2,095 research outputs found

    DoubleEcho: Mitigating Context-Manipulation Attacks in Copresence Verification

    Full text link
    Copresence verification based on context can improve usability and strengthen security of many authentication and access control systems. By sensing and comparing their surroundings, two or more devices can tell whether they are copresent and use this information to make access control decisions. To the best of our knowledge, all context-based copresence verification mechanisms to date are susceptible to context-manipulation attacks. In such attacks, a distributed adversary replicates the same context at the (different) locations of the victim devices, and induces them to believe that they are copresent. In this paper we propose DoubleEcho, a context-based copresence verification technique that leverages acoustic Room Impulse Response (RIR) to mitigate context-manipulation attacks. In DoubleEcho, one device emits a wide-band audible chirp and all participating devices record reflections of the chirp from the surrounding environment. Since RIR is, by its very nature, dependent on the physical surroundings, it constitutes a unique location signature that is hard for an adversary to replicate. We evaluate DoubleEcho by collecting RIR data with various mobile devices and in a range of different locations. We show that DoubleEcho mitigates context-manipulation attacks whereas all other approaches to date are entirely vulnerable to such attacks. DoubleEcho detects copresence (or lack thereof) in roughly 2 seconds and works on commodity devices

    Deep Room Recognition Using Inaudible Echos

    Full text link
    Recent years have seen the increasing need of location awareness by mobile applications. This paper presents a room-level indoor localization approach based on the measured room's echos in response to a two-millisecond single-tone inaudible chirp emitted by a smartphone's loudspeaker. Different from other acoustics-based room recognition systems that record full-spectrum audio for up to ten seconds, our approach records audio in a narrow inaudible band for 0.1 seconds only to preserve the user's privacy. However, the short-time and narrowband audio signal carries limited information about the room's characteristics, presenting challenges to accurate room recognition. This paper applies deep learning to effectively capture the subtle fingerprints in the rooms' acoustic responses. Our extensive experiments show that a two-layer convolutional neural network fed with the spectrogram of the inaudible echos achieve the best performance, compared with alternative designs using other raw data formats and deep models. Based on this result, we design a RoomRecognize cloud service and its mobile client library that enable the mobile application developers to readily implement the room recognition functionality without resorting to any existing infrastructures and add-on hardware. Extensive evaluation shows that RoomRecognize achieves 99.7%, 97.7%, 99%, and 89% accuracy in differentiating 22 and 50 residential/office rooms, 19 spots in a quiet museum, and 15 spots in a crowded museum, respectively. Compared with the state-of-the-art approaches based on support vector machine, RoomRecognize significantly improves the Pareto frontier of recognition accuracy versus robustness against interfering sounds (e.g., ambient music).Comment: 29 page

    Indoor Sound Based Localization: Research Questions and First Results

    Get PDF
    Part 17: TelecommunicationsInternational audienceThis PhD work has the goal to develop an inexpensive, easily deployable and widely compatible localization system for indoor use, suitable for pre-installed public address sound systems, avoiding costly installations or significant architectural changes in spaces. Using the audible sound range will allow the use of low cost off-the-shelf equipment suitable for keeping a low deployment cost. The state-of-the-art presented in this paper evidences a technological void in low-cost, reliable and precise localization systems and technologies. This necessity was also confirmed by the authors in a previous project (NAVMETRO®) where no suitable technological solution was found to exist to overcome the need to automatically localize people in a public space in a reliable and precise way.Although research work is in its first steps, it already provides a thorough view on the problem while discussing some possible approaches and predicting strategies to overcome the key difficulties. Some experiments were already conducted validating some initial premises and demonstrating how to measure the signal’s time-of-flight necessary to infer on distance calculations

    A Hybrid Indoor Location Positioning System

    Get PDF
    Indoor location positioning techniques have experienced impressive growth in recent years. A wide range of indoor positioning algorithms has been developed for various applications. In this work a practical indoor location positioning technique is presented which utilizes off-the-shelf smartphones and low-cost Bluetooth Low Energy (BLE) nodes without any further infrastructure. The method includes coarse and fine modes of location positioning. In the coarse mode, the received signal strength (RSS) of the BLE nodes is used for location estimation while in the fine acoustic signals are utilized for accurate positioning. The system can achieve centimeter-level positioning accuracy in its fine mode. To enhance the system’s performance in noisy environments, two digital signal processing (DSP) algorithms of (a) band-pass filtering with audio pattern recognition and (b) linear frequency modulated chirp signal with matched filter are implemented. To increase the system’s robustness in dense multipath environments, a method using data clustering with sliding window is employed. The received signal strength of BLE nodes is used as an auxiliary positioning method to identify the non-line-of-sight (NLoS) propagation paths in the acoustic positioning mode. Experimental measurement results in an indoor area of 10 m2 indicate that the positioning error falls below 6 cm

    A survey on acoustic positioning systems for location-based services

    Get PDF
    Positioning systems have become increasingly popular in the last decade for location-based services, such as navigation, and asset tracking and management. As opposed to outdoor positioning, where the global navigation satellite system became the standard technology, there is no consensus yet for indoor environments despite the availability of different technologies, such as radio frequency, magnetic field, visual light communications, or acoustics. Within these options, acoustics emerged as a promising alternative to obtain high-accuracy low-cost systems. Nevertheless, acoustic signals have to face very demanding propagation conditions, particularly in terms of multipath and Doppler effect. Therefore, even if many acoustic positioning systems have been proposed in the last decades, it remains an active and challenging topic. This article surveys the developed prototypes and commercial systems that have been presented since they first appeared around the 1980s to 2022. We classify these systems into different groups depending on the observable that they use to calculate the user position, such as the time-of-flight, the received signal strength, or the acoustic spectrum. Furthermore, we summarize the main properties of these systems in terms of accuracy, coverage area, and update rate, among others. Finally, we evaluate the limitations of these groups based on the link budget approach, which gives an overview of the system's coverage from parameters such as source and noise level, detection threshold, attenuation, and processing gain.Agencia Estatal de InvestigaciónResearch Council of Norwa

    Accurate acoustic ranging system using android smartphones

    Get PDF
    ACCURATE ACOUSTIC RANGING SYSTEM USING ANDROID SMARTPHONES By Mohammadbagher Fotouhi, Master of Science A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University Virginia Commonwealth University 2017 Major Director: Dr. Ruixin Niu, Associate Professor of Department of Electrical and Computer Engineering In this thesis, we present the design, implementation, and evaluation of an android ranging system, a high-accuracy acoustic-based ranging system which allows two android mobile phones to learn their physical distance from each other. In this system we propose a practical solution for accurate ranging based on acoustic communication between speakers and microphones on two smartphones. Using the audible-band acoustic signal with the Wi-Fi assistance without the sound disturbance is promising for large deployment. Our method is a pure software-based solution and uses only the most basic set of commodity hardware: a speaker, a microphone, and Wi-Fi communication. So it is readily applicable to many commercial-off-the-shelf mobile devices like cell phones. Our system is the result of several design goals, including user privacy, decentralized administration, and low cost. Rather than relying on any centralized management which tracks the user’s location to help them find their distance, our system helps devices learn their distance from each other without advertising their location information with any centralized management. Compared to alternatives that require special-purpose hardware or pre-existence of precision location infrastructure , our system is applicable on most of off-the-shelf components so it is a commodity-based solution will obviously have wider applications and is cost effective. Currently, two smartphones are used to estimate the distance between them through Wi-Fi and audio communications. The basic idea is estimating the distance between two phones by estimating the traveling time of audio signal from one phone to the other as the speed of sound is known. The preliminary results of ranging demonstrate that our algorithm could achieve high accuracy, and stable and reliable results for real time smartphone-based indoor ranging
    corecore