270 research outputs found

    Some snarks are worse than others

    Full text link
    Many conjectures and open problems in graph theory can either be reduced to cubic graphs or are directly stated for cubic graphs. Furthermore, it is known that for a lot of problems, a counterexample must be a snark, i.e. a bridgeless cubic graph which is not 3--edge-colourable. In this paper we deal with the fact that the family of potential counterexamples to many interesting conjectures can be narrowed even further to the family S5{\cal S}_{\geq 5} of bridgeless cubic graphs whose edge set cannot be covered with four perfect matchings. The Cycle Double Cover Conjecture, the Shortest Cycle Cover Conjecture and the Fan-Raspaud Conjecture are examples of statements for which S5{\cal S}_{\geq 5} is crucial. In this paper, we study parameters which have the potential to further refine S5{\cal S}_{\geq 5} and thus enlarge the set of cubic graphs for which the mentioned conjectures can be verified. We show that S5{\cal S}_{\geq 5} can be naturally decomposed into subsets with increasing complexity, thereby producing a natural scale for proving these conjectures. More precisely, we consider the following parameters and questions: given a bridgeless cubic graph, (i) how many perfect matchings need to be added, (ii) how many copies of the same perfect matching need to be added, and (iii) how many 2--factors need to be added so that the resulting regular graph is Class I? We present new results for these parameters and we also establish some strong relations between these problems and some long-standing conjectures.Comment: 27 pages, 16 figure

    Petersen cores and the oddness of cubic graphs

    Full text link
    Let GG be a bridgeless cubic graph. Consider a list of kk 1-factors of GG. Let EiE_i be the set of edges contained in precisely ii members of the kk 1-factors. Let μk(G)\mu_k(G) be the smallest E0|E_0| over all lists of kk 1-factors of GG. If GG is not 3-edge-colorable, then μ3(G)3\mu_3(G) \geq 3. In [E. Steffen, 1-factor and cycle covers of cubic graphs, J. Graph Theory 78(3) (2015) 195-206] it is shown that if μ3(G)0\mu_3(G) \not = 0, then 2μ3(G)2 \mu_3(G) is an upper bound for the girth of GG. We show that μ3(G)\mu_3(G) bounds the oddness ω(G)\omega(G) of GG as well. We prove that ω(G)23μ3(G)\omega(G)\leq \frac{2}{3}\mu_3(G). If μ3(G)=23μ3(G)\mu_3(G) = \frac{2}{3} \mu_3(G), then every μ3(G)\mu_3(G)-core has a very specific structure. We call these cores Petersen cores. We show that for any given oddness there is a cyclically 4-edge-connected cubic graph GG with ω(G)=23μ3(G)\omega(G) = \frac{2}{3}\mu_3(G). On the other hand, the difference between ω(G)\omega(G) and 23μ3(G)\frac{2}{3}\mu_3(G) can be arbitrarily big. This is true even if we additionally fix the oddness. Furthermore, for every integer k3k\geq 3, there exists a bridgeless cubic graph GG such that μ3(G)=k\mu_3(G)=k.Comment: 13 pages, 9 figure

    Deformation classification of real non-singular cubic threefolds with a marked line

    Get PDF
    We prove that the space of pairs (X,l)(X,l) formed by a real non-singular cubic hypersurface XP4X\subset P^4 with a real line lXl\subset X has 18 connected components and give for them several quite explicit interpretations. The first one relates these components to the orbits of the monodromy action on the set of connected components of the Fano surface FR(X)F_\mathbb{R}(X) formed by real lines on XX. For another interpretation we associate with each of the 18 components a well defined real deformation class of real non-singular plane quintic curves and show that this deformation class together with the real deformation class of XX characterizes completely the component
    corecore