2.80), that were linked to SOD activity in unexposed controls. The QTL 

on distal Chr 16 encompasses the Sod1 gene. In contrast, QTL analysis of LDR SOD  

activity identified the same Chr 15 locus as well as a LDR-specific locus on Chr 17 (@ 
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76Mb, LOD = 1.17). Further, the Chr 16 locus containing Sod1 was not present in the 

LDR QTL model. A multi-locus regression model which includes additive effects of the 

Chrs 15 and 17 loci explains 24% of the variance in SOD activity in the spleens of LDR-

exposed mice.  

The concept of genetic correlation (70) was applied to search for relationships between 

baseline gene expression in unexposed mice and SOD activity following low dose 

radiation exposure. . These so-called quantitative trait transcripts (QTT) (71) could 

provide insight into mechanisms of variation in LDR SOD activity, particularly if the 

transcript resides within the QTL interval for LDR SOD activity.  

Transcriptomic data from spleens of an overlapping set of BXD strains (53) were 

integrated with SOD activity data, and all possible pair-wise Pearson correlations were 

computed between expressed transcripts and SOD activity in sham and LDR-exposed 

BXD strains. Xanthine dehydrogenase (Xdh) is located approximately 2Mb upstream of 

the maxima LOD, and its expression levels are significantly correlated with LDR-

induced but not sham control SOD activity (r = -0.34, P = 0.041 and r = -0.19, P > 0.05, 

respectively). XDH can be converted to the superoxide-generating enzyme xanthine 

oxidase (XO) by reversible sulfhydryl oxidation or irreversibly by proteolytic modification 

(72), a process that has been shown to occur in response to high (> 3 Gy) doses of 

ionizing radiation, potentiating tissue oxidative stress beyond the initial radiochemical 

reactions (73). Outside the QTL interval, expression of Sod2, the inducible form of the 

enzyme, was significantly correlated with LDR SOD activity (r = 0.47, P = 0.003) but 
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Figure A4-2. SOD activity QTL analysis. WebQTL interval mapping of spleen SOD 
activity in sham (A) and radiation-exposed (B) BXD mice. The mouse genome is 
portrayed along the horizontal axis, while the vertical axis shows the logarithm of odds 
(LOD). Significant and suggestive levels of association were determined based on 
permutation testing and are depicted by horizontal red and gray lines, respectively. 
Significant and suggestive loci are indicated by red and gray arrows, respectively. LOD 
scores are indicated by the blue line across the genome; the red line indicates that the 
C57BL/6J allele at the marker increases the SOD activity, while the green line indicates 
the DBA/2J allele increases activity. Strength of additive effects is indicated by the scale 
on the right.  
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not with sham SOD activity (r = 0.030, P > 0.05). In addition to Sod2, baseline 

expression of apoptosis-inducing factor, mitochondrion-associated 2 (Aifm2) was 

differentially correlated with LDR SOD activity (r = 0.55, P < 0.001) but not sham SOD 

activity (r = 0.16, P >.05). AIFM2 was originally described as a caspase-independent 

inducer of apoptosis that translocates from the mitochondria to the nucleus in response 

to damaging agents and mediates nuclear changes such as chromatin condensation 

(74, 75). Under normal conditions, AIFM2 is thought to act as an intrinsic anti-oxidant 

enzyme that scavenges free radicals (76).  

SPLEEN GENE EXPRESSION 

The parental strains (C57BL/6J and DBA/2J) that contributed alleles to the BXD panel 

differ in their radiation sensitivity based on classical DNA damage phenotypes (e.g., 

apoptosis, cell cycle control) (31, 38-40). In an effort to more broadly identify differences 

in the parental strains that also may have segregated in the BXD population, we used 

microarrays to compare and contrast effects of LDR on expression profiles in the 

spleen. A higher dose (1 Gy) exposure was included to assess differential effects of 

genetic background at a radiation dose known to elicit DNA damage and to compare 

strain differences at two levels of exposure. Low dose radiation significantly altered the 

expression of 964 genes in either one or both of the strains (q-value < 0.05 and fold 

change ≥ |1.5|). A total of 138 genes were differentially expressed with LDR exposure in 

C57Bl/6J but not DBA/2J; the majority of these genes (127 of 138) were down regulated 
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in LDR mice. Gene ontology enrichment analysis revealed that down regulated genes 

were significantly enriched in functions related to heme biosynthesis and nucleosome 

organization (Table A4-1). Considerably more genes (N = 752) were significantly altered 

in DBA/2J mice and not C57BL/6J 24 h after low dose irradiation, including 511 that 

were down regulated and 241 up regulated. In DBA/2J, LDR decreased expression of 

genes in a number of related to immune function, including antigen presentation and 

processing, B cell receptor signaling, T cell receptor signaling, and cytokine-cytokine 

receptor interaction (Table A4-1).  

Genes significantly up regulated by LDR were enriched in functions related to cell cycle 

and nucleosome organization including Chek2, Cdc25c, Cdkn1, Rad51c and other 

genes linked to DNA damage repair and cell cycle arrest.  

A total of 74 genes were significantly altered by LDR in both strains. Interestingly, all 

genes in this list exhibited an opposite pattern of response between strains. Close 

inspection of this list revealed that a number of genes were related to neutrophil 

function. Q-PCR was used to validate strain-dependent effects of nine neutrophil-related 

genes, all of which were confirmed to be significantly down regulated in C57BL/6J 

spleens and up regulated in DBA/2J spleens 24 h following LDR exposure (Table A4-

2).A total of 562 genes were significantly different between sham and irradiated mice at 

the higher (1 Gy) exposure, 307 of which overlapped with the LDR group. Of the HDR 

genes, 547 were significantly different within C57BL/6J. Genes affected by HDR were 

highly enriched in functions known to be altered in response to radiation, including cell 

cycle and the KEGG pathway for p53-mediated transcription. The majority of genes 
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Table A4-1: Significant GO enrichment of genes differentially regulated in spleen 24 h 

following low dose radiation exposure. 

GO Biological Process # of Genes Benjamini 

C57BL/6J Down regulated 

cofactor biosynthetic process 9 < 0.001 

heme biosynthetic process 5 < 0.001 

nucleosome organization 6 0.002 

DBA/2J Up regulated 

cell cycle 20 0.006 

nucleosome organization 7 0.040 

DNA metabolic process 14 0.039 

DBA/2J Down regulated 

antigen processing and presentation 16 < 0.001 

hemopoietic or lymphoid organ 
development 23 < 0.001 

Hemopoiesis 19 < 0.001 

T cell activation 13 < 0.001 

antigen receptor-mediated signaling 
pathway 8 < 0.001 

regulation of apoptosis 23 0.012 

B cell activation 8 0.014 
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Table  A4-2: Q-PCR validation of selected genes in which microarray analysis 
indicated a strain-specific response to low dose radiation in spleen 24 h after 
exposure to low dose (LDR, 10 cGy) or high dose radiation (HDR, 1 Gy).  
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differentially expressed with LDR in C57BL/6J were also significant at the high dose 

exposure (198 of 212), and with the same direction of change. Genes involved in heme 

biosynthesis and neutrophil function were suppressed by both radiation doses in 

C57BL/6J. In DBA/2J, a total of 102 genes were differentially expressed after HDR, of 

which 86 were also significantly different (with the same direction of change) with HDR 

in C57BL/6J. These common genes include up regulation of Cdkn1a and down-

regulation of Gadd45a in both strains. Unlike in C57BL/6J, overlap between LDR and 

HDR genesets was minimal in DBA/2J (N=8).  

DISCUSSION 

Across the BXD population, a single exposure to 10 cGy of radiation significantly 

enhanced both the numbers of cells that engaged in phagocytosis and the phagocytic 

activity of those cells. These data suggest that, at least acutely, LDR might increase the 

ability to respond to invading pathogens. Our findings are consistent with a study of 

immune function in residents of two villages in Iran, Taleshmahaleh and Chaparsar, 

who are exposed to background radiation levels 13 times greater than normal due to 

elevated natural levels of radiation exposure. Residents of these two villages were 

shown to have increased neutrophil phagocytosis and motility, as well as differences in 

circulating cytokines such as IL-2, IL-4 and IL-10 (77). It is important to note, however, 

that both radiation quality and dose rate differ significantly between these two studies. 

One limitation of our study is that only one time point was analyzed (48 hours post-

exposure), which was chosen to fit the overall study design characterizing LDR-effects 
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that are downstream of the initial radiation stress. This time point may not be optimal for 

this phenotype; greater enhancement of phagocytosis might be observed at earlier or 

later time points following irradiation. Because the half-life of murine neutrophils in 

peripheral blood is approximately 8 hours (78), the cells assayed by flow cytometry 

were irradiated while undergoing maturation in bone marrow. Therefore the mechanism 

of increased phagocytosis could include maturational effects on cells prior to their 

release into circulation. Alternatively, LDR may have increased phagocytosis by altering 

levels of cytokines and chemokines such as TNFα, IL-8, and IFNγ that act on 

neutrophils in circulation (13, 23, 79). Phagocytosis is one of a series of steps that lead 

to bacterial killing. Follow-up studies are thus necessary to define more broadly the 

functional effects of LDR on neutrophils.  

Microarray data collected from the BXD parental strains further support significant 

effects of LDR on neutrophils, and in a manner that varied according to strain, based on 

inverse regulation by LDR of Mpo and other genes (Table A4-2). Mature neutrophils 

were once thought to be transcriptionally inert, but are now known to respond to a 

number of stressors and cellular signals through changes in gene expression (rev. in 

(66)). We do not have parallel functional data in these two strains, and thus cannot 

determine if phagocytosis was also differentially impacted by LDR in C57BL/6J and 

DBA/2J. Current efforts are directed to collecting these data and expanding the scope of 

LDR-induced neutrophil phenotypes, including chemotaxis and cell killing. We should 

also point out that the expression data were collected in spleen rather than in isolated 

neutrophils or in bone marrow. Divergent effects of LDR on gene expression could be 
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due to indirect effects, such as differential neutrophil migration into spleen or clearance 

of apoptotic neutrophils. Further experiments will be necessary to test these 

possibilities.  

In contrast to phagocytosis, SOD activity in response to LDR varied significantly 

between strains. SOD activity increases after radiation exposure to mitigate oxidative 

stress resulting from the radiolysis of intracellular water, a response that is largely due 

to increased activity of mitochondrial SOD (SOD2) (49, 80). We interpret the significant 

interaction between strain and treatment to reflect genetic differences in the kinetics of 

SOD activity and its repletion following radiation stress, as opposed to opposite 

regulation of the enzyme across strains. Increased SOD activity in spleen occurs within 

hours of LDR-exposure (46), but less is known about the persistence of the response 

over time. Our data indicate that certain individuals within a population mount a more 

persistent antioxidant defense to LDR, or that the supply of SOD available is rapidly 

depleted in some individuals, while others have intrinsically greater response to 

oxidative LDR stress. The significant positive genetic correlation we observed between 

Sod2 expression in spleen of unexposed mice and SOD activity after LDR exposure 

suggests that heritable differences in Sod2 expression may contribute to strain 

differences in the amount or persistence of SOD activity after LDR exposure. Sod2 

deficient mice (C57BL/6J Sod2(+/-)), which are more sensitive to radiation than wild 

type littermates, illustrate the importance of Sod2 in radiation outcomes (47). To further 

explore this relationship, it would be interesting to determine if BXD strains with the 

highest heritable levels of Sod2 expression are less susceptible to LDR responses that 
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have been shown to be influenced by SOD2 activity, including adaptive radio-resistance 

and DNA damage (81). Similar relationships between baseline gene expression and 

radiation sensitivity were reported by Amundson et al. using the National Cancer 

Institute Anticancer Drug Screen (NCI-60) panel of cell lines (82).QTL mapping 

identified a region on Chr 17 associated with LDR-induced but not control SOD activity. 

To our knowledge, this is the first identification of a QTL for differential responses to 

LDR (≤10 cGy), although a QTL for radiation-induced thymocytes apoptosis has been 

reported for a moderate dose (50 cGy) (83). The gene encoding Sod2 is located on Chr 

17, but is positioned >60Mb downstream of the maximum LDR SOD activity QTL. 

Therefore it does not appear that genetic variation within the Sod2 locus itself, or in 

proximal regulatory regions, contributes to the variation in SOD activity between 

irradiated strains. The QTL for SOD activity in control mice, however, encompassed the 

locus containing Sod1, the constitutive form of the enzyme. Using microarray data that 

we previously collected from BXD spleens (53), we identified a gene, xanthine 

dehydrogenase (Xdh), for LDR SOD activity. Because XDH can be converted into 

xanthine oxidase (XO, the free-radical generating form) by ionizing radiation, the 

relationship between baseline Xdh expression, XDH to XO ratios, SOD activity, and 

oxidative and peroxidative damage following radiation exposure is likely complicated. 

Additional experiments are needed to investigate the strong negative correlation 

between baseline Xdh expression and LDR-induced SOD activity. 

Comparison of microarray data from low (10 cGy) and high (1 Gy) radiation exposures 

illustrates that LDR is not simply a more subtle version of HDR, as has been suggested 
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by other studies (2-4). Only 32% (307 of 964 genes) of the genes differentially 

expressed following LDR-exposure were also changed in response to HDR. Further, the 

impact of genetic variation on radiation response was more apparent at the lower dose 

based on strain-dependent patterns of gene expression. At the low dose, 1200 genes 

showed a significant strain-dependent pattern of expression (based on the 

radiation*strain interaction term in the ANOVA model), while only five genes met this 

criterion at HDR (data not shown). These differential effects across a rather modest (10-

fold) increase in dose suggest that the response to radiation between individuals 

qualitatively becomes more similar at higher doses, perhaps as the demand to abate 

DNA damage overrides other, less critical consequences. As dose is lowered to a level 

that imposes oxidative stress rather than immediate damage, genetic variation in 

mechanisms for coping with stress and the consequential effects on other pathways 

begin to emerge. Taken together, these array data further confirm the biological 

uniqueness of low dose vs. high dose responses. They also highlight the need to 

consider genetic variation when assessing LDR outcomes, perhaps even more so than 

for higher radiation doses. 

Differences in radiation sensitivity between the BXD parental strains were first described 

by Roderick more than 45 years ago, with DBA/2J succumbing more quickly than 

C57BL/6J to a lethal dose of radiation (26). At more modest doses, C57BL/6J mice 

were shown to be more resistant to radiation-induced genomic instability than DBA/2J 

(38, 84, 85). Wright and colleagues described differential apoptotic responses between 

the two strains after 1 Gy radiation, with C57BL/6J favoring apoptosis through rapid 
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induction of p53 and up regulation of pro-apoptotic Bax, and DBA/2J having a delayed 

but prolonged p53 activation with more emphasis on p21 activation and cell cycle arrest 

(31, 39, 40). Microarray data collected from spleen further illustrates that genetic 

variation plays a major role in how these two strains respond to radiation, particularly at 

low doses and for genes related to immune function. One intriguing question prompted 

by these collective results is if there is a mechanistic link between differences in the 

initial response to radiation (promotion of apoptosis in C57BL/6J and cell cycle arrest in 

DBA/2J) and the later changes in expression of immune-related genes. The p53 

signaling cascade regulates a number of transcriptional targets that further impact 

downstream pathways and cellular responses. A recent report by Tavana et al. 

suggests that, in response to cellular stress, preferential activation of p53-mediated 

apoptosis or cell cycle arrest alters later phenotypes and differentially impacts 

inflammation and immune activation (86). These authors used a p53 mutant mouse 

model that could not transactivate pro-apoptotic genes but retained the ability to up 

regulate Cdkn1a in response to DNA damage. When exposed to UV radiation, the 

mutant mice were more susceptible to inflammation and immunosuppression than wild 

type controls. If causative links can be made from the initial differences in response to 

radiation stress (as described by Wright and others) and later changes in cellular 

pathways (as our array data suggest for the immune system), it will enhance our 

understanding of mechanisms of heritable radiation sensitivity. Further, if the response 

phenotypes (apoptosis vs. cell cycle arrest) of these two “individuals” are more 

generalizable to subsets of the human population, understanding radiation sensitivity in 
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these two strains and in the BXD progeny should inform parallel investigations in 

humans.  

The results we have presented represent our initial efforts to utilize genetic reference 

populations and a systems genetics approach to understand the basis for and 

consequences of heritable differences in sensitivity to low dose radiation exposure. 

Genetic reference populations like the BXD panel and a systems genetics framework 

are ideal for assembling linkages between genetic variants, intermediate phenotypes 

and outcomes of environmental exposures (87). Using a genetically stable population 

model allows us to integrate data from multiple studies as if they were taken from the 

same animals. This is valuable because it enables complex connections between 

molecular, cellular and higher order radiation responses to be assembled across time, 

using tools of systems genetics. Systems genetics is founded on the concept of genetic 

correlation among traits and provides a framework for extracting interrelationships 

between phenotypes that might not otherwise be suspected. As an example, we 

identified a significant genetic correlation between phagocytosis in irradiated mice from 

this study and peripheral CD4+:CD8+ ratio from a previous study (data not shown; 

(53)). Our current efforts are focused on genetic sensitivity to low dose radiation; more 

broadly, the same framework could be used to relate radiation sensitivity to 

susceptibility to other environmental exposures or to disease. At the translational level, 

systems genetics can potentially improve the assessment of risk through identification 

of phenotypes, whether molecular, cellular or biochemical, that signal differential 

sensitivity to radiation and other environmental challenges of concern. Thus far, we use 
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the BXD strain panel for studies of radiation sensitivity because it is the largest set of 

inbred mouse RI strains. As with typical F2 populations that are often used for QTL 

mapping, one limitation of the BXD panel is that the input allelic diversity is limited to 

those found in two strains of mice. The Collaborative Cross, an RI panel being produced 

from eight, rather than two, parental lines will provide a model much more 

representative of a population with respect to genetic diversity (88, 89). The CC will both 

expand the range of heritable sensitivity to LDR and the ability to map radiation 

sensitivity loci with much greater resolution and precision (90). In summary, our results 

demonstrate responses to low dose exposure that are robust to genetic variation 

(enhanced neutrophil phagocytosis) as well as other responses for which genetic 

background significantly impacts the response (SOD activity). These data provide 

groundwork for expanding our approach to radiation sensitivity using systems genetics.  
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CHAPTER 5 : CONCLUSIONS AND FUTURE DIRECTIONS 
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This dissertation illustrates the influence of LDIR on gene networks. It has been 

established that in comparison to differential expression methods such as ANOVA 

differential correlation is more suitable for detecting the effects of relatively mild stimuli 

like LDIR especially in genetically diverse population. The two stage statistical filter 

based differential correlation method used here revealed gene networks highly enriched 

with radiation sensitive genes.  GO enrichment of genes from the differentially 

correlated network revealed influence of LDIR on many biological processes relevant to 

radiation responses such as apoptosis, DNA damage, oxidative stress, signal 

transduction, immune system and cell cycle. Differential correlation also detected 

perturbations in putative networks involving cancer genes. LDIR affected differential 

correlation among a network of interconnected hubs enriched in well known BRCA 

complex genes (BRCC3, BRCC45 and RNF168). Exposure to LDIR also influenced 

genes belonging to MAP Kinase Pathway (another cancer pathway) and hematopoietic 

system. In contrast to differential correlation method the differential expression method 

(ANOVA) could not detect these LDIR induced changes. The inability of ANOVA can be 

explained by presence of inter-strain genetic variability and mild nature of treatment 

(LDIR). Hence biological validation of LDIR induced differentially co-expressed 

candidate genes of interest should be done using sensitive biological assays such as 

quantitative PCR. Moreover, comparison of irradiated and sham irradiated cells in a 

controlled environment using spleen cell lines may reveal differential expression of 

genes because of low variability of data. LDIR induced changes in correlation of genes 

could also be validated by complete and partial knockouts of interesting candidate 
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genes using RNA interference experiments.  RNA interference experiments could also 

reveal the causality of relationship among differentially correlated genes.  

The strict two stage statistical filter used here produced a sparse graph of differentially 

correlated vertices (genes). Dense portions of this sparse graph such as connected 

components, interconnected hubs etc. can provide a small list of candidate genes to 

determine the directionality of network for control as well as irradiated data using 

methods like structure equation modeling and Bayesian statistics. The information from 

RNA interference experiments and existing literature can be used to test the validity of 

directions in the proposed models.  

The gene networks and pathways influenced by the LDIR raise questions about net 

effect of these changes on the well being of an individual. Are these responses specific 

to LDIR?  Do these changes represent deleterious effects of radiation at a lower scale?  

Are they adaptive responses to radiation?  Gene networks influenced by low dose and 

high dose of radiation can be compared to specify those influenced by LDIR alone. The 

comparison may also enable us to predict gene networks participating in hormesis and 

adaptive responses actuated by LDIR.   

Though differential correlation could identify the influence of LDIR on gene networks in 

this study, there is limitation to this method. It would be hard to use this method if the 

number of observations (microarrays) is too low as in many case control studies.  In 

such cases differential expression would be more appropriate if the treatment is not too 

mild. In case of LDIR transcription profiling of mice exposed to more than one dose of 
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radiation may make its effects more pronounced that could be detected by differential 

expression methods. Such a study would address concerns regarding increased and 

repetitive usage of LDIR for medical procedures. 

Another limitation of the differential co-expression method used here is its ability to 

detect only differences in linear correlations between gene pairs. However biological 

networks including gene networks can be nonlinear. LDIR induced differences in co-

expression should further be detected by using nonlinear methods like differences in 

mutual information between genes. Mutual information based method should result in 

denser differential co-expression networks since it will consider both linear and 

nonlinear relations between genes.  

 In this dissertation, we have also established that baseline expression profiles obtained 

from a reference population of genetically different strains of inbred BXD mice can be 

used for extraction of gene networks at a lower threshold of correlation than the 

conventionally used high threshold. Graphs filtered with a statistically significant but low 

Pearson’s correlation threshold (r = 0.413) resulted in paracliques significantly enriched 

in genes involved in various biological processes. Pearson correlation among the genes 

belonging to various KEGG pathways and regulatory networks also suggested a low 

threshold. The enrichment of biologically related genes in the gene networks obtained at 

low correlation thresholds can be explained by the absence of a stimulus driving these 

genes to higher correlations coupled with higher sensitivity of detection resulting from 

higher sample size in system genetics studies. Here we employed only linear model 

(Pearson correlation) to explain the relationships between genes. Networks based on 
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Pearson correlation should therefore be compared with networks generated by 

modeling nonlinear relations among genes. Methods like mutual information or 

polynomial regression can be used for detection of nonlinear relationships among 

genes. The comparisons may help in filling some of the missing links in gene networks 

and may also reveal that many of the low magnitude linear relationships (low Pearson 

correlation) are better explained by nonlinear models. 
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