7 research outputs found

    Non-Interference with What-Declassification in Component-Based Systems

    Get PDF
    Component-based design is a method for modular design of systems. The structure of component-based systems follows specific rules and single components make assumptions on the environment that they run in. In this paper, we provide a noninterference property for component-based systems that allows for a precise specification of what-declassification of information and takes assumptions on the environment into consideration in order to allow a modular, precise and re-usable information-flow analysis. For precise analysis, components can be analyzed by separately analysing services provided by a component, and from our compositionality theorem non-interference of components follows

    CoCoME with Security

    Get PDF
    In this technical report we provide the documentation of the functional requirements of a component-based system representing the IT infrastructure supermarket along with the description of confidentiality properties in the form of information flow requirements for the system. From an architectural point of view, we describe for each interface all services on a functional level. We identify a number of possible attackers and assign for each attacker what inputs to the system she may gain knowledge about and which outputs she may be able to observe. The architecture and security properties of the system are modeled using an extension of the Palladio Component Model

    CoCon: A conference management system with formally verified document confidentiality

    Get PDF
    We present a case study in formally verified security for realistic systems: the information flow security verification of the functional kernel of a web application, the CoCon conference management system. We use the Isabelle theorem prover to specify and verify fine-grained confidentiality properties, as well as complementary safety and “traceback” properties. The challenges posed by this development in terms of expressiveness have led to bounded-deducibility security, a novel security model and verification method generally applicable to systems describable as input/output automata

    CoCon: A conference management system with formally verified document confidentiality

    Get PDF
    We present a case study in formally verified security for realistic systems: the information flow security verification of the functional kernel of a web application, the CoCon conference management system. We use the Isabelle theorem prover to specify and verify fine-grained confidentiality properties, as well as complementary safety and “traceback” properties. The challenges posed by this development in terms of expressiveness have led to bounded-deducibility security, a novel security model and verification method generally applicable to systems describable as input/output automata

    Composition and Declassification in Possibilistic Information Flow Security

    Get PDF
    Formal methods for security can rule out whole classes of security vulnerabilities, but applying them in practice remains challenging. This thesis develops formal verification techniques for information flow security that combine the expressivity and scalability strengths of existing frameworks. It builds upon Bounded Deducibility (BD) Security, which allows specifying and verifying fine-grained policies about what information may flow when to whom. Our main technical result is a compositionality theorem for BD Security, providing scalability by allowing us to verify security properties of a large system by verifying smaller components. Its practical utility is illustrated by a case study of verifying confidentiality properties of a distributed social media platform. Moreover, we discuss its use for the modular development of secure workflow systems, and for the security-preserving enforcement of safety and security properties other than information flow control
    corecore