100 research outputs found

    Variations of the McEliece Cryptosystem

    Full text link
    Two variations of the McEliece cryptosystem are presented. The first one is based on a relaxation of the column permutation in the classical McEliece scrambling process. This is done in such a way that the Hamming weight of the error, added in the encryption process, can be controlled so that efficient decryption remains possible. The second variation is based on the use of spatially coupled moderate-density parity-check codes as secret codes. These codes are known for their excellent error-correction performance and allow for a relatively low key size in the cryptosystem. For both variants the security with respect to known attacks is discussed

    Compact QC-LDPC Block and SC-LDPC Convolutional Codes for Low-Latency Communications

    Full text link
    Low decoding latency and complexity are two important requirements of channel codes used in many applications, like machine-to-machine communications. In this paper, we show how these requirements can be fulfilled by using some special quasi-cyclic low-density parity-check block codes and spatially coupled low-density parity-check convolutional codes that we denote as compact. They are defined by parity-check matrices designed according to a recent approach based on sequentially multiplied columns. This method allows obtaining codes with girth up to 12. Many numerical examples of practical codes are provided.Comment: 5 pages, 1 figure, presented at IEEE PIMRC 201

    A mathematical tool for constructing parametrizable spatially-coupled LDPC codes with cyclic structure and large girth

    Get PDF
    Spatially-coupled low-density parity-check codes (SC-LDPC) have been shown to be superior in performance than LDPC block codes for both communication and storage systems. Several heuristic construction methods for these codes have been proposed in the literature, but they allow the construction of SC-LDPC codes for only specific nodedegrees, short code length and lead to encoders/decoders with non-parametrizable complex architectures. In this work we construct a mathematical tool for generating SC-LDPC codes with arbitrary node-degrees, girth of at least six and a parity-matrix with cyclic structure. The generated codes satisfy some minimum communication performance requirements which can be previously determined and can they can also be encoded/decoded with reduced-complexity parametrizable hardware architectures. An encoder architecture with reduced memory size and reduced-complexity, known as partial-syndrome based encoder, was implemented in software and the code encodability was verified. The partial-syndrome encoder structure proposed in the literature has constrained code rate and a modified SC-LDPC code was implemented, allowing the generated codes to be encoded with the partial-syndrome encoder architecture for arbitrary rates. A reduced-complexity decoder known as window decoder was implemented in software and the code decodability was also verified.Códigos Spatially-coupled low-density parity-check (SC-LDPC) têm apresentado melhor performance do que LDPC block codes, tanto em sistemas de comunicação quanto de armazenamento. Diversos métodos heurísticos de construção para estes códigos têm sido propostos na literatura, os quais possibilitam a obtenção de códigos SC-LDPC com específicos node-degrees, pequenos comprimentos de código e necessitam codificadores/decodificadores de arquitetura complexa não-parametrizável. Neste trabalho, construiu-se uma ferramenta matemática para a geração de códigos SC-LDPC com node-degrees arbitrários, girth de no mínimo seis e matriz de paridade com estrutura cíclica. Os códigos gerados satisfazem requisitos mínimos de performance de comunicação que podem ser previamente estabelecidos e podem ser codificados/decodificados por arquiteturas de hardware parametrizáveis de complexidade reduzida. Implementou-se em software um codificador de arquitetura parametrizável com tamanho de memória reduzido e baixa complexidade, conhecido como codificador baseado em partial syndrome, e verificou-se a codificação dos códigos construídos. As arquiteturas para codificadores do tipo partial-syndrome encontradas na literatura possuem taxas de codificação não arbitrárias e por isso, modificou-se os códigos SC-LDPC construídos, permitindo que os códigos gerados possam ser codificados com o mesmo codificador do tipo partial-syndrome para taxas de codificação arbitrárias. Implementou-se em software um decodificador de complexidade reduzida, conhecido como window decoder, e verificou-se a convergência dos códigos SC-LDPC construídos

    Hierarchical and High-Girth QC LDPC Codes

    Full text link
    We present a general approach to designing capacity-approaching high-girth low-density parity-check (LDPC) codes that are friendly to hardware implementation. Our methodology starts by defining a new class of "hierarchical" quasi-cyclic (HQC) LDPC codes that generalizes the structure of quasi-cyclic (QC) LDPC codes. Whereas the parity check matrices of QC LDPC codes are composed of circulant sub-matrices, those of HQC LDPC codes are composed of a hierarchy of circulant sub-matrices that are in turn constructed from circulant sub-matrices, and so on, through some number of levels. We show how to map any class of codes defined using a protograph into a family of HQC LDPC codes. Next, we present a girth-maximizing algorithm that optimizes the degrees of freedom within the family of codes to yield a high-girth HQC LDPC code. Finally, we discuss how certain characteristics of a code protograph will lead to inevitable short cycles, and show that these short cycles can be eliminated using a "squashing" procedure that results in a high-girth QC LDPC code, although not a hierarchical one. We illustrate our approach with designed examples of girth-10 QC LDPC codes obtained from protographs of one-sided spatially-coupled codes.Comment: Submitted to IEEE Transactions on Information THeor

    The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure

    Full text link
    Powerful Quantum Error Correction Codes (QECCs) are required for stabilizing and protecting fragile qubits against the undesirable effects of quantum decoherence. Similar to classical codes, hashing bound approaching QECCs may be designed by exploiting a concatenated code structure, which invokes iterative decoding. Therefore, in this paper we provide an extensive step-by-step tutorial for designing EXtrinsic Information Transfer (EXIT) chart aided concatenated quantum codes based on the underlying quantum-to-classical isomorphism. These design lessons are then exemplified in the context of our proposed Quantum Irregular Convolutional Code (QIRCC), which constitutes the outer component of a concatenated quantum code. The proposed QIRCC can be dynamically adapted to match any given inner code using EXIT charts, hence achieving a performance close to the hashing bound. It is demonstrated that our QIRCC-based optimized design is capable of operating within 0.4 dB of the noise limit

    Spatially Coupled Codes and Optical Fiber Communications: An Ideal Match?

    Full text link
    In this paper, we highlight the class of spatially coupled codes and discuss their applicability to long-haul and submarine optical communication systems. We first demonstrate how to optimize irregular spatially coupled LDPC codes for their use in optical communications with limited decoding hardware complexity and then present simulation results with an FPGA-based decoder where we show that very low error rates can be achieved and that conventional block-based LDPC codes can be outperformed. In the second part of the paper, we focus on the combination of spatially coupled LDPC codes with different demodulators and detectors, important for future systems with adaptive modulation and for varying channel characteristics. We demonstrate that SC codes can be employed as universal, channel-agnostic coding schemes.Comment: Invited paper to be presented in the special session on "Signal Processing, Coding, and Information Theory for Optical Communications" at IEEE SPAWC 201

    Efficient Search of Compact QC-LDPC and SC-LDPC Convolutional Codes with Large Girth

    Full text link
    We propose a low-complexity method to find quasi-cyclic low-density parity-check block codes with girth 10 or 12 and shorter length than those designed through classical approaches. The method is extended to time-invariant spatially coupled low-density parity-check convolutional codes, permitting to achieve small syndrome former constraint lengths. Several numerical examples are given to show its effectiveness.Comment: 4 pages, 3 figures, 1 table, accepted for publication in IEEE Communications Letter
    corecore