1,215 research outputs found

    iRegNet: Non-rigid Registration of MRI to Interventional US for Brain-Shift Compensation using Convolutional Neural Networks

    Get PDF
    Accurate and safe neurosurgical intervention can be affected by intra-operative tissue deformation, known as brain-shift. In this study, we propose an automatic, fast, and accurate deformable method, called iRegNet, for registering pre-operative magnetic resonance images to intra-operative ultrasound volumes to compensate for brain-shift. iRegNet is a robust end-to-end deep learning approach for the non-linear registration of MRI-iUS images in the context of image-guided neurosurgery. Pre-operative MRI (as moving image) and iUS (as fixed image) are first appended to our convolutional neural network, after which a non-rigid transformation field is estimated. The MRI image is then transformed using the output displacement field to the iUS coordinate system. Extensive experiments have been conducted on two multi-location databases, which are the BITE and the RESECT. Quantitatively, iRegNet reduced the mean landmark errors from pre-registration value of (4.18 ± 1.84 and 5.35 ± 4.19 mm) to the lowest value of (1.47 ± 0.61 and 0.84 ± 0.16 mm) for the BITE and RESECT datasets, respectively. Additional qualitative validation of this study was conducted by two expert neurosurgeons through overlaying MRI-iUS pairs before and after the deformable registration. Experimental findings show that our proposed iRegNet is fast and achieves state-of-the-art accuracies outperforming state-of-the-art approaches. Furthermore, the proposed iRegNet can deliver competitive results, even in the case of non-trained images as proof of its generality and can therefore be valuable in intra-operative neurosurgical guidance

    Structural connectome quantifies tumor invasion and predicts survival in glioblastoma patients

    Get PDF
    Glioblastoma widely affects brain structure and function, and remodels neural connectivity. Characterizing the neural connectivity in glioblastoma may provide a tool to understand tumor invasion. Here, using a structural connectome approach based on diffusion MRI, we quantify the global and regional connectome disruptions in individual glioblastoma patients and investigate the prognostic value of connectome disruptions and topological properties. We show that the disruptions in the normal-appearing brain beyond the lesion could mediate the topological alteration of the connectome (P <0.001), associated with worse patient performance (P <0.001), cognitive function (P <0.001), and survival (overall survival: HR: 1.46, P = 0.049; progression-free survival: HR: 1.49, P = 0.019). Further, the preserved connectome in the normal-appearing brain demonstrates evidence of remodeling, where increased connectivity is associated with better overall survival (log-rank P = 0.005). Our approach reveals the glioblastoma invasion invisible on conventional MRI, promising to benefit patient stratification and precise treatment

    Structural connectome quantifies tumor invasion and predicts survival in glioblastoma patients

    Get PDF
    Glioblastoma widely affects brain structure and function, and remodels neural connectivity. Characterizing the neural connectivity in glioblastoma may provide a tool to understand tumor invasion. Here, using a structural connectome approach based on diffusion MRI, we quantify the global and regional connectome disruptions in individual glioblastoma patients and investigate the prognostic value of connectome disruptions and topological properties. We show that the disruptions in the normal-appearing brain beyond the lesion could mediate the topological alteration of the connectome (P <0.001), associated with worse patient performance (P <0.001), cognitive function (P <0.001), and survival (overall survival: HR: 1.46, P = 0.049; progression-free survival: HR: 1.49, P = 0.019). Further, the preserved connectome in the normal-appearing brain demonstrates evidence of remodeling, where increased connectivity is associated with better overall survival (log-rank P = 0.005). Our approach reveals the glioblastoma invasion invisible on conventional MRI, promising to benefit patient stratification and precise treatment

    Towards efficient neurosurgery: Image analysis for interventional MRI

    Get PDF
    Interventional magnetic resonance imaging (iMRI) is being increasingly used for performing imageguided neurosurgical procedures. Intermittent imaging through iMRI can help a neurosurgeon visualise the target and eloquent brain areas during neurosurgery and lead to better patient outcome. MRI plays an important role in planning and performing neurosurgical procedures because it can provide highresolution anatomical images that can be used to discriminate between healthy and diseased tissue, as well as identify location and extent of functional areas. This is of significant clinical utility as it helps the surgeons maximise target resection and avoid damage to functionally important brain areas. There is clinical interest in propagating the pre-operative surgical information to the intra-operative image space as this allows the surgeons to utilise the pre-operatively generated surgical plans during surgery. The current state of the art neuronavigation systems achieve this by performing rigid registration of pre-operative and intra-operative images. As the brain undergoes non-linear deformations after craniotomy (brain shift), the rigidly registered pre-operative images do not accurately align anymore with the intra-operative images acquired during surgery. This limits the accuracy of these neuronavigation systems and hampers the surgeon’s ability to perform more aggressive interventions. In addition, intra-operative images are typically of lower quality with susceptibility artefacts inducing severe geometric and intensity distortions around areas of resection in echo planar MRI images, significantly reducing their utility in the intraoperative setting. This thesis focuses on development of novel methods for an image processing workflow that aims to maximise the utility of iMRI in neurosurgery. I present a fast, non-rigid registration algorithm that can leverage information from both structural and diffusion weighted MRI images to localise target lesions and a critical white matter tract, the optic radiation, during surgical management of temporal lobe epilepsy. A novel method for correcting susceptibility artefacts in echo planar MRI images is also developed, which combines fieldmap and image registration based correction techniques. The work developed in this thesis has been validated and successfully integrated into the surgical workflow at the National Hospital for Neurology and Neurosurgery in London and is being clinically used to inform surgical decisions

    Structural connectome quantifies tumour invasion and predicts survival in glioblastoma patients

    Get PDF
    Glioblastoma is characterized by diffuse infiltration into the surrounding tissue along white matter tracts. Identifying the invisible tumour invasion beyond focal lesion promises more effective treatment, which remains a significant challenge. It is increasingly accepted that glioblastoma could widely affect brain structure and function, and further lead to reorganization of neural connectivity. Quantifying neural connectivity in glioblastoma may provide a valuable tool for identifying tumour invasion.Here we propose an approach to systematically identify tumour invasion by quantifying the structural connectome in glioblastoma patients. We first recruit two independent prospective glioblastoma cohorts: the discovery cohort with 117 patients and validation cohort with 42 patients. Next, we use diffusion MRI of healthy subjects to construct tractography templates indicating white matter connection pathways between brain regions. Next, we construct fractional anisotropy skeletons from diffusion MRI using an improved voxel projection approach based on the tract-based spatial statistics, where the strengths of white matter connection and brain regions are estimated. To quantify the disrupted connectome, we calculate the deviation of the connectome strengths of patients from that of the age-matched healthy controls. We then categorize the disruption into regional disruptions on the basis of the relative location of connectome to focal lesions. We also characterize the topological properties of the patient connectome based on the graph theory. Finally, we investigate the clinical, cognitive and prognostic significance of connectome metrics using Pearson correlation test, mediation test and survival models. Our results show that the connectome disruptions in glioblastoma patients are widespread in the normal-appearing brain beyond focal lesions, associated with lower preoperative performance (P &lt; 0.001), impaired cognitive function (P &lt; 0.001) and worse survival (overall survival: hazard ratio = 1.46, P = 0.049; progression-free survival: hazard ratio = 1.49, P = 0.019). Additionally, these distant disruptions mediate the effect on topological alterations of the connectome (mediation effect: clustering coefficient -0.017, P &lt; 0.001, characteristic path length 0.17, P = 0.008). Further, the preserved connectome in the normal-appearing brain demonstrates evidence of connectivity reorganization, where the increased neural connectivity is associated with better overall survival (log-rank P = 0.005). In conclusion, our connectome approach could reveal and quantify the glioblastoma invasion distant from the focal lesion and invisible on the conventional MRI. The structural disruptions in the normal-appearing brain were associated with the topological alteration of the brain and could indicate treatment target. Our approach promises to aid more accurate patient stratification and more precise treatment planning.</p

    Structural connectome quantifies tumour invasion and predicts survival in glioblastoma patients

    Get PDF
    Glioblastoma is characterized by diffuse infiltration into the surrounding tissue along white matter tracts. Identifying the invisible tumour invasion beyond focal lesion promises more effective treatment, which remains a significant challenge. It is increasingly accepted that glioblastoma could widely affect brain structure and function, and further lead to reorganization of neural connectivity. Quantifying neural connectivity in glioblastoma may provide a valuable tool for identifying tumour invasion.Here we propose an approach to systematically identify tumour invasion by quantifying the structural connectome in glioblastoma patients. We first recruit two independent prospective glioblastoma cohorts: the discovery cohort with 117 patients and validation cohort with 42 patients. Next, we use diffusion MRI of healthy subjects to construct tractography templates indicating white matter connection pathways between brain regions. Next, we construct fractional anisotropy skeletons from diffusion MRI using an improved voxel projection approach based on the tract-based spatial statistics, where the strengths of white matter connection and brain regions are estimated. To quantify the disrupted connectome, we calculate the deviation of the connectome strengths of patients from that of the age-matched healthy controls. We then categorize the disruption into regional disruptions on the basis of the relative location of connectome to focal lesions. We also characterize the topological properties of the patient connectome based on the graph theory. Finally, we investigate the clinical, cognitive and prognostic significance of connectome metrics using Pearson correlation test, mediation test and survival models. Our results show that the connectome disruptions in glioblastoma patients are widespread in the normal-appearing brain beyond focal lesions, associated with lower preoperative performance (P &lt; 0.001), impaired cognitive function (P &lt; 0.001) and worse survival (overall survival: hazard ratio = 1.46, P = 0.049; progression-free survival: hazard ratio = 1.49, P = 0.019). Additionally, these distant disruptions mediate the effect on topological alterations of the connectome (mediation effect: clustering coefficient -0.017, P &lt; 0.001, characteristic path length 0.17, P = 0.008). Further, the preserved connectome in the normal-appearing brain demonstrates evidence of connectivity reorganization, where the increased neural connectivity is associated with better overall survival (log-rank P = 0.005). In conclusion, our connectome approach could reveal and quantify the glioblastoma invasion distant from the focal lesion and invisible on the conventional MRI. The structural disruptions in the normal-appearing brain were associated with the topological alteration of the brain and could indicate treatment target. Our approach promises to aid more accurate patient stratification and more precise treatment planning.</p

    Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: A comprehensive review

    Get PDF
    Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.Web of Science1923art. no. 519

    The Essential Role of Open Data and Software for the Future of Ultrasound-Based Neuronavigation

    Get PDF
    With the recent developments in machine learning and modern graphics processing units (GPUs), there is a marked shift in the way intra-operative ultrasound (iUS) images can be processed and presented during surgery. Real-time processing of images to highlight important anatomical structures combined with in-situ display, has the potential to greatly facilitate the acquisition and interpretation of iUS images when guiding an operation. In order to take full advantage of the recent advances in machine learning, large amounts of high-quality annotated training data are necessary to develop and validate the algorithms. To ensure efficient collection of a sufficient number of patient images and external validity of the models, training data should be collected at several centers by different neurosurgeons, and stored in a standard format directly compatible with the most commonly used machine learning toolkits and libraries. In this paper, we argue that such effort to collect and organize large-scale multi-center datasets should be based on common open source software and databases. We first describe the development of existing open-source ultrasound based neuronavigation systems and how these systems have contributed to enhanced neurosurgical guidance over the last 15 years. We review the impact of the large number of projects worldwide that have benefited from the publicly available datasets “Brain Images of Tumors for Evaluation” (BITE) and “Retrospective evaluation of Cerebral Tumors” (RESECT) that include MR and US data from brain tumor cases. We also describe the need for continuous data collection and how this effort can be organized through the use of a well-adapted and user-friendly open-source software platform that integrates both continually improved guidance and automated data collection functionalities.publishedVersio

    Deep Multimodality Image-Guided System for Assisting Neurosurgery

    Get PDF
    Intrakranielle Hirntumoren gehören zu den zehn häufigsten bösartigen Krebsarten und sind für eine erhebliche Morbidität und Mortalität verantwortlich. Die größte histologische Kategorie der primären Hirntumoren sind die Gliome, die ein äußerst heterogenes Erschei-nungsbild aufweisen und radiologisch schwer von anderen Hirnläsionen zu unterscheiden sind. Die Neurochirurgie ist meist die Standardbehandlung für neu diagnostizierte Gliom-Patienten und kann von einer Strahlentherapie und einer adjuvanten Temozolomid-Chemotherapie gefolgt werden. Die Hirntumorchirurgie steht jedoch vor großen Herausforderungen, wenn es darum geht, eine maximale Tumorentfernung zu erreichen und gleichzeitig postoperative neurologische Defizite zu vermeiden. Zwei dieser neurochirurgischen Herausforderungen werden im Folgenden vorgestellt. Erstens ist die manuelle Abgrenzung des Glioms einschließlich seiner Unterregionen aufgrund seines infiltrativen Charakters und des Vorhandenseins einer heterogenen Kontrastverstärkung schwierig. Zweitens verformt das Gehirn seine Form ̶ die so genannte "Hirnverschiebung" ̶ als Reaktion auf chirurgische Manipulationen, Schwellungen durch osmotische Medikamente und Anästhesie, was den Nutzen präopera-tiver Bilddaten für die Steuerung des Eingriffs einschränkt. Bildgesteuerte Systeme bieten Ärzten einen unschätzbaren Einblick in anatomische oder pathologische Ziele auf der Grundlage moderner Bildgebungsmodalitäten wie Magnetreso-nanztomographie (MRT) und Ultraschall (US). Bei den bildgesteuerten Instrumenten handelt es sich hauptsächlich um computergestützte Systeme, die mit Hilfe von Computer-Vision-Methoden die Durchführung perioperativer chirurgischer Eingriffe erleichtern. Die Chirurgen müssen jedoch immer noch den Operationsplan aus präoperativen Bildern gedanklich mit Echtzeitinformationen zusammenführen, während sie die chirurgischen Instrumente im Körper manipulieren und die Zielerreichung überwachen. Daher war die Notwendigkeit einer Bildführung während neurochirurgischer Eingriffe schon immer ein wichtiges Anliegen der Ärzte. Ziel dieser Forschungsarbeit ist die Entwicklung eines neuartigen Systems für die peri-operative bildgeführte Neurochirurgie (IGN), nämlich DeepIGN, mit dem die erwarteten Ergebnisse der Hirntumorchirurgie erzielt werden können, wodurch die Gesamtüberle-bensrate maximiert und die postoperative neurologische Morbidität minimiert wird. Im Rahmen dieser Arbeit werden zunächst neuartige Methoden für die Kernbestandteile des DeepIGN-Systems der Hirntumor-Segmentierung im MRT und der multimodalen präope-rativen MRT zur intraoperativen US-Bildregistrierung (iUS) unter Verwendung der jüngs-ten Entwicklungen im Deep Learning vorgeschlagen. Anschließend wird die Ergebnisvor-hersage der verwendeten Deep-Learning-Netze weiter interpretiert und untersucht, indem für den Menschen verständliche, erklärbare Karten erstellt werden. Schließlich wurden Open-Source-Pakete entwickelt und in weithin anerkannte Software integriert, die für die Integration von Informationen aus Tracking-Systemen, die Bildvisualisierung und -fusion sowie die Anzeige von Echtzeit-Updates der Instrumente in Bezug auf den Patientenbe-reich zuständig ist. Die Komponenten von DeepIGN wurden im Labor validiert und in einem simulierten Operationssaal evaluiert. Für das Segmentierungsmodul erreichte DeepSeg, ein generisches entkoppeltes Deep-Learning-Framework für die automatische Abgrenzung von Gliomen in der MRT des Gehirns, eine Genauigkeit von 0,84 in Bezug auf den Würfelkoeffizienten für das Bruttotumorvolumen. Leistungsverbesserungen wurden bei der Anwendung fort-schrittlicher Deep-Learning-Ansätze wie 3D-Faltungen über alle Schichten, regionenbasier-tes Training, fliegende Datenerweiterungstechniken und Ensemble-Methoden beobachtet. Um Hirnverschiebungen zu kompensieren, wird ein automatisierter, schneller und genauer deformierbarer Ansatz, iRegNet, für die Registrierung präoperativer MRT zu iUS-Volumen als Teil des multimodalen Registrierungsmoduls vorgeschlagen. Es wurden umfangreiche Experimente mit zwei Multi-Location-Datenbanken durchgeführt: BITE und RESECT. Zwei erfahrene Neurochirurgen führten eine zusätzliche qualitative Validierung dieser Studie durch, indem sie MRT-iUS-Paare vor und nach der deformierbaren Registrierung überlagerten. Die experimentellen Ergebnisse zeigen, dass das vorgeschlagene iRegNet schnell ist und die besten Genauigkeiten erreicht. Darüber hinaus kann das vorgeschlagene iRegNet selbst bei nicht trainierten Bildern konkurrenzfähige Ergebnisse liefern, was seine Allgemeingültigkeit unter Beweis stellt und daher für die intraoperative neurochirurgische Führung von Nutzen sein kann. Für das Modul "Erklärbarkeit" wird das NeuroXAI-Framework vorgeschlagen, um das Vertrauen medizinischer Experten in die Anwendung von KI-Techniken und tiefen neuro-nalen Netzen zu erhöhen. Die NeuroXAI umfasst sieben Erklärungsmethoden, die Visuali-sierungskarten bereitstellen, um tiefe Lernmodelle transparent zu machen. Die experimen-tellen Ergebnisse zeigen, dass der vorgeschlagene XAI-Rahmen eine gute Leistung bei der Extraktion lokaler und globaler Kontexte sowie bei der Erstellung erklärbarer Salienzkar-ten erzielt, um die Vorhersage des tiefen Netzwerks zu verstehen. Darüber hinaus werden Visualisierungskarten erstellt, um den Informationsfluss in den internen Schichten des Encoder-Decoder-Netzwerks zu erkennen und den Beitrag der MRI-Modalitäten zur end-gültigen Vorhersage zu verstehen. Der Erklärungsprozess könnte medizinischen Fachleu-ten zusätzliche Informationen über die Ergebnisse der Tumorsegmentierung liefern und somit helfen zu verstehen, wie das Deep-Learning-Modell MRT-Daten erfolgreich verar-beiten kann. Außerdem wurde ein interaktives neurochirurgisches Display für die Eingriffsführung entwickelt, das die verfügbare kommerzielle Hardware wie iUS-Navigationsgeräte und Instrumentenverfolgungssysteme unterstützt. Das klinische Umfeld und die technischen Anforderungen des integrierten multimodalen DeepIGN-Systems wurden mit der Fähigkeit zur Integration von (1) präoperativen MRT-Daten und zugehörigen 3D-Volumenrekonstruktionen, (2) Echtzeit-iUS-Daten und (3) positioneller Instrumentenver-folgung geschaffen. Die Genauigkeit dieses Systems wurde anhand eines benutzerdefi-nierten Agar-Phantom-Modells getestet, und sein Einsatz in einem vorklinischen Operati-onssaal wurde simuliert. Die Ergebnisse der klinischen Simulation bestätigten, dass die Montage des Systems einfach ist, in einer klinisch akzeptablen Zeit von 15 Minuten durchgeführt werden kann und mit einer klinisch akzeptablen Genauigkeit erfolgt. In dieser Arbeit wurde ein multimodales IGN-System entwickelt, das die jüngsten Fort-schritte im Bereich des Deep Learning nutzt, um Neurochirurgen präzise zu führen und prä- und intraoperative Patientenbilddaten sowie interventionelle Geräte in das chirurgi-sche Verfahren einzubeziehen. DeepIGN wurde als Open-Source-Forschungssoftware entwickelt, um die Forschung auf diesem Gebiet zu beschleunigen, die gemeinsame Nut-zung durch mehrere Forschungsgruppen zu erleichtern und eine kontinuierliche Weiter-entwicklung durch die Gemeinschaft zu ermöglichen. Die experimentellen Ergebnisse sind sehr vielversprechend für die Anwendung von Deep-Learning-Modellen zur Unterstützung interventioneller Verfahren - ein entscheidender Schritt zur Verbesserung der chirurgi-schen Behandlung von Hirntumoren und der entsprechenden langfristigen postoperativen Ergebnisse

    Coronary Artery Segmentation and Motion Modelling

    No full text
    Conventional coronary artery bypass surgery requires invasive sternotomy and the use of a cardiopulmonary bypass, which leads to long recovery period and has high infectious potential. Totally endoscopic coronary artery bypass (TECAB) surgery based on image guided robotic surgical approaches have been developed to allow the clinicians to conduct the bypass surgery off-pump with only three pin holes incisions in the chest cavity, through which two robotic arms and one stereo endoscopic camera are inserted. However, the restricted field of view of the stereo endoscopic images leads to possible vessel misidentification and coronary artery mis-localization. This results in 20-30% conversion rates from TECAB surgery to the conventional approach. We have constructed patient-specific 3D + time coronary artery and left ventricle motion models from preoperative 4D Computed Tomography Angiography (CTA) scans. Through temporally and spatially aligning this model with the intraoperative endoscopic views of the patient's beating heart, this work assists the surgeon to identify and locate the correct coronaries during the TECAB precedures. Thus this work has the prospect of reducing the conversion rate from TECAB to conventional coronary bypass procedures. This thesis mainly focus on designing segmentation and motion tracking methods of the coronary arteries in order to build pre-operative patient-specific motion models. Various vessel centreline extraction and lumen segmentation algorithms are presented, including intensity based approaches, geometric model matching method and morphology-based method. A probabilistic atlas of the coronary arteries is formed from a group of subjects to facilitate the vascular segmentation and registration procedures. Non-rigid registration framework based on a free-form deformation model and multi-level multi-channel large deformation diffeomorphic metric mapping are proposed to track the coronary motion. The methods are applied to 4D CTA images acquired from various groups of patients and quantitatively evaluated
    corecore