
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
ESCOLA DE ENGENHARIA

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

EDUARDO COSTA DE AQUINO

A Mathematical Tool for Constructing
Parametrizable Spatially-Coupled LDPC Codes

With Cyclic Structure and Large Girth

Porto Alegre

2019

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
ESCOLA DE ENGENHARIA

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

EDUARDO COSTA DE AQUINO

A Mathematical Tool for Constructing Parametrizable
Spatially-Coupled LDPC Codes With Cyclic Structure

and Large Girth

Projeto realizado na Technische Universität Kaiserslautern

Supervisor: Dr.-Ing. Timo Lehnigk-Emden

Porto Alegre
2019

CIP - Catalogação na Publicação

Aquino, Eduardo Costa de
 A Mathematical Tool for Constructing Parametrizable
Spatially-Coupled LDPC Codes With Cyclic Structure and
Large Girth / Eduardo Costa de Aquino. -- 2019.
 55 f.
 Orientador: Timo Lehnigk-Emden.

 Trabalho de conclusão de curso (Graduação) --
Universidade Federal do Rio Grande do Sul, Escola de
Engenharia, Curso de Engenharia Elétrica, Porto
Alegre, BR-RS, 2019.

 1. ldpc codes. I. Lehnigk-Emden, Timo, orient. II.
Título.

Elaborada pelo Sistema de Geração Automática de Ficha Catalográfica da UFRGS com os
dados fornecidos pelo(a) autor(a).

EDUARDO COSTA DE AQUINO

A Mathematical Tool for Constructing Parametrizable
Spatially-Coupled LDPC Codes With Cyclic Structure

and Large Girth

Prof. Dr. Ivan Müller
Supervisor - UFRGS

Prof. Dr. Luiz Fernando Ferreira
Chefe do Departamento de Engenharia

Elétrica (DELET) - UFRGS

Aprovado em junho de 2019.

In memory of my grandmother Nely Haubert de Aquino who taught me all I really need to
know.

Acknowledgements

I would like to express my special thanks to my advisor Dr.-Ing. Timo Lehnigk-
Emden and my co-advisor Dipl.-Ing. Markus Fehrenz for conducting my work at the
University of Kaiserslautern, for all the knowledge shared and guidance provided through
the period of this work.

I am thankful to Dr.-Ing Christian Weis and to Prof. Dr.-Ing. Norbert Wehn for
the opportunity and the amazing work structure provided at the Microelectronic Systems
Design Research Group.

Resumo
Códigos Spatially-coupled low-density parity-check (SC-LDPC) têm apresentado melhor
performance do que LDPC block codes, tanto em sistemas de comunicação quanto de
armazenamento. Diversos métodos heurísticos de construção para estes códigos têm sido
propostos na literatura, os quais possibilitam a obtenção de códigos SC-LDPC com
específicos node-degrees, pequenos comprimentos de código e necessitam codificadores/de-
codificadores de arquitetura complexa não-parametrizável. Neste trabalho, construiu-se
uma ferramenta matemática para a geração de códigos SC-LDPC com node-degrees arbi-
trários, girth de no mínimo seis e matriz de paridade com estrutura cíclica. Os códigos
gerados satisfazem requisitos mínimos de performance de comunicação que podem ser pre-
viamente estabelecidos e podem ser codificados/decodificados por arquiteturas de hardware
parametrizáveis de complexidade reduzida. Implementou-se em software um codificador
de arquitetura parametrizável com tamanho de memória reduzido e baixa complexidade,
conhecido como codificador baseado em partial syndrome, e verificou-se a codificação dos
códigos construídos. As arquiteturas para codificadores do tipo partial-syndrome encon-
tradas na literatura possuem taxas de codificação não arbitrárias e por isso, modificou-se os
códigos SC-LDPC construídos, permitindo que os códigos gerados possam ser codificados
com o mesmo codificador do tipo partial-syndrome para taxas de codificação arbitrárias.
Implementou-se em software um decodificador de complexidade reduzida, conhecido como
window decoder, e verificou-se a convergência dos códigos SC-LDPC construídos.

Palavras-chave: códigos spatially-coupled LDPC. códigos convolucionais. teoria de codi-
ficação.

Abstract
Spatially-coupled low-density parity-check codes (SC-LDPC) have been shown to be
superior in performance than LDPC block codes for both communication and storage
systems. Several heuristic construction methods for these codes have been proposed in
the literature, but they allow the construction of SC-LDPC codes for only specific node-
degrees, short code length and lead to encoders/decoders with non-parametrizable complex
architectures. In this work we construct a mathematical tool for generating SC-LDPC codes
with arbitrary node-degrees, girth of at least six and a parity-matrix with cyclic structure.
The generated codes satisfy some minimum communication performance requirements
which can be previously determined and can they can also be encoded/decoded with
reduced-complexity parametrizable hardware architectures. An encoder architecture with
reduced memory size and reduced-complexity, known as partial-syndrome based encoder,
was implemented in software and the code encodability was verified. The partial-syndrome
encoder structure proposed in the literature has constrained code rate and a modified
SC-LDPC code was implemented, allowing the generated codes to be encoded with the
partial-syndrome encoder architecture for arbitrary rates. A reduced-complexity decoder
known as window decoder was implemented in software and the code decodability was also
verified.

Keywords: spatially-coupled LDPC codes. convolutional codes. coding theory.

List of Figures

Figure 1 – A sketch of typical LDPC-BC decoded BER performance over the
AWGNC. 13

Figure 2 – Communication system. 15
Figure 3 – Block code codeword. 17
Figure 4 – Convolutional code. 18
Figure 5 – (a) Parity-check matrix of an LPDC code and (b) its Tanner graph

representation. 19
Figure 6 – (a) Protograph of the non-binary base matrix B = [3 3]. (b) Copying

and transmission of the protograph over time for constructing a larger
code. (c) Dispersion of the additional edges from each protograph to its
neighbour protographs. (d) Graph representation of an infinite spatially
coupled LDPC chain with memory ms = 2. 22

Figure 7 – Spatial coupling between the code blocks at time instant t, t− 1 and
t− 2 in an infinite SC-LDPC parity-check matrix. 23

Figure 8 – Parity-check matrix of an SC-LDPC code with the parameters given in
Table 2. 24

Figure 9 – Information spreading along the codeword. The rectangles represent the
systematic coupled code blocks. 25

Figure 10 – Encoded codeword for the information sequence u[0,5] = [1 0 1 1 1 0]
using the parity-check matrix of the SC-LDPC code given in Figure 8. 27

Figure 11 – Summary of the SP-construction method for SC-LDPC codes. 28
Figure 12 – SC-LDPC code over GF (7) based on the SP-method. 33
Figure 13 – Corresponding tanner graph representation of the SC-LDPC parity-

check matrix of figure 12. 35
Figure 14 – Partial-syndrome based encoder for SC-LDPC Codes 36
Figure 15 – Finite State Machine for the partial-syndrome based encoder. 38
Figure 16 – (a) Graph representation of a (3, 6, L) SC-LDPC code and (b) Graph

representation of a (4, 6, L) with modified structure. 39
Figure 17 – (a) Parity-check matrix of an SC-LDPC code over GF (7) with modified

structure. 40
Figure 18 – Window decoder of size W for SC-LDPC codes. 41
Figure 19 – Decoding process for the SC-LDPC parity-check matrix of figure 12. . . 43
Figure 20 – (a) Addition and multiplication tables for GF (2). 52

List of Tables

Table 1 – SC-LDPC code parameters. 23
Table 2 – Parameters of the SC-LDPC code given in Figure 8. 24
Table 3 – Parameters of the SC-LDPC code given in Figure 12. 34

List of abbreviations and acronyms

AWGN Additive White Gaussian Noise

BC Block Code

BER Bit Error Rate

BP Belief Propagation

CN Check Node

CPM Circulant Permutation Matrix

FSM Finite State Machine

GF Galois Field

LDPC Low-Density Parity-Check

LLR Log Likelihood Ratio

ML Maximum Likelihood

NB Non-Binary

PTG Protograph

SC Spatially-coupled

SM Submatrix

SNR Signal-to-Noise Ratio

SP Superposition

SW Section-Wise

VN Variable Node

ZM Zero Matrix

Contents

1 INTRODUCTION . 12

2 TECHNICAL BACKGROUND . 15
2.1 Channel Coding . 15
2.2 Channel Capacity . 16
2.3 Linear Block Codes . 16
2.4 Parity-Check Matrix . 17
2.5 Convolutional Codes . 17
2.6 Low-Density Parity-Check (LDPC) Codes 18
2.7 Spatially-Coupled LDPC Codes . 20
2.7.1 Encoding Spatially-Coupled LDPC Codes: Example 23

3 SC-LDPC CODES CONSTRUCTION 28
3.1 Constructing SC-LDPC Codes With the Superposition Method . . . 28
3.1.1 Premises . 28
3.1.2 Constructing Base Matrices With Doubly-Cyclic Structure Over Finite Fields 30
3.1.3 Constructing SC-LDPC Parity-Check Matrices 31
3.2 Partial-Syndrome Based Encoder for SC-LDPC Codes 34
3.2.1 Code Adaptation for Arbitrary Code Rates 38
3.2.2 Modified Partial-Syndrome Based Encoder for Encoding SC-LDPC Codes

With Arbitrary Code Rates . 39
3.3 Window Decoder for SC-LDPC Codes 40
3.3.1 Decoding Algorithm . 42

4 RESULTS AND DISCUSSION . 44

5 CONCLUSION . 46

6 FUTURE WORK SUGGESTIONS 47

REFERENCES . 48

APPENDIX 50

APPENDIX A – GALOIS FIELD ARITHMETIC 51

APPENDIX B – CIRCULANT PERMUTATIONMATRIX DISPER-
SION . 53

12

1 Introduction

Low-density parity-check (LDPC) codes were first proposed in 1962 by Robert
Gallager (GALLAGER, 1962) and since their rediscovery in 1990, due to their channel
capacity-approaching performance, they play an important role in the field of error
correction for communication and storage systems. In the last decades LDPC codes
have been used in many communication standards, such as WiMAX, WiFi, DVB-S2X,
DVB-S2 and DVB-T2. The key feature that sets LDPC codes apart from other capacity
approaching codes is that with suboptimal iterative belief propagation(BP) decoding,
complexity grows only linearly with code block length, resulting in practically realizable
decoder implementations for long block length codes (COSTELLO et al., 2014).

LDPC block codes (LDPC-BC) can be classified in two types: regular and irregular.
Regular codes, as originally proposed by Gallager (GALLAGER, 1962), are asymptotically
good in the sense that their minimum distance grows linearly with block length. This
guarantees that these codes do not suffer from the error floor phenomenon, a flattening
on the bit error rate (BER) curve that results in poor performance at high signal-to-
noise-ratios (SNRs), as shown in Figure 1 for LDPC-BC decoded over the additive white
gaussian noise channel(AWGN). However, the iterative decoding behavior of regular codes
in the so-called waterfall, or moderate BER, region of the performance curve falls short
of capacity, making them unsuitable for severely power-constrained applications, such as
uplink cellular data transmission and digital satellite broadcasting systems, that must
achieve the best possible performance at moderate BERs. On other hand, irregular codes,
introduced by (LUBY et al., 2001), exhibit capacity approaching performance in the
waterfall but are normally subject to a visible error floor, making them undesirable in
certain applications, such as data storage and optical communication, that require very
low decoded BERs (COSTELLO et al., 2014).

One type of LDPC code with a very particular structure is called spatially-coupled
(SC) LDPC code, first invented by Jimenez Felström and Zigangirov in 1999 (FELSTRÖM;
ZIGANGIROV, 1999). In fact, the SC-LDPC code is a convolutional LDPC code and
its name comes from the protograph(PTG) based construction method, introduced by
Thorpe in 2003 (THORPE, 2003). The SC-LDPC is constructed by spatially coupling
classic LDPC block codes together, in such a way that one block of encoded information
depends on the previously encoded blocks. The graph representation of each constituent
LDPC block code is called a protograph and the graph representation of an SC-LDPC
code is a chain of spatially-coupled protographs.

Chapter 1. Introduction 13

Figure 1 – A sketch of typical LDPC-BC decoded BER performance over the AWGNC.

Source: (COSTELLO et al., 2014)

SC-LDPC codes combine the best features of regular and irregular codes: they have
capacity-approaching iterative decoding thresholds, characteristic of optimized irregular
codes, thus promising excellent performance in the waterfall region, and their minimum
code distance grows linearly with the block length, characteristic of regular codes, thus
promising the elimination of an error floor (COSTELLO et al., 2014).

One specific algebraic method for constructing SC-LDPC codes, known as superpo-
sition (SP), guarantees that the size of the smallest cycle in the code graph representation
is at least 6, an important property for achieving good communication performance, and
if the parity-check matrix of the code has a cyclic structure the SC-LDPC code can
be encoded/decoded with reduced-complexity encoder/decoder structures, based on the
algebraic properties of the SC-LDPC parity-check matrix.

With the new requirements imposed by the current applications in communication
and storage systems, such as transmission rate and power consumption, specific hardware
architectures are necessary to achieve the most efficient error correction performance. In
this work, we propose an efficient mathematical tool to construct parametrizable SC-LDPC
codes based on the superposition method, where the code length, code memory and code
rate can be arbitrarily chosen, making these codes suitable for a wide application range.
The parity-check matrices of the SC-LDPC codes constructed with this tool have a regular

Chapter 1. Introduction 14

cyclic structure, allowing recursive encoding/decoding with reduced memory size, known
as partial-syndrome SC-LDPC encoders/decoders, which achieve high throughputs, low
latency and minimum occupation area. The constructed SC-LDPC codes also have a
girth of at least 6, which guarantees that some minimum communication performance
requirements are satisfied.

15

2 Technical Background

In this chapter it will be described the fundamentals of coding theory and it will
be given an introduction to SC-LDPC codes.

2.1 Channel Coding
To understand what Channel Coding is, it is necessary to describe a communication

system and its modules. The system shown on Figure 2 describes a basic communication
system.

Figure 2 – Communication system.

Source: the author.

Source and Sink: information source provided from any system that has some
data to be transmitted.

Source encoder and source decoder: the encoder converts information bits
into a new bit sequence with more efficient representation. This process is also called
compression. The source decoder recovers the source information based on the encoding
process.

Channel encoder and channel decoder: the encoder adds some redundant
information in order to protect the data to be transmitted over a channel that is subjected
to interferences. Based on the added redundant bits, the decoder recovers the original
data, despite the channel noise.

Modulator and demodulator: the modulator converts the bit stream provided
by the encoder in a signal, in such a way that the signal to be transmitted matches the

Chapter 2. Technical Background 16

channel characteristics. The demodulator makes the counterpart, recover the bit stream
based on the used modulation.

Channel: the channel is the physical medium through which the data stream is
transmitted. Channels can add interference to the data being transmitted. The channel
output y is probabilistically modelled by the sum of the input x with the noise n, as given
in Equation 1.

y = x+ n (1)

We usually define a communication channel with a triple, consistent of an input
alphabet, an output alphabet, and for each input-output pair, a transition probability
p(o|i).

2.2 Channel Capacity
Based on the communication system model mentioned in Section 2.1, Shannon

defined channel capacity (SHANNON, 1948), which measures the amount of information
that can be transmitted through a channel. This notion of capacity is only a theoretical
limit and it does not guarantee the existence of such a scheme that achieves this limit.
The channel capacity C can be calculated as given by Equation 2.

C = Wlog(1 + SNR)
[
bits

s

]
(2)

With SNR the signal-to-noise power ratio detected at the receiver and W the
channel bandwidth. Setting a transmission rate R to a R < C value, an error probability
as small as desired can be achieved. In channel coding, the Sphere Packing Bound(SP59)
limit is also used, which is based on the Shannon limit but also takes into account the
code rate to calculate the communications limit.

2.3 Linear Block Codes
An alphabet is defined over a finite field, also known as Galois field (see Appendix

A), of size 2, GF (2), that means we have only two possible symbols, 0 and 1. Using block
coding, we segment the information sequence into blocks of a fixed size b, having then
K = 2b possible distinct messages. At the encoder, each of this input messages will be
encoded into a longer binary sequence of size n, as shown in Figure 3, being n > b, we
call that a codeword. With the set of all these messages, we have an (n, b) block code,
with m = n − b redundant bits, that will be used to correct the errors caused by the

Chapter 2. Technical Background 17

communication noise. The ratio between the number of information bits and the total
block size(information bits and redundant bits added by the encoder) we call code rate.

Figure 3 – Block code codeword.

Source: the author.

The code minimum distance, or Hamming distance (HAMMING, 1950) is the
number of positions in which two different codewords c1 and c2 differ. That means, a
receiver based on a code distance d, is able to detect up to d− 1 transmission errors, since
changing only d − 1 positions of a codeword can never lead to an unwanted, but valid,
codeword.

2.4 Parity-Check Matrix
A parity-check matrix is used in the decoding process to check if a codeword v is

valid given the linear block code C, respect to the equation 3.

vHT = 0 (3)

As C is an (n, b) b-dimensional block code, the null space of this code, denoted
Cd, is an (n, n− b), (n− b)-dimensional code. Using H = (h0, h1, . . . , hn−b−1) as the set of
n − b linearly independent codewords in the basis of Cd, the codewords in Cd form the
(n− b)xn parity-check matrix in Equation 4.

H =


h0

h1
...

hn−b−1

 =


h0,0 h0,1 . . . h0,n−1

h1,0 h1,1 . . . h1,n−1
...

hn−b−1,0 hn−b−1,1 . . . hn−b−1,n−1

 (4)

2.5 Convolutional Codes
Convolutional codes were introduced in 1955 by Peter Elias (ELIAS, 1955). It was

thought that convolutional codes could be decoded with arbitrary quality at the expense

Chapter 2. Technical Background 18

of computation and delay. Unlike block codes, where the information bits are followed by
the parity bits, convolutional coding spread the information bits along the bit sequence.
This means that the convolutional codes map information to code bits not block wise, but
sequentially convolve the sequence of information bits according to some rule. We also
have the n and b code parameters, where the number of parity bits is m = n− b, but in
addition, a new ms parameter, that is the number of memory elements (registers) used to
store data from past bits. That makes the code defined by a triple (n,m,ms).

The encoder basically uses a sliding window, to calculate m ≥ 1 parity bits by com-
bining various subsets of bits in the window. Then in every time step, the window overlaps
and slides, calculating new parity bits. This sliding process represents the convolution of
the encoder over the data, which provides the term convolutional codes.

In the case of Figure 4, we are generating 2 parity-checks. One P1 based on the
second and third bits in the window, and one P2 based on the first and second bits in the
window. The size of the window, in symbols, is called constraint length. With a bigger
window, the number of information bits that may influence each parity bit is potentially
larger. With a bigger window we might have some resilience to errors. The trade-off is
that it will also take more time to decode codes using a long constraint length.

Figure 4 – Convolutional code.

Source: the author.

2.6 Low-Density Parity-Check (LDPC) Codes
LDPC codes are a class of linear block codes. From their name, LDPC codes

are codes defined by a very sparse, or low-density, parity-check matrix, that is, the H
matrix has a very low density of non-zero entries. That sparseness guarantees a decoding
complexity that increases only linearly with the code length.

LDPC codes are usually designed by constructing a parity-check matrix with the
desired properties. As an example, an LDPC parity-check matrix H is shown in Figure 5.

Chapter 2. Technical Background 19

Figure 5 – (a) Parity-check matrix of an LPDC code and (b) its Tanner graph representa-
tion.

Source: (COSTELLO et al., 2014)

The difference between LDPC codes and other block codes is in the way they are
decoded. Instead of using the maximum likelihood(ML) decoding schemes, which use short
block codes to make the ML task less complex, LDPC codes are decoded iteratively, using
a graphical representation of the H matrix.

From the H matrix we observe:

- m rows, each one representing a parity-check equation, that corresponds to the
function of a check node (CN).

- n columns, one for each code bit, that corresponds to the function of a variable
node (V N).

- dc: the number of non-zero elements in a row, it is called check node degree.

- dv: the number of non-zero elements in a column, we name it textitvariable node
degree.

The parity-check matrix H can also be represented using a Tanner graph, as shown
in Figure 5(b). A check node j is connected to a variable node i if the position hij in
the H matrix is a 1. In Figure 5(b), the darkened edges indicate a cycle of length 4. In
general, codes with short cycles do not perform well in the waterfall due to the buildup of
correlation in the iterative decoding process. Hence, it is desirable to choose codes with
large girth, the length of the shortest cycle, for good waterfall performance.

Chapter 2. Technical Background 20

2.7 Spatially-Coupled LDPC Codes
In order to describe the spatial coupling concept for an SC-LDPC code constructed

over a finite field GF (q), where q is the field size, let us consider a transmission of a
sequence of LDPC code blocks vt, 0 ≤ t < L− 1, described by Equation 5.

v[0,L−1] = [v0, v1, ..., vL−1] (5)

where each code block vt = [vt,0, vt,1, ..., vt,n−1], vt,j = (v(0)
t,j , v

(1)
t,j , ..., v

(q−2)
t,j),v(a)

t,j ∈ GF (2),
for 0 ≤ j < n, and 0 ≤ a < (q − 1). The number of bits in a code block vt is n(q − 1).
The code sequence described by Equation 5 is generated from an uncoded information
sequence given by Equation 6.

u[0,L−1] = [u0, u1, ..., uL−1] (6)

where ut = [ut,0, ut,1, ..., ut,b−1], ut,j = (u(0)
t,j , u

(1)
t,j , ..., u

(q−2)
t,j),u(a)

t,j ∈ GF (2), for 0 ≤ j < b,
and 0 ≤ a < (q − 1). The number of bits in an information block ut is b(q − 1). Hence,
each code block vt has a block of parity bits pt = [pt,0, pt,1, ..., pt,m−1], where m = n − b
and each pt,j = (p(0)

t,j , p
(1)
t,j , ..., p

(q−2)
t,j),p(a)

t,j ∈ GF (2), for 0 ≤ j < m, and 0 ≤ a < (q− 1). The
number of bits in a parity block pt is m(q − 1).

The code sequence given by Equation 5 satisfies Equation 3, which can be rewritten
as in Equation 7:

v[0,L−1]H
T
[0,L−1] = 0 (7)

where HT
[0,L−1] is the transposed parity-check matrix of a terminated spatially-coupled

LDPC code C, as given by Equation 8.

H[0,L−1] =



H0(0)
... . . .

Hms(0) H0(L− 1)
.

Hms(L− 1)


(8)

All non-zero elements of H[0,L−1] are lying in a main diagonal and each element is
a sub-matrix of dimension m x n defined in Equation 9.

Hi(t) =


h

(0,0)
i (t) . . . h

(0,n−1)
i (t)

...
h

(m−1,0)
i (t) . . . h

(m−1,n−1)
i (t)

 (9)

where h(p,e)
i (t) is a circulant permutation matrix (CPM) of size (q − 1) x (q − 1) (see

Appendix B), 0 ≤ t < L, 0 ≤ i ≤ ms, for 0 ≤ p < m, 0 ≤ e < n.

Chapter 2. Technical Background 21

In an SC-LDPC code the code blocks at different time instants are interconnected.
Instead of encoding all codewords independently, the blocks vt are coupled by the encoder
to other time instants. The largest distance between a pair of coupled blocks defines
the syndrome-former memory ms of the SC-LDPC code. The corresponding sequence of
coupled code blocks forms a codeword v[0,t] = [v0, ..., vt, ..., vL−1] of a terminated SC-LDPC
code, t = 0, ..., L− 1. We assume Hi(t) = Hi(t′), i = 0, ...,ms, t

′ = t+ms + 1, t′ < L, i.e, a
time invariant-code where the sub-matrices Hi(t) are periodically repeated with period
ms + 1.

To better understand the graph representation of the SC-LDPC parity-check matrix
and better explain the spatial coupling between the coupled blocks, let us construct a small
SC-LDPC code using a graph-based construction method known as protograph (PTG). In
this method, instead of constructing a large parity-check matrix that has the properties
that we want, we start with a small protograph representing a smaller parity-check matrix,
which has the desired properties. This smaller parity-check matrix is called a base matrix.

Figure 6(a) shows the protograph representation for a small base matrix B. This
protograph has m check nodes and n variable nodes. Indeed, as this protograph has more
than one edge between variable nodes and check nodes, the entries inside its corresponding
base matrix are non-binary to represent the corresponding number of edges. In this example,
the corresponding base matrix is B = [3 3]. Then, to construct a larger code, we copy the
protograph as many times as desired, as shown in Figure 6(b), where each protograph can
be viewed as a transmission of LDPC-BCs over time.

To construct the SC-LDPC code we change the connections of each two additional
edges inside each protograph and connect them to its two neighbour protographs. This
operation is called edge dispersion and it is shown in Figure 6(c). Applying the edge
dispersion on all blocks of Figure 6(b), we get the infinite spatially-coupled LDPC chain
of Figure 6(d). Now, to encode the block at time instant t, we also need the values of
the previous encoded blocks at time instants t−1 and t − 2, as shown in Figure 6(c).
Basically, it means that now the values of the two previously encoded blocks must be
stored for encoding the incoming information block, i.e., the code has memory. The graph
representation of the interconnected blocks can be viewed as a spatially-coupling between
those protographs. The code memory size depends on how many additional edges are
inside each protograph to be connected to its neighbour protographs, i.e, the number of
previously encoded blocks necessary to encode the next incoming block and it is given by
ms = g.c.d.(dv, dc)− 1, where g.c.d. stands for greatest common divisor, dv is the variable
node degree and dc is the check node degree. In this example, ms = 2, corresponding to
the two additional edges connected from one protograph to its two neighbour protographs.

On practice, the encoding process will start and finish at some specific time and the
parity-check matrix H must be terminated on the bounds. Its corresponding SC-LDPC

Chapter 2. Technical Background 22

Figure 6 – (a) Protograph of the non-binary base matrix B = [3 3]. (b) Copying and
transmission of the protograph over time for constructing a larger code. (c)
Dispersion of the additional edges from each protograph to its neighbour
protographs. (d) Graph representation of an infinite spatially coupled LDPC
chain with memory ms = 2.

Source: (MITCHELL; LENTMAIER; COSTELLO D. J., 2015)

chain shown on Figure 6(d) finishes at some some specific time instant and therefore, the
check nodes on the bounds have less connections. For constructing an SC-LDPC code even
larger, we can copy the SC-LDPC chain of Figure 6(d) after termination as many times as
desired. Considering c the number of copied terminated chains, the length of the coupling
chain L will be (ms + 1)c code blocks.

The parity-check matrix H represented by the SC-LDPC chain shown in Figure
6(d) has the structure given by Equation 8 and it is shown in Figure 7. All non-zero
entries are lying in a main diagonal of width vs = (ms + 1)n and outside this diagonal all
entries are zeros. The entries are the sub-matrices of size mxn given in Equation 9, where
each column of sub-matrices corresponds to a coupled code block of length n(q − 1), with
m(q − 1) parity bits, as shown in Figure 6, assuming a systematic code. In this example,
m = dv/(ms + 1) = 1, n = dc/(ms + 1) = 2 and the entries of each sub-matrix are just
one element, considering GF (2). vs is called the decoding constraint length of the code

Chapter 2. Technical Background 23

and gives the number of variable nodes involved in each parity-check equation. Table 1
summarizes all code parameters and their definitions.

Table 1 – SC-LDPC code parameters.

Parameter Abbreviation Definition

Finite field of size q GF (q) −

Variable node degree dv −

Check node degree dc −

Code memory size ms (g.c.d(dv, dc)− 1)

Protograph’s variable nodes m
dv

ms + 1(q − 1)

Protograph’s check nodes n
dc

ms + 1(q − 1)

Decoding constraint length vs (ms + 1)(q − 1)n

Number of copied SC-LDPC blocks c −

Coupling chain length L (ms + 1)c

Code rate R
n−m

n

Figure 7 – Spatial coupling between the code blocks at time instant t, t− 1 and t− 2 in
an infinite SC-LDPC parity-check matrix.

Source: the author.

2.7.1 Encoding Spatially-Coupled LDPC Codes: Example

As an example, it will be shown now one type of encoding algorithm for encoding
the information sequence u[0,5] = [1 0 1 1 1 0] using the terminated parity-check matrix

Chapter 2. Technical Background 24

H of the SC-LDPC code over GF (2) given in Figure 8. All code parameters are given in
Table 2.

Table 2 – Parameters of the SC-LDPC code given in
Figure 8.

Parameters q dv dc ms m n vs c L R
Values 2 3 6 2 1 2 6 2 6 1/2

Figure 8 – Parity-check matrix of an SC-LDPC code with the parameters given in Table
2.

Source: the author.

Assuming a systematic code, each column of sub-matrices corresponds to a code
block, where the first (n−m) bits are the information bits and the last m bits are the
parity bits, as indicated above each column in Figure 8 by the symbols I (for information)
and P (for parity). Therefore, the SC-LDPC code spreads the bits of information evenly
along the coupled chain of code blocks, as shown in Figure 9.

Step 1 : as the first (n−m)(q − 1) = 1 bits of each code block are the information
bits, we start sending the incoming bit of information to the encoder’s output:

v0,0 = u0,0 = 1

Step 2 : the last m(q − 1) bits of each code block are the parity bits and they are
calculated based on the received message as:

v0,1 = u0,0h
0,0
0 (0)T = 1

Chapter 2. Technical Background 25

Figure 9 – Information spreading along the codeword. The rectangles represent the sys-
tematic coupled code blocks.

Source: the author.

where h0,0
0 (0) is the part of the first sub-matrix in the column associated with each code

block corresponding to information, which is shown by the shaded squares in Figure 8. At
this point, we have already calculated the bits corresponding to the first code block of the
codeword in Figure 9 and solved all variables involved in the first parity-check equation
(first row) of the SC-LDPC parity-check matrix given in Figure 8.

v0 = [v0,0 v0,1] = [1 1]

Step 3 : as the already calculated code block at t = 0 is coupled by the sub-matrix
H1(0) in the second parity-check equation (second row) to the next code block to be
calculated at t = 1 and also coupled by the sub-matrix H2(0) in the third parity-check
equation (third row) to the code block to be calculated at t = 2, these contributions of the
calculated code block at t = 0 necessary to encode the next code blocks will be calculated
now and stored in the memory to be used later. The sub-matrices Hi(t) necessary for
calculating the next code blocks are called partial-syndrome former matrices.

S0,0 = v0H1(0)T = 1

S0,1 = v0H2(0)T = 0

S0 = [S0,0 S0,1] = [1 0]

The product vtHi(t)T is called partial syndrome St,r, 0 ≤ r < ms.

To calculate the next code block at time instant t = 1 the steps 1 to 3 are repeated
again for the second column of sub-matrices in the parity-check matrix.

Step 1 :
v1,0 = u1,0 = 0

Step 2 : for calculating the parity bits of the code block at t = 1 the values of the
previous encoded block at t = 0 stored in S0,0 must also be included:

v1,1 = u1,0h
0,0
0 (1)T + S0,0 = 1

Chapter 2. Technical Background 26

v1 = [v1,0 v1,1] = [0 1]

Step 3 : the calculated code block at t = 1 is also coupled to the next two code
blocks to be encoded and the syndromes corresponding to the partial-syndrome former
matrices H1(1) and H2(1) will be now calculated and stored in the memory for further use.

S1,0 = v1H1(1)T + S0,1 = 1

S1,1 = v1H2(1)T = 1

S1 = [S1,0 S1,1] = [1 1]

To calculate the next code block at time instant t = 2 the steps 1 to 3 are repeated
again for the third column of sub-matrices in the parity-check matrix.

Step 1 :
v2,0 = u2,0 = 1

Step 2 : for calculating the parity bits of the code block at t = 2 the values of the
previous encoded block at t = 1 stored in S1,0 must also be included:

v2,1 = u2,0h
0,0
0 (2)T + S1,0 = 0

It is worth mentioning that the syndrome corresponding to the partial-syndrome former
matrix H2(0) of the first encoded block at time instant t = 0 does not need to be considered
here to calculate v2,1, as it was already included in S1,0.

v2 = [v2,0 v2,1] = [1 0]

Step 3 : again the calculated code block at t = 2 is also coupled to the next two code
blocks to be encoded and the syndromes corresponding to the partial-syndrome former
matrices H1(2) and H2(2) are calculated and stored in the memory.

S2,0 = v2H
T
1 (2) + S1,1 = 0

S2,1 = v2H
T
2 (2) = 1

S2 = [S2,0 S2,1] = [1 1]

The steps 1 to 3 are repeated until all coupled code blocks are encoded. The steps 2
and 3 do not need to be calculated for the last time instant t = 5, as there is no next code
block to be encoded. Figure 10 shows the complete codeword composed by all calculated
coupled code blocks.

Chapter 2. Technical Background 27

Figure 10 – Encoded codeword for the information sequence u[0,5] = [1 0 1 1 1 0] using the
parity-check matrix of the SC-LDPC code given in Figure 8.

Source: the author.

28

3 SC-LDPC Codes Construction

In this section it will be shown how to construct SC-LDPC codes based on an
algebraic method called superposition (SP). This method makes use of the cyclic properties
of finite fields to construct an SC-LDPC parity-check matrix with cyclic structure. The
field elements determine the edges distribution pattern of the tanner graph associated
to the parity-check matrix of the code in such a way that the performance requirements
explained on the subsection 3.1.1 are met.

3.1 Constructing SC-LDPC Codes With the Superposition Method
The first step of the superposition method is the choice of a finite field GF (q) where

q is the field size. Then, instead of constructing the desired large parity-check matrix,
which would be a complex task, the field elements are used to construct a small non-binary
base matrix which has cyclic structure and some other important algebraic properties to
ensure a minimum communication performance. Next, some elements of the base matrix
are grouped together to construct another base matrix which has a doubly cyclic structure.
This array with doubly structure is repeated over an infinite chain of base matrices which
are spatially coupled together. Finally, each non-binary entry is dispersed by a CPM to
get the binary SC-LDPC parity-check matrix.

All these steps are summarized on figure 11 and they will be described on the
following subsections.

Figure 11 – Summary of the SP-construction method for SC-LDPC codes.

Source: the author.

3.1.1 Premises

The SP method for SC-LDPC codes has mainly two premises:

(1) The tanner graph associated to the SC-LDPC parity-check matrix must have a
girth of at least six.

(2) The SC-LDPC parity-check matrix must have a doubly-cyclic structure.

Chapter 3. SC-LDPC Codes Construction 29

The girth of the code is the size of the smallest cycle on the bipartite graph
associated to the SC-LDPC parity-check matrix. The number of edges on a path is called
the length of the path. A closed cycle that begins and ends at the same node is called
a cycle. For good communication performance cycles smaller than six must be avoided
(JOHNSON, 2010).

To satisfy the first premise the base matrix of the SC-LDPC code is constructed
over a non-binary(NB) finite field (see Appendix A) satisfying certain constraints. The
following theorem gives the necessary and sufficient conditions on the base matrix B for
the tanner graph of a SC-LDPC code to satisfy these constraints. This theorem was proved
in (DIAO et al., 2012).

Theorem 1 Let Bsp be the base matrix of a binary SC-SP-LDPC code Csp whose parity-
check matrix H is the binary CPM-dispersion (see Appendix B) of Bsp, where the subindex
sp stands for superposition. A necessary and sufficient condition for the tanner graph of
Csp to have girth at least six is that every 2 x 2 submatrix inside the base matrix Bsp

contains at least one zero entry or is non-singular

For convenience, the conditions given in the Theorem 1 are called the 2 x 2
submatrix (SM) constraint.

To satisfy the second premise the parity-check matrix H of the SC-LDPC code
must have a doubly cyclic structure, where the term doubly stands for a base matrix Bsp

that has both block-cyclic(BC) and section-wise(SW) cyclic structures.

The BC-structure means that each row-block is the cyclic-shift of the row-block
above it one constituent matrix to the right, and the top row-block is the cyclic-shift of the
last row-block one constituent matrix to the right. Each column-block is the cyclic shift of
the column block on its left one constituent matrix downward, and the first column-block
is the cyclic-shift of the last column-block one constituent matrix downward.

The SW-cyclic structure means that if the base matrix Bsp is grouped into n

sections, each containing k columns, if we shift all n sections simultaneously one position
to the right within each section, the base matrix Bsp will still be an array with block-cyclic
structure.

The doubly-cyclic structure allows the SC-LDPC code to be decoded with the
reduced-complexity iterative decoding scheme proposed by (LIU; LIN; ABDEL-GHAFFAR,
2013) based on its block-cyclic structure or the reduced-complexity iterative decoding
scheme presented by (LI et al., 2014b) based on its SW-cyclic structure, using the same
parity-check matrix.

Chapter 3. SC-LDPC Codes Construction 30

3.1.2 Constructing Base Matrices With Doubly-Cyclic Structure Over Finite
Fields

Let α be a primitive element of the finite field GF (q), where q is the field size. For
1 6 m, n 6 q, let S0 = αi0 , αi1 , ..., αim−1 and S1 = αj0 , αj1 , ..., αjn−1 be two arbitrary subsets
of elements in GF (q) with ik and jl in L = −∞, 0, 1, 2, ..., q − 2, where i0 < i1 < ... < im−1

and j0 < j1 < ... < jn−1. Let η be any non-zero element in GF (q). Then the following m x
n matrix can be constructed over the finite field GF (q):

B =



αi0αj0 − η αi0αj1 − η . . . αi0αjn−1 − η
αi1αj0 − η αi1αj1 − η . . . αi1αjn−1 − η

...
αim−1αj0 − η αim−1αj1 − η . . . αim−1αjn−1 − η


(10)

The matrix B in equation 10 has the following structural properties:

(1) All the entries in a row (or in a column) of B are distinct elements of GF (q);

(2) Each row (or column) of B contains at most one zero element;

(3) No two rows (or two columns) in B have identical entries at any position. It
was proved in (LI et al., 2014a) that the base matrix B satisfies the 2x 2SM − constraint.

As a special case of this construction, if we set S0 = α0, α−1, ..., α−(q−2) and
S1 = α0, α1, ..., αq−2 and η = 1, the following 2x 2SM − constrained (q − 1) x (q − 1)
base matrix over GF (q) can be obtained:

Bcyc =


α0 − 1 α1 − 1 α2 − 1 . . . αq−3 − 1 αq−2 − 1
αq−2 − 1 α0 − 1 α1 − 1 . . . αq−4 − 1 αq−3 − 1

...
α1 − 1 α2 − 1 α3 − 1 . . . αq−2 − 1 α0 − 1

 (11)

The base matrix Bcyc in equation 11 has the following structural properties:

(1) All the entries in a row (or in a column) of Bcyc are distinct elements of GF (q);

(2) Each row (or column) of Bcyc contains at most one zero element;

(3) No two rows (or two columns) in Bcyc have identical entries at any position;

(4) The q − 1 entries lying on the main diagonal are the zero elements of GF (q).

For 1 6 m, n 6 q, any m x n submatrix of Bcyc can be used as the base matrix for
constructing a SC-LDPC code with doubly cyclic structure. Suppose q− 1 can be factored

Chapter 3. SC-LDPC Codes Construction 31

as the product of two positive integers l and r. Then, we partition Bcyc into an array of
size r x r composed by submatrices of size l x l as follows:

Bcyc =


B0,0 B0,1 . . . B0,r−1

B0,r−1 B0,0 . . . B0,r−2
...

B0,1 B0,2 . . . B0,0

 (12)

For 0 6 j < r and 1 6 m,n < l, we now take an m x n submatrix R0,j

from B0, j. The submatrices R0,0, R0,1, ..., R0,r−1 are taken from the constituent matrices
B0,0, B0,1, ..., B0,r−1 under the following location constraint: for j′ 6= j, the locations of the
entries of R0,j in B0,j are identical to the locations of the entries of R0,j′ in B0,j′ . Then,
we form the following r x r array Bq,sp,doubly(m,n) of m x n sub-matrices over GF (q) with
doubly-cyclic structure:

Bq,sp,doubly(m,n) =


R0,0 R0,1 . . . R0,r−2 R0,r−1

R0,1 R0,2 . . . R0,r−1 R0,0
...

R0,r−1 R0,0 . . . R0,r−3 R0,r−2

 (13)

The array Bq,sp,doubly(m,n) in equation 13 is a subarray of Bcyc in equation 12 and
therefore, also satisfies the 2 x 2 SM-constraint. As the array has a doubly-cyclic structure,
shifting the field elements inside all submatrices R0,j simultaneously does not affect the
block-cyclic structure of the entire array Bq,sp,doubly(m,n) .

3.1.3 Constructing SC-LDPC Parity-Check Matrices

A parity-check matrix for a SC-LDPC code which satisfies the premises given in
3.1.1 can be constructed from the 2 x 2 SM-constrained r x r array Bq,sp,doubly(m,n) over
GF (q) with doubly-cyclic structure.

The first construction step is to cut the matrix Bq,sp,doubly(m,n) along its main
diagonal to construct two triangular sub-arrays, Tlower(r,r,m,n) with lower triangular form

Chapter 3. SC-LDPC Codes Construction 32

and Tupper(r,r,m,n) with upper triangular form, as given by equations 14 and 15, respectively.
The main diagonal of Bq,sp,doubly(m,n) is kept by Tlower(r,r,m,n).

Tlower(r,r,m,n) =



R0,0 0 0 . . . 0 0
R0,1 R0,2 0 . . . 0 0
R0,2 R0,3 R0,4 . . . 0 0
...

R0,r−2 R0,r−1 R0,0 . . . R0,r−4 0
R0,r−1 R0,0 R0,1 . . . R0,r−3 R0,r−2


(14)

Tupper(r,r,m,n) =



0 R0,1 R0,2 . . . R0,r−2 R0,r−1

0 0 R0,3 . . . R0,r−1 R0,0
...
0 0 0 . . . 0 R0,r−3

0 0 0 . . . 0 0


(15)

where the 0 elements in equations 14 and 15 correpond to zero-matrices with size
m x n.

Each constituent matrix in either Tlower(r,r,m,n) or Tupper(r,r,m,n) is a member matrix
in the set R0,0, R0,1, ..., R0,r−1 and each member matrix in R appears r times in the union
of Tlower(r,r,m,n) and Tupper(r,r,m,n). Since Bq,sp,doubly(m,n) satisfies the 2 x 2 SM-constraint and
Tupper(r,r,m,n) and Tlower(r,r,m,n) are two disjoint sub-arrays of Bq,sp,doubly(m,n) , Tlower(r,r,m,n)

and Tupper(r,r,m,n) also satisfy the 2 x 2 SM-constraint.

Using Tlower(r,r,m,n) and Tupper(r,r,m,n) as building blocks the semi-infinite base matrix
for a SC-LDPC code given in equation 16 can be constructed, where Tlower(r,r,m,n) is placed
above Tupper(r,r,m,n) to keep the doubly cyclic structure for the entire array.

BSC,doubly(r,r,m,n) =



Tlower

Tuppper Tlower

Tupper Tlower

Tupper Tlower

. . .


(16)

Since Tlower(r,r,m,n) and Tupper(r,r,m,n) satisfy the 2 x 2 SM-constraint, the semi-infinite
array BSC,doubly(r,r,m,n) also satisfies the 2 x 2 SM-constraint.

Dispersing each non-zero entry, i.e, the field elements of BSC,doubly(r,r,m,n) into a
binary CPM of size (q − 1) x (q − 1) and each 0-entry into a zero matrix of size (q − 1)
x (q − 1) according to appendix B, we obtain a semi-infinite array HSC,doubly(r,r,m,n) of
CPMs and zero matrices of size (q − 1) x (q − 1). The null space of HSC,doubly(r,r,m,n) gives

Chapter 3. SC-LDPC Codes Construction 33

a periodically time-varying SC-LDPC code with period r and rate close to (n −m)/n
(assuming m < n) with doubly-cyclic structure whose its associated tanner graph has girth
of at least six.

As the SC-LDPC codes have shown better performance for large code lengths, it
suggests that the parity-check matrices of SC-LDPC codes used in real applications are in
general too large. To give a small example of a parity-check matrix of the SC-LDPC code,
the figure 12 shows the parity-check matrix of an SC-LDPC code over GF (7), which is
exactly the array BSC,doubly(r,r,m,n) given by equation 16 where each element is dispersed
with a CPM of size 6 x 6. Figure 13 shows its corresponding tanner graph where I and P
denote the variable nodes assigned to information and parity bits, respectively.

Figure 12 – SC-LDPC code over GF (7) based on the SP-method.

Source: the author.

From the structural point of view, the main difference between this specific SC-
LDPC code and the SC-LDPC code used for the encoding example of subsection 2.7.1
is that the entries inside the sub-matrices are CPMs of size (q − 1) x (q − 1), as shown
in Equation 9. It can be viewed as a replication of each protograph by a factor (q − 1)
in Figure 6, where the edge distributions are given by CPMs. The parameters of the
SC-LDPC code in Figure 12 are given in Table 3.

Chapter 3. SC-LDPC Codes Construction 34

Table 3 – Parameters of the SC-LDPC code given in
Figure 12.

Parameters q dv dc ms m n vs c L R
Values 7 3 6 2 1 2 6 2 6 1/2

3.2 Partial-Syndrome Based Encoder for SC-LDPC Codes
A linear partial-syndrome based encoder for SC-LDPC codes can be derived from

Equation 7. First, it will be assumed (dc/dv) ∈ Z. Considering each element inside the
submatrices Hi(t) as a CPM of size (q − 1) x (q − 1), as shown in Figure 12, we divide
Equation 7 into several sub-equations, and the encoder can be defined by Equation 17.

v[0,t]H
T
[0,t](t) = [0[0,t], St+1] (17)

where 0[0,t] is a length-(q−1)(t+1) zero vector. The length-ms(q−1) vector St,r, 0 ≤ r < ms

is the partial syndrome from the t-th sub-equation and it is described by Equation 18.

St = [St,0, St,1, ..., St,ms−1] (18)

where St,r = (S(0)
t,r , S

(1)
t,r , ..., S

(q−2)
t,r), S(j)

t,r ∈ GF (2), 0 ≤ j < q − 1, 0 ≤ r < ms.

The partial syndrome St+1,r can be updated as given by Equation 19, which
describes the operations done in step 3 in the encoding example of subsection 2.7.1.

St+1,r =

St,r+1 + vtH
T
r+1(t), r = 0, 1, ...,ms − 2

vtH
T
r+1(T), r = ms − 1

(19)

A systematic partial syndrome encoder can be obtained if any m rows of the
sub-matrices HT

0 (t) are linearly independent (TAVARES, 2010). The encoding equations
are given by Equation 20, which describes the operations done in steps 1 and 2 for the
encoding example of subsection 2.7.1.

vt,j =


ut,j, j = 0, 1, ..., n−m− 1

St,0 +
n−m−1∑

k=0
ut,kh

(0,k)
0 (t)T , j = n− 1

(20)

where for t = 0, St,0 = 0.

Considering the Equations 17, 19 and 20, the encoding circuit of Figure 14 can be
obtained. The number of memory elements is msm(q − 1), which is less than the amount
of memory used by a normal syndrome former encoder (msn(q − 1)). The number of
multiply-accumulate operations is exactly the same for both encoder types (TAVARES,
2010). For (dc/dv) ∈ Z, there is only one sub-block of parity bits in each code block and
m is always 1. Therefore, the size of all registers in Figure 14 is (q − 1), corresponding to
the size of a CPM.

Chapter 3. SC-LDPC Codes Construction 35

Figure 13 – Corresponding tanner graph representation of the SC-LDPC parity-check
matrix of figure 12.

Source: the author.

C
hapter

3.
SC

-LD
PC

C
odes

C
onstruction

36

Figure 14 – Partial-syndrome based encoder for SC-LDPC Codes

Source: the author.

Chapter 3. SC-LDPC Codes Construction 37

The encoding process starts with mux input I selected and all registers are initialized
with zeros. At time instant t, the incoming information sequence ut,j is sent to the output
to compose the first (n−m)(q−1) bits of the code block vt, corresponding to the operation
given by Equation 20 for 0 ≤ j < n − m. At the same time, ut,j is multiplied by the
sub-matrices h(0,j)

0 (t)T , represented in module information multiplier in Figure 14, and
also by the sub-matrices h(0,j)

r (t)T , 1 ≤ r ≤ ms, represented in module syndrome former
in Figure 14.

The module information multiplier in Figure 14 represents the multiplication of
the incoming information blocks ut,j, 0 ≤ j < n − m, by the CPMs corresponding to
information inside the sub-matrix H0(t) in Equation 8. This operation corresponds to
the sum in Equation 20 for j = n−m. The result of each multiplication ut,jh

(0,k)
0 (t)T is

stored in a register of size (q − 1) to be summed with the result of the next multiplication
ut,j+1h

(0,k+1)
0 (t)T . This multiplication process occurs simultaneously in module syndrome

former of Figure 14 to calculate the syndromes St+1,r = ut,jh
(0,k)
p (t)T , 1 ≤ p ≤ ms,

0 ≤ r < ms for encoding the next code block at time instant t+ 1, which corresponds to
Equation 18.

When the last multiplications in modules information multiplier and syndrome
former are done, the mux input P is selected. Then, the rightmost (q−1) memory elements
in module code memory, which store the calculated syndrome at time instant t−1, are added
to the product uth

(0,k)
0 (t)T in order to obtain the last (q − 1) symbols of vt. At this time,

the encoder has already calculated Equation 20 for j = n−m. The newly obtained vt,n−1

corresponding to parity bits is then multiplied by h(0,n−1)
1 (t)T , ..., h(0,n−1)

ms
(t)T in module

syndrome former and the result of each multiplication is summed to the values stored
in each register. This operation corresponds to the multiplication of the current encoded
block vt by the current syndrome former sub-matrices HT

1 (t), ..., HT
ms

(t) in Equation 8.
Then, the registers in module code memory are enabled and all other registers outside
this module are disabled. The results of each multiplication vtH

T
r (t) are used to update

the contents of the registers in module code memory. The mux input I is selected again
and all registers outside module code memory are reset to zero state. The same process is
repeated at each time instant t to encode each code block vt.

It is important to observe that all calculated syndromes at time instants before
t− 1 related to the current code block are also stored in the (q − 1) rightmost memory
elements in Figure 14, since the calculation of the syndrome St,0 given in Equation 19 also
includes the values of all previous syndrome former sub-matrices related to the current
code block.

In the described encoding process the data flow and the control signals Enable,
Sel1 and Reset are controlled by the simplified Finite State Machine (FSM) shown in
Figure 15. It has the generic Idle and Reset states and a state Start to start encoding

Chapter 3. SC-LDPC Codes Construction 38

the received message. All control signals are equal to zero on the states where their values
are not specified.

Figure 15 – Finite State Machine for the partial-syndrome based encoder.

Source: the author.

3.2.1 Code Adaptation for Arbitrary Code Rates

To make use of the recursive encoder structure shown in Figure 14 the ratio (dc/dv)
must be an integer. If this constraint is not satisfied, there will be more than one check
nodes inside each protograph on the Tanner graph representation of the SC-LDPC parity-
check matrix, as shown in Figure 16(a). For this example, dc = 6 and dv = 4 and each
protograph contains two check nodes. The proposed solution for encoding non-integer ratio
(dc/dv) SC-LDPC codes is to change the edge connections between the last (m− 1)(q− 1)
variable nodes and the check nodes inside each protograph, connecting them to the check
nodes of its neighbour protographs (MA; SI; NIU, 2015), as shown on Figure 16(b).

In the SC-LDPC parity-check matrix this procedure corresponds to shifting one
position down the last (m − 1) CPMs assigned to parity bits, as shown in Figure 17.
The modified SC-LDPC code can be encoded with the same reduced-complexity encoder
structure of Figure 14, but now there are (m− 1)(q − 1) more elements involved in the
calculation of the syndrome St+1,0 for encoding the next code block, due to the shifting on
the columns of the last (m− 1)(q − 1) parity elements as show in Figure 17.

Chapter 3. SC-LDPC Codes Construction 39

Figure 16 – (a) Graph representation of a (3, 6, L) SC-LDPC code and (b) Graph repre-
sentation of a (4, 6, L) with modified structure.

Source: (MA; SI; NIU, 2015)

3.2.2 Modified Partial-Syndrome Based Encoder for Encoding SC-LDPC Codes
With Arbitrary Code Rates

A linear modified partial-syndrome based encoder for modified SC-LDPC codes
can be derived from Equation 7. Considering each element inside the submatrices Hi(t) as
CPMs of size (q − 1) x (q − 1), we divide Equation 7 into several sub-equations, and the
encoder can be defined by Equation 21.

vtH
T
t (t) = [St, qt] (21)

The sub-matrix HT
t (t) is the structure inside the dashed ellipse in Figure 17. The length-

m(q − 1) vector St is the partial syndrome from the t-th sub-equation, which describes
the operations done in step 3 in the encoding example of subsection 2.7.1. qt and St are
given by Equations 22 and 23, respectively.

qt = [qt,0, qt,1, ..., qt,msm−1] (22)

where qt,j = (q(0)
t,j , q

(1)
t,j , ..., q

(q−2)
t,j), q(r)

t,j ∈ GF (2), 0 ≤ r < q − 1, 0 ≤ j < m for integer ratio
(dc/dv) or 0 ≤ j < msm for non-integer ratio (dc/dv).

St = [qt−1,0, qt−1,1, ..., qt−1,m−1] (23)

A systematic partial syndrome encoder can be obtained if any m rows of the sub-matrices
HT

0 (t) are linearly independent (TAVARES, 2010). The encoding equations are given
by Equation 24, which describes the operations done in steps 1 and 2 for the encoding

Chapter 3. SC-LDPC Codes Construction 40

Figure 17 – (a) Parity-check matrix of an SC-LDPC code over GF (7) with modified
structure.

Source: the author.

example of subsection 2.7.1.

vt,j =



ut,j, j = 0, 1, ..., n−m− 1

St,0 +
n−m−1∑

k=0
ut,kh

(0,k)
0 (t)T , j = n−m

St,j−n+m +
n−m−1∑

k=0
vt,kh

(j−n+m,k)
0 (t)T +

j−1∑
k=n−m

vt,kh
(j−n+m,k)
0 (t)T , n−m < j < n

(24)
where for t = 0, St,j−n+m = 0 for j = n−m, ..., n− 1.

Considering the Equations 21, 23 and 24, the same encoding circuit of Figure 14
can be obtained for encoding SC-LDPC codes where the ratio (dc/dv) /∈ Z. The number
of memory elements is msm(q − 1), which again is less than the amount of memory used
by a normal syndrome former encoder (msn(q − 1)). The number of multiply-accumulate
operations is exactly the same for both encoder types (TAVARES, 2010).

3.3 Window Decoder for SC-LDPC Codes
Due to the convolutional structure on the parity-check matrix of the SC-LDPC

code, a latency constrained window decoder of size W can be derived. Considering the

Chapter 3. SC-LDPC Codes Construction 41

blocks vt and vt′ in the chain of the coupled code, if t′ ≥ (t+ms +1) vt and vt′ do not share
any parity-check equation (or check node). The window decoder exploits this property of
the SC-LDPC parity-check matrix to define a decoder consisting of W received blocks,
where W must include at least (ms + 1) blocks, as at least one block must be decoded on
the window, the window must include all the parity-check equations related to the current
block to be decoded.

In order to decode symbols in yt, the decoder consists of W received blocks and
ms + 1 previously decoded blocks stored in the decoder memory, where yt is a sequence
containing the incoming received channel values associated to the code block at time
instant t. The decoder structure is shown on figure 18 as a shift register of size W that
holds the channel values of y[t, t+W − 1], and a shift register of size ms corresponding to
the decoder memory, which holds the LLR values of the ms previously decoded blocks.

Figure 18 – Window decoder of size W for SC-LDPC codes.

Source: the author.

On the SC-LDPC parity-check matrix the encoding process is equivalent to running
a belief-propagation (BP) algorithm on a section of W ∗m rows and W ∗ n columns of the
parity-check matrix HSC,doubly(r,r,m,n), which includes W coupled blocks. Hence, the BP
decoder has Mw = Wm check nodes and Nw = Wn variable nodes. The modules VN2CN
and CN2VN defines the connections from Nw variable to Mw check nodes and vice versa.

Chapter 3. SC-LDPC Codes Construction 42

3.3.1 Decoding Algorithm

Let vk, k = 1, ..., Nw and cj, j = 1, ...,Mw denote Nw variable and Mw check
nodes within a window. Then Lch(vk) denotes the input channel LLR for variable node
vk and N(cj) represents the set of variable nodes connected to the check node cj. The
message from variable node vk to the check node cj in n′th iteration is denoted as L(n)

vj ,cj
.

1. Initialization: in the initialization, all variable nodes k sends Lch(vk) to all its
connected check nodes, as given by equation 25.

L(0)
vk,cj

= Lch(vk) (25)

2. Iterative process: on the following iterations, the extrinsic LLRs from the variable
node vk to the check node cj are calculated as given by equation 26:

L(n)
vk,cj

= Lch(vk) +
∑

l∈N(vk)\cj

L(n−1)
cl,vk

(26)

L(n)
cj ,vk

denotes the message from check node cj to the variable node vk. N(vk) \ cj

represents the set of check nodes connecting to vk excluding cj. The exclusion of cj

precludes the information received by vk from cj to be reused to calculate the message
Lvk,cj

. Similarly, the extrinsic LLRs from the check node cj to the variable node vk are
calculated as given by equation 27.

L(n)
vk,cj

= 2tanh−1

 ∏
l∈N(cj)\vk

tanh

L(n−1)
vlcj

2

 (27)

Similarly to equation 26, the calculation of L(n)
cj ,vk

excludes the variable node vk.
The window at time instant t decodes the symbols in the received block yt only, and
hence they are called target symbols. The BP algorithm is applied to the nodes within the
window only, however, due to the memory of the coupled code, a read access to the ms

previously decoded block is also required.

3. After Imax Iterations: the iterative process continues until the maximum number
of iterations Imax is reached. The output LLR Lout(vk) for variable node vk is then
computed as given by equation 28.

Lout(vk) = Lch(vk) +
∑

l∈N(vk)
LImax

cl,vk
(28)

The output LLRs corresponding to the target symbols Lout(yt) are then fed back
to the memory shift register, as shown in figure 18. Once the target symbols are decoded,
c new channel values corresponding to yt + w, enter the window decoder from right and

Chapter 3. SC-LDPC Codes Construction 43

the estimates of the information bits ut leaves the decoder from left. The decoding process
continues until all code blocks are decoded.

Figure 19 illustrates the decoding process done from steps 1 to 3 on the SC-LDPC
parity-check matrix of figure 12 for a window at time instant t and its corresponding code
block to be decoded.

Figure 19 – Decoding process for the SC-LDPC parity-check matrix of figure 12.

Source: the author.

44

4 Results and Discussion

In this section, the code characteristics of the SC-LDPC code constructed by the
algebraic SP-method are analysed and a comparison of its parameters to constraints of
the proposed encoder/decoder structure is done.

As one result of this work, a very flexible tool for constructing parametrizable
SC-LDPC codes was implemented in Octaveő allowing the construction of SC-LDPC codes
with arbitrary parameters, such as code length, code rate and memory size. In this code
construction method, each non-binary entry of the SC-LDPC base matrix is dispersed by
a binary CPM of size (q − 1) x (q − 1), where q is the size of the finite field. Hence, this
matrix dispersion corresponds to a protograph expansion on the corresponding tanner
graph of the SC-LDPC code and the size of the field plays an important role on the
code length of the SC-LDPC code. As the code distance of the SC-LDPC code shows a
linear growth with the code length, large codes are desirable. The code length can also be
increased by copying the coupled LDPC chain as many times as desirable, but in this case,
the memory size of the code will still have the same size of the smaller code before the
copying process, as the memory is defined to be the gcd(dc, dv) and these two parameters
are constant on this copying operation.

For the implemented encoder/decoder structures, changing the ratio dc/dv will
increase or decrease the encoder memory size and both the decoder memory and window
sizes. It also changes the amount of connections of the decoder modules VN2CN/CN2VN.
The number of check and variable nodes of each block on the SC-LDPC parity-check matrix
(or of each protograph on its corresponding tanner graph representation) is n = dc/ms and
m = dv/ms, respectively. The code rate of the code is R = (n˘m)/n, (m < n). Therefore,
all parameters depends on the check node degree dc and the variable node degree dv and
only by choosing these two parameters and the code length L, an SC-LDPC code satisfying
any specifications can be constructed.

It is also important to mention that for constructing regular SC-LDPC codes using
the SP-method, the zero elements of GF (q) lying on the main diagonal of the doubly base
matrix Bq,sp,doubly(m,n) must be avoided . This can be easily done by changing the value of
the shifting parameter η in equation 10. The code regularity makes the structure of the
decoder modules CN2VN/VN2CN to be regular.

The SC-LDPC code convergence was verified through the proposed partial-syndrome
encoder and the window decoder, both implemented in Python. As the SC-LDPC code
performance for specific channel characteristics is very dependent on the decoder structure
and decoding algorithm, the code performance for specific communication scenarios was

Chapter 4. Results and Discussion 45

not evaluated in this project. In fact, the proposed window decoder requires approximately
50 iterations to achieve convergence. Therefore, the sliding window operation as well the
decoding algorithm must be first better exploited to evaluate the code performance for
specific scenarios.

46

5 Conclusion

In this project, a very flexible tool for constructing parameterizable SC-LDPC
codes was constructed by making use of a new algebraic construction method, called
superposition. This tool gives the possibility of constructing SC-LDPC codes matching
any communication channel specifications.

Based on the parity-check matrix cyclic structure of the developed SC-LDPC
code, reduced-complexity encoder and decoder were derived. The implemented partial
syndrome encoder has reduced memory size in comparison to the classic syndrome former
encoders. The partial-syndrome encoder found on the literature has constrained rate and
to get around this requirement a modified SC-LDPC code was implemented, making
the SC-LDPC code encodable with the same partial syndrome encoder structure for
arbitrary rates. The thresholds of the modified SC-LDPC code for rate adaptation seems
to outperform the original SC-LDPC code.

The implemented window decoder runs the decoding algorithm only in a smaller
portion of the SC-LDPC code, providing a way to decode arbitrarily large SC-LDPC
codes and it is also suitable for continuously decode the input blocks. Since the decoding
algorithm is applied only to a smaller number of received blocks, the memory and hardware
requirements for the window decoder are much less compared to classic block-wise decoding
schemes of SC-LDPC codes. In general, the storage requirements for the window decoder
reduces by a factor of L/W compared to block-wise decoders.

47

6 Future Work Suggestions

Having in mind the ever-growing necessity for better communication performance,
the implemented algebraic method for constructing SC-LDPC codes guarantees an organ-
ised way for constructing SC-LDPC codes that satisfy some requirements for achieving
good communication performance, such as a girth of at least 6. Other techniques for
increasing the girth, of the code such as masking techniques applied to the SC-LDPC base
matrix, are worth of further investigation. It’s also worth of investigation the evaluation
about how the coupling factor between two coupled code blocks affects the code perfor-
mance. A comparison between the properties of the SC-LDPC codes constructed by the
SP-method and the properties of SC-LDPC codes constructed based on heuristic methods
is also worth of investigation.

48

References

COSTELLO, D. J. et al. Spatially coupled sparse codes on graphs: Theory and practice.
IEEE, Commun. Mag.,, v. 52, n. 7, p. 168–176, July 2014. Cited 3 times on pages 12, 13,
and 19.

DIAO, Q. et al. A matrix-theoretic approach for analysing quasi-cyclic low-density
parity-check codes. IEEE Transactions Information Theory, n. 58, p. 4030 – 4048, 2012.
Cited on page 29.

ELIAS, P. Coding for noisy channels. IRE Convention Record, n. 4, p. 37 – 46, 1955.
Cited on page 17.

FELSTRÖM, A. J.; ZIGANGIROV, K. Time-varying periodic convolutional codes with
low-density parity-check matrix. Information Theory, IEEE Transactions on, v. 45, n. 6,
p. 2187 – 2191, set. 1999. Cited on page 12.

GALLAGER, R. G. Low density parity check codes. The Bell System Technical Journal,
1962. Cited on page 12.

HAMMING, R. W. Error detecting and error correcting codes. Bell System Technical
Journal, v. 29, n. 2, p. 147 – 160, Apr 1950. Cited on page 17.

JOHNSON, S. Introducing low-density parity-check codes. Cambridge University, 2010.
Cited on page 29.

LI, J. et al. LDPC Code Designs, Constructions, and Unification. [S.l.]: Cambridge
University Press, 2016. Cited on page 53.

LI, J. et al. Algebraic quasi-cyclic ldpc codes: Construction, low error-floor, large girth,
and reduced-complexity decoding scheme. IEEE Trans. Commun., v. 62(8), p. 2626–2637,
2014. Cited on page 30.

LI, J. et al. Decoding of quasi-cyclic ldpc codes with section-wise cyclic structure. Proc.
IEEE Inf. Theory Applic. Workshop. San Diego, CA, USA, p. 1–10, 2014. Cited on page
29.

LIU, K.; LIN, S.; ABDEL-GHAFFAR, K. A revolving iterative algorithm for decoding
algebraic cyclic and quasi-cyclic ldpc codes. IEEE Transactions on Communications,
v. 61, p. 4816–4827, 2013. Cited on page 29.

LUBY, M. et al. Improved low-density parity-check codes using irregular graphs.
Information Theory, IEEE Transactions on, v. 47, n. 2, p. 585–598, fev. 2001. Cited on
page 12.

MA, J.; SI, Z.; NIU, K. Recursive encoding of spatially coupled ldpc codes with arbitrary
rates. IEEE 26th International Symposium on Personal, Indoor and Mobile Radio
Communications, p. 127 – 131, 2015. Cited 2 times on pages 38 and 39.

References 49

MITCHELL, D. G. M.; LENTMAIER, M.; COSTELLO D. J., J. Spatially coupled LDPC
codes constructed from protographs. Information Theory, IEEE Transactions on, v. 61,
n. 9, p. 4866 – 4889, set. 2015. Cited on page 22.

MOON, T. K. Error Correction Coding Mathematical Methods and Algorithms. [S.l.]:
Wiley, 2005. Cited on page 51.

SHANNON, C. E. A mathematical theory of communication. The Bell System Technical
Journal, 1948. Cited on page 16.

TAVARES, M. B. S. On low-density parity-check convolutional codes: Constructions,
analysis and vlsi implementations. Jörg Vogt Verlag, 2010. Cited 3 times on pages 34, 39,
and 40.

THORPE, J. Low density parity check (LDPC) codes constructed from protographs. The
Interplanetary Network Progress Report, v. 42, n. 154, p. 1–7, August 2003. Cited on
page 12.

Appendix

51

APPENDIX A – Galois Field Arithmetic

Finite field arithmetic is widely used in a variety of applications such as codification
and cryptography algorithms. It differs from standard arithmetic for the fact that there is
a limited number of elements in that field, and every operation performed over it, results
in an element within. A finite field with q elements is also called Galois Field – GF (q), in
honor to the founder of finite field theory, Variste Galois. We may see that for the case of a
GF (2), the addition will result in an exclusive OR (XOR) operation and the multiplication
in an AND operation. The content of this section is based on the work of (MOON, 2005).

A finite field GF (q) is a set of q objects on which the operations of addition and
multiplication, subtraction (or additive inverse), and division (or multiplicative inverse)
apply in a manner analogous to the way these operations work for real numbers.

In particular, the addition operation + and the multiplication operation . (or
juxtaposition) satisfy the following:

1. Closure under addition: for every a and b ∈ GF (q), (a+ b) ∈ GF (q).

2. Additive identity: there is an element in GF (q), which we denote as 0, such that
a+ 0 = 0 + a = a for every a ∈ GF (q).

3. Additive inverse(subtraction): for every a ∈ GF (q), there exists an element b ∈ GF (q)
such that a+ b = b+ a = 0. The element b is frequently called the additive inverse
of a and is denoted as −a.

4. Associativity: (a+ b) + c = a+ (b+ c) for every a, b, c ∈ GF (q).

5. Commutativity: a+ b = b+ a for every a, b ∈ GF (q).

The first four requirements mean that the elements of GF (q) form a group under
addition; with the fifth requirement, a commutative group is obtained.

6. Closure under multiplication: for every a and b ∈ GF (q), a.b inGF (q).

7. Multiplicative identity: there is an element in GF (q), which we denote as 1, such
that a.1 = 1.a = a for every a ∈ GF (q), for a 6= 0.

8. Multiplicative inverse: for every a ∈ GF (q) with a 6= 0, there is an element b ∈ GF (q)
such that a.b = b.a = 1. The element b is called the multiplicative inverse, or
reciprocal, of a and is denoted as a−1.

APPENDIX A. Galois Field Arithmetic 52

9. Associativity: (a.b).c = a.(b.c) for every a, b, c ∈ GF (q).

10. Commutativity: a.b = b.a for every a, b ∈ GF (q).

11. Multiplication distributes over addition: a.(b+ c) = a.b+ a.c.

Thus, the non-zero elements of GF (q) form a commutative group under multipli-
cation. As an example, the finite field with two elements in it GF (2) has the following
addition and multiplication tables:

Figure 20 – (a) Addition and multiplication tables for GF (2).

Source: the author.

The field GF (2) is very important to our work, since it is the field where the
operations involved in binary codes work.

The non-zero elements of a finite field form a cyclic group, so all non-zero elements
can be expressed as powers of a single element, called a primitive element of the field. In
general, there will be several primitive elements for a given field. Let α be a primitive element
of GF (q). Then, the powers of α(α0 = 1, α, α2, . . . , αq−2) give all the nonzero elements of
GF (q). Commonly, the 0-element of GF (q) is represented by α−∞, i.e., 0 = α−∞.

53

APPENDIX B – Circulant Permutation
Matrix Dispersion

If the row weight (or column weight) of a regular matrix A is w, we say that A
has weight w and call it a weight-w regular matrix. For w 6= 0, a weight-w regular matrix
must be a square matrix. A binary weight-1 regular matrix is called a permutation matrix
(PM). It is clear that a weight-w regular matrix is the sum of w disjoint PMs.

A square matrix over GF (q) is called a circulant if every row of the matrix is
the cyclic-shift of the row above it one place to the right, and the top row of the matrix
is the cyclic shift of the last row one place to the right. It is clear that a circulant is a
regular matrix whose weight equals the weight of its top row. The top row of a circulant is
called the generator of the circulant. A binary circulant of weight 1 is a binary circulant
permutation matrix (CPM). It is clear that a weight-w circulant is the sum of w disjoint
CPMs.

In many constructions of binary QC LDPC codes, a nonzero element in GF (q) is
represented by a binary CPM. Let α be a primitive element of GF (q). For 0 ≤ j ≤ q − 1,
we represent the element αj by a binary CPM, denoted by A(αj), of size (q − 1)x(q − 1),
whose generator has the unit-element ”1” of GF (q) as its single nonzero component at
position j. It is clear that the representation of the element αj by the binary CPM(αj) of
size (q − 1)x(q − 1) is unique and the mapping between αj and A(αj) is one-to-one. This
matrix representation of αj is referred to as the binary CPM-dispersion of αj. Note that
the size of the binary CPM A(αj) is the order of α. The 0-element of GF (q) is represented
by a (q − 1)x(q − 1) ZM (LI et al., 2016).

