3,471 research outputs found

    Analysis, filtering, and control for Takagi-Sugeno fuzzy models in networked systems

    Get PDF
    Copyright © 2015 Sunjie Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.The fuzzy logic theory has been proven to be effective in dealing with various nonlinear systems and has a great success in industry applications. Among different kinds of models for fuzzy systems, the so-called Takagi-Sugeno (T-S) fuzzy model has been quite popular due to its convenient and simple dynamic structure as well as its capability of approximating any smooth nonlinear function to any specified accuracy within any compact set. In terms of such a model, the performance analysis and the design of controllers and filters play important roles in the research of fuzzy systems. In this paper, we aim to survey some recent advances on the T-S fuzzy control and filtering problems with various network-induced phenomena. The network-induced phenomena under consideration mainly include communication delays, packet dropouts, signal quantization, and randomly occurring uncertainties (ROUs). With such network-induced phenomena, the developments on T-S fuzzy control and filtering issues are reviewed in detail. In addition, some latest results on this topic are highlighted. In the end, conclusions are drawn and some possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 11301118 and 61174136, the Natural Science Foundation of Jiangsu Province of China under Grant BK20130017, the Fundamental Research Funds for the Central Universities of China under Grant CUSF-DH-D-2013061, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Non-fragile estimation for discrete-time T-S fuzzy systems with event-triggered protocol

    Get PDF
    summary:This paper investigates the non-fragile state estimation problem for a class of discrete-time T-S fuzzy systems with time-delays and multiple missing measurements under event-triggered mechanism. First of all, the plant is subject to the time-varying delays and the stochastic disturbances. Next, a random white sequence, the element of which obeys a general probabilistic distribution defined on [0,1][0,1], is utilized to formulate the occurrence of the missing measurements. Also, an event generator function is employed to regulate the transmission of data to save the precious energy. Then, a non-fragile state estimator is constructed to reflect the randomly occurring gain variations in the implementing process. By means of the Lyapunov-Krasovskii functional, the desired sufficient conditions are obtained such that the Takagi-Sugeno (T-S) fuzzy estimation error system is exponentially ultimately bounded in the mean square. And then the upper bound is minimized via the robust optimization technique and the estimator gain matrices can be calculated. Finally, a simulation example is utilized to demonstrate the effectiveness of the state estimation scheme proposed in this paper

    Distributed Decision Through Self-Synchronizing Sensor Networks in the Presence of Propagation Delays and Asymmetric Channels

    Full text link
    In this paper we propose and analyze a distributed algorithm for achieving globally optimal decisions, either estimation or detection, through a self-synchronization mechanism among linearly coupled integrators initialized with local measurements. We model the interaction among the nodes as a directed graph with weights (possibly) dependent on the radio channels and we pose special attention to the effect of the propagation delay occurring in the exchange of data among sensors, as a function of the network geometry. We derive necessary and sufficient conditions for the proposed system to reach a consensus on globally optimal decision statistics. One of the major results proved in this work is that a consensus is reached with exponential convergence speed for any bounded delay condition if and only if the directed graph is quasi-strongly connected. We provide a closed form expression for the global consensus, showing that the effect of delays is, in general, the introduction of a bias in the final decision. Finally, we exploit our closed form expression to devise a double-step consensus mechanism able to provide an unbiased estimate with minimum extra complexity, without the need to know or estimate the channel parameters.Comment: To be published on IEEE Transactions on Signal Processin

    Distributed averaging over communication networks:Fragility, robustness and opportunities

    Get PDF
    Distributed averaging, a canonical operation among many natural interconnected systems, has found applications in a tremendous variety of applied fields, including statistical physics, signal processing, systems and control, communication and social science. As information exchange is a central part of distributed averaging systems, it is of practical as well as theoretical importance to understand various properties/limitations of those systems in the presence of communication constraints and devise new algorithms to alleviate those limitations. We study the fragility of a popular distributed averaging algorithm when the information exchange among the nodes is limited by communication delays, fading connections and additive noise. We show that the otherwise well studied and benign multi-agent system can generate a collective global complex behavior. We characterize this behavior, common to many natural and human-made interconnected systems, as a collective hyper-jump diffusion process and as a L\\u27{e}vy flights process in a special case. We further describe the mechanism for its emergence and predict its occurrence, under standard assumptions, by checking the Mean Square instability of a certain part of the system. We show that the strong connectivity property of the network topology guarantees that the complex behavior is global and manifested by all the agents in the network, even though the source of uncertainty is localized. We provide novel computational analysis of the MS stability index under spatially invariant structures and gain certain qualitative as well as quantitative insights of the system. We then focus on design of agents\u27 dynamics to increase the robustness of distributed averaging system to topology variations. We provide a general structure of distributed averaging systems where individual agents are modeled by LTI systems. We show the problem of designing agents\u27 dynamics for distributed averaging is equivalent to an H∞\mathcal{H}_{\infty} minimization problem. In this way, we could use tools from robust control theory to build the distributed averaging system where the design is fully distributed and scalable with the size of the network. It is also shown that the agents could be used in different fixed networks and networks with speical time varying interconnections. We develop new iterative distributed averaging algorithms which allow agents to compute the average quantity in the presence of additive noise and random changing interconnections. The algorithm relaxes several previous restrictive assumptions on distributed averaging under uncertainties, such as diminishing step size rule, doubly stochastic weights, symmetric link switching styles, etc, and introduces novel mechanism of network feedback to mitigate effects of communication uncertainties on information aggregation. Based on the robust distributed averaging algorithm, we propose continuous as well as discrete time computation models to solve the distributed optimization problem where the objective function is formed by the summation of convex functions of the same variable. The algorithm shows faster convergence speed than existing ones and exhibits robustness to additive noise, which is the main source of limitation on algorithms based on convex mixing. It is shown that agents with simple dynamics and gradient sensing abilities could collectively solve complicated convex optimization problems. Finally, we generalize this algorithm to build a general framework forconstrained convex optimization problems. This framework is shown to be particularly effective to derive solutions for distributed decision making problems and lead to a systems perspective for convex optimization

    Robustness of large-scale stochastic matrices to localized perturbations

    Get PDF
    Upper bounds are derived on the total variation distance between the invariant distributions of two stochastic matrices differing on a subset W of rows. Such bounds depend on three parameters: the mixing time and the minimal expected hitting time on W for the Markov chain associated to one of the matrices; and the escape time from W for the Markov chain associated to the other matrix. These results, obtained through coupling techniques, prove particularly useful in scenarios where W is a small subset of the state space, even if the difference between the two matrices is not small in any norm. Several applications to large-scale network problems are discussed, including robustness of Google's PageRank algorithm, distributed averaging and consensus algorithms, and interacting particle systems.Comment: 12 pages, 4 figure

    Discrete Time Systems

    Get PDF
    Discrete-Time Systems comprehend an important and broad research field. The consolidation of digital-based computational means in the present, pushes a technological tool into the field with a tremendous impact in areas like Control, Signal Processing, Communications, System Modelling and related Applications. This book attempts to give a scope in the wide area of Discrete-Time Systems. Their contents are grouped conveniently in sections according to significant areas, namely Filtering, Fixed and Adaptive Control Systems, Stability Problems and Miscellaneous Applications. We think that the contribution of the book enlarges the field of the Discrete-Time Systems with signification in the present state-of-the-art. Despite the vertiginous advance in the field, we also believe that the topics described here allow us also to look through some main tendencies in the next years in the research area

    Estimation for decentralized safety control under communication delay and measurement uncertainty

    No full text
    International audienceThis paper addresses the design of a decentralized safety controller for two agents, subject to communication delay and imperfect measurements. The control objective is to ensure safety, meaning that the state of the two-agent system does not enter an undesired set in the state space. Assuming that we know a feedback map designed for the delay free-case, we propose a state estimation strategy which guarantees control agreement between the two agents. We present an estimation technique for bounded communication delays, assuming that the agents share the same internal clock, and extend it for infinitely-distributed communication delays by determining a lower bound for the probability of safety. We also explain how the proposed approach can be extended to a general system of N agents and discuss efficient computation of our estimation strategy. Performance of the controller and relevance of the proposed approach are discussed in light of simulations performed for a collision avoidance problem between two semi-autonomous vehicles at an intersection

    Estimation for decentralized safety control under communication delay and measurement uncertainty

    Get PDF
    This paper addresses the design of a decentralized safety controller for two agents, subject to communication delay and imperfect measurements. The control objective is to ensure safety, meaning that the state of the two-agent system does not enter an undesired set in the state space. Assuming that we know a feedback map designed for the delay free-case, we propose a state estimation strategy which guarantees control agreement between the two agents. We present an estimation technique for bounded communication delays, assuming that the agents share the same internal clock, and extend it for infinitely-distributed communication delays by determining a lower bound for the probability of safety. We also explain how the proposed approach can be extended to a general system of N agents and discuss efficient computation of our estimation strategy. Performance of the controller and relevance of the proposed approach are discussed in light of simulations performed for a collision avoidance problem between two semi-autonomous vehicles at an intersection. Keywords: Multi-agent systems; Communication delay; Estimation/prediction approaches; Safety contro
    • …
    corecore