522 research outputs found

    Low Emissions Aftertreatment and Diesel Emissions Reduction

    Full text link

    Powertrain Systems for Net-Zero Transport

    Get PDF
    The transport sector continues to shift towards alternative powertrains, particularly with the UK Government’s announcement to end the sale of petrol and diesel passenger cars by 2030 and increasing support for alternatives. Despite this announcement, the internal combustion continues to play a significant role both in the passenger car market through the use of hybrids and sustainable low carbon fuels, as well as a key role in other sectors such as heavy-duty vehicles and off-highway applications across the globe. Building on the industry-leading IC Engines conference, the 2021 Powertrain Systems for Net-Zero Transport conference (7-8 December 2021, London, UK) focussed on the internal combustion engine’s role in Net-Zero transport as well as covered developments in the wide range of propulsion systems available (electric, fuel cell, sustainable fuels etc) and their associated powertrains. To achieve the net-zero transport across the globe, the life-cycle analysis of future powertrain and energy was also discussed. Powertrain Systems for Net-Zero Transport provided a forum for engine, fuels, e-machine, fuel cell and powertrain experts to look closely at developments in powertrain technology required, to meet the demands of the net-zero future and global competition in all sectors of the road transportation, off-highway and stationary power industries

    Supervisory control of complex propulsion subsystems

    Get PDF
    Modern gasoline and diesel combustion engines are equipped with several subsystems with the goal to reduce fuel consumption and pollutant exhaust emissions. Subsystem synergies could be harnessed using the supervisory control approach. Look-ahead information can be used to potentially optimise power-train control for real time implementation. This thesis delves upon modelling the exhaust emissions from a combustion engine and developing a combined equivalent objective metric to propose a supervisory controller that uses look-ahead information with the objective to reduce fuel consumed and exhaust emissions. In the first part of the thesis, the focus is on diesel engine application control for emissions and fuel consumption reduction.\ua0Model of exhaust emissions in a diesel engine obtained from a combination of nominal engine operation and deviations are evaluated for transient drive cycles.\ua0The look ahead information as a trajectory of vehicle speed and load over time is considered.\ua0The supervisory controller considers a discrete control action set over the first segment of the trip ahead.\ua0The cost to optimise is defined and pre-computed off-line for a discrete set of operating conditions.\ua0A full factorial optimisation carried out off-line is stored on board the vehicle and applied in real-time.\ua0In a first proposal, the subsystem control of the after-treatment system comprising the lean NOx trap and the selective reduction catalyst is considered.\ua0As a next iteration, the combustion engine is added to the control problem.\ua0Simulation comparison of the controllers with the baseline controller offers a 1 % total fuel equivalent cost improvement while offering the flexibility to tailor the controller for different cost objective. In the second part of the thesis, the focus is on cold-start emissions control for modern gasoline engines.\ua0Emissions occurring when the engine is started until the catalyst is sufficiently warm, contribute to a significant proportion of tailpipe pollutant emissions.\ua0Electrically heated catalyst (EHC) in the three way catalyst (TWC) is a promising technology to reduce cold-start emissions where the catalyst can be warmed up prior to engine start and continued after start.\ua0A simulation framework for the engine, TWC with EHC with focus on modeling the thermal and chemical interactions during cold-start was developed.\ua0An evaluation framework with a proposed equivalent emissions approach was developed considering the challenges associated with cold-start emission control.\ua0An equivalent emission optimal post-heating time for the EHC is proposed that adapts to information which is available in a real-time on-line implementation.\ua0The proposed controller falls short of just 1 % equivalent emissions compared to the optimal case

    Powertrain Systems for Net-Zero Transport

    Get PDF
    The transport sector continues to shift towards alternative powertrains, particularly with the UK Government’s announcement to end the sale of petrol and diesel passenger cars by 2030 and increasing support for alternatives. Despite this announcement, the internal combustion continues to play a significant role both in the passenger car market through the use of hybrids and sustainable low carbon fuels, as well as a key role in other sectors such as heavy-duty vehicles and off-highway applications across the globe. Building on the industry-leading IC Engines conference, the 2021 Powertrain Systems for Net-Zero Transport conference (7-8 December 2021, London, UK) focussed on the internal combustion engine’s role in Net-Zero transport as well as covered developments in the wide range of propulsion systems available (electric, fuel cell, sustainable fuels etc) and their associated powertrains. To achieve the net-zero transport across the globe, the life-cycle analysis of future powertrain and energy was also discussed. Powertrain Systems for Net-Zero Transport provided a forum for engine, fuels, e-machine, fuel cell and powertrain experts to look closely at developments in powertrain technology required, to meet the demands of the net-zero future and global competition in all sectors of the road transportation, off-highway and stationary power industries

    Diesel Exhaust Emissions and Mitigations

    Get PDF
    This chapter presents a concise treatment of diesel engine exhaust emissions and its mitigations. The working principle of the diesel engine is first given to establish the background and further to describe the influence of various parameters that affect the formation of engine exhaust emissions. The factors that influence exhaust emissions are linked to the engine design and the operating factors that promote good fuel-air mixing and combustion. These factors are air induction, fuel injection equipment, fuel injection schemes, in-cylinder gas exchange process and heat transfer. Thermochemistry essentially gives insight to the global reaction kinetics and how this is applied in practical engine combustion determinations in terms of equivalence ratios. Based on these, the fuel spray structure, atomization, penetration and the spray combustion model are described. The formation of exhaust emissions such as carbon monoxide, unburnt hydrocarbon and its intermediates, oxides of nitrogen and soot in diesel engines has been discussed. The techniques of their mitigation from the view of internal factors that deals with the optimization of engine design and it performance, as well as various exhaust after-treatment techniques used for NOx and soot reduction have been briefly discussed

    Impact of potential engine malfunctions on fuel consumption and gaseous emissions of a Euro VI diesel truck

    Full text link
    © 2019 Elsevier Ltd Although new vehicles are designed to comply with specific emission regulations, their in-service performance would not necessarily achieve them due to wear-and-tear and improper maintenance, as well as tampering or failure of engine control and exhaust after-treatment systems. In addition, there is a lack of knowledge on how significantly these potential malfunctions affect vehicle performance. This study was therefore conducted to simulate the effect of various engine malfunctions on the fuel consumption and gaseous emissions of a 16-tonne Euro VI diesel truck using transient chassis dynamometer testing. The simulated malfunctions included those that would commonly occur in the intake, fuel injection, exhaust after-treatment and other systems. The results showed that all malfunctions increased fuel consumption except for the malfunction of EGR fully closed which reduced fuel consumption by 31%. The biggest increases in fuel consumption were caused by malfunctions in the intake system (16%–43%), followed by the exhaust after-treatment (6%–30%), fuel injection (4%–24%) and other systems (6%–11%). Regarding pollutant emissions, the effect of engine malfunctions on HC and CO emissions was insignificant, which remained unchanged or even reduced for most cases. An exception was EGR fully open which increased HC and CO emissions by 343% and 1124%, respectively. Contrary to HC and CO emissions, NO emissions were significantly increased by malfunctions. The largest increases in NO emissions were caused by malfunctions in the after-treatment system, ranging from 38% (SCR) to 1606% (DPF pressure sensor). Malfunctions in the fuel injection system (24%–1259%) and intercooler (438%–604%) could also increase NO emissions markedly. This study demonstrated clearly the importance of having properly functioning engine control and exhaust after-treatment systems to achieve the required performance of fuel consumption and pollutant emissions

    A Two Dimensional Numerical Soot Model for Advanced Design and Control of Diesel Particulate Filters

    Get PDF
    One of the most effective methods to control diesel particulate matter (PM) emissions from heavy duty diesel engines is to use wall flow diesel particulate filters (DPF). It is still a major challenge to get an accurate estimation of soot loading, which is crucial for the engine afterteratment assembly optimization. In the recent past, several advanced computational models of DPF filtration and regeneration have been presented to assess the cost effective optimization of future particulate trap systems. They are characterized by different degree of detail and computational costs, depending on the specific application (i.e diagnostics, control, system design, component design etc).;The objective of this study is to compare in detail a two dimensional (2-D) approach with a one dimensional (1-D) approach, thus giving a better insight of the variation of properties over the DPF length. This task has been archived by extending an in-house developed 1-D numerical soot model to the next dimension to understand the impact of 2-D representation to predict both steady state and transient behavior of a catalyzed diesel particulate filter (CDPF). Performance of the model was evaluated using three key parameters: pressure drop, filter outlet temperature and soot mass retained in the filter during both active and continuous regeneration events. Quasi-steady state conservation of mass, momentum and energy equations were solved numerically using finite difference methods adopting a spatially uniform mesh. The results obtained from the current model were compared with the 1-D code to evaluate the general validity of assumptions made in the latter, especially DPF loading status prediction.;The model was validated using the data gathered at the West Virginia University Engine and Emissions Research Laboratory (WVU-EERL) using a model year 2004 Mack MP7-355E Diesel engine coupled to a Johnson Matthey catalyzed diesel particulate filter (CDPF) exercised over a 13 mode European stationary cycle (ESC) followed by two federal transient cycles (FTP). A constant set of model tuning parameters were maintained for the sake of general validation of simplifying assumptions of the 1-D code.;The analysis shows that the predicted pressure drop across the DPF is in good agreement with the data obtained at EERL in both steady state and transient cycles. It is also shown that the soot accumulates mainly in the frontal and rear parts across the filter length under given soot concentrations. The model is capable of tracking DPF soot mass satisfactorily with a maximum discrepancy of 3.47g during steady state cycle. A 7.95% decrease in soot layer thickness can be seen in the front portion of the DPF during the transient cycle mainly due to O2 assisted regeneration at elevated temperatures. Both 1-D and 2-D models produce similar results during the loading phase. However, the current model is able to capture regeneration phase of the FTP cycle more descriptively than the 1-D model. The discrepancy of the reported total soot mass estimation between two models was 2.12%. The distribution corresponding to the 1-D model is representative of soot layer distribution given by the 2-D model at one tenth distance away from the DPF front face. 1-D model representation is effective towards PM prediction, although presenting considerable axial effects at higher DPF temperatures

    THIESEL 2022. Conference on Thermo-and Fluid Dynamics of Clean Propulsion Powerplants

    Full text link
    The THIESEL 2022. Conference on Thermo-and Fluid Dynamic Processes in Direct Injection Engines planned in Valencia (Spain) for 8th to 11th September 2020 has been successfully held in a virtual format, due to the COVID19 pandemic. In spite of the very tough environmental demands, combustion engines will probably remain the main propulsion system in transport for the next 20 to 50 years, at least for as long as alternative solutions cannot provide the flexibility expected by customers of the 21st century. But it needs to adapt to the new times, and so research in combustion engines is nowadays mostly focused on the new challenges posed by hybridization and downsizing. The topics presented in the papers of the conference include traditional ones, such as Injection & Sprays, Combustion, but also Alternative Fuels, as well as papers dedicated specifically to CO2 Reduction and Emissions Abatement.Papers stem from the Academic Research sector as well as from the IndustryXandra Marcelle, M.; Payri Marín, R.; Serrano Cruz, JR. (2022). THIESEL 2022. Conference on Thermo-and Fluid Dynamics of Clean Propulsion Powerplants. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thiesel.2022.632801EDITORIA

    Dual-layered Multi-Objective Genetic Algorithms (D-MOGA): A Robust Solution for Modern Engine Development and Calibrations

    Get PDF
    Heavy-duty (HD) diesel engines are the primary propulsion systems used within the freight transportation sector and are subjected to stringent emissions regulations. The primary objective of this study is to develop a robust calibration technique for HD engine optimization in order to meet current and future regulated emissions standards during certification cycles and off-cycle vocation activities. Recently, California - Air Resources Board (C-ARB) has also shown interests in controlling off-cycle emissions from vehicles operating in California by funding projects such as the Ultra-Low NOx study by Sharp et. al [1]. Moreover, there is a major push for the complex real-world driving emissions testing protocol as the confirmatory and certification testing procedure in Europe and Asia through the United Nations - Economic Commission for Europe (UN-ECE) and International Organization for Standardization (ISO). This calls for more advanced and innovative approaches to optimize engine operation to meet the regulated certification levels.;A robust engine calibration technique was developed using dual-layered multi-objective genetic algorithms (D-MOGA) to determine necessary engine control parameter settings. The study focused on reducing fuel consumption and lowering oxides of nitrogen (NOx) emissions, while simultaneously increasing exhaust temperatures for thermal management of exhaust after-treatment system. The study also focused on using D-MOGA to develop a calibration routine that simultaneously calibrates engine control parameters for transient certification cycles and vocational drayage operation. Several objective functions and alternate selection techniques for D-MOGA were analyzed to improve the optimality of the D-MOGA results.;The Low-NOx calibration for the Federal Test Procedure (FTP) which was obtained using the simple desirability approach was validated in the engine dynamometer test cell over the FTP and near-dock test cycles. In addition, the 2010 emissions compliant calibration was baselined for performance and emissions over the FTP and custom developed low-load Near-Dock engine dynamometer test cycles. Performance and emissions of the baseline calibrations showed a 63% increase in engine-out brake-specific NOx emissions and a proportionate 77% decrease in engine-out soot emissions over the Near-Dock cycle as compared to the FTP cycle. Engine dynamometer validation results of the Low-NOx FTP cycle calibration developed using D-MOGA, showed a 17% increase brake-specific NOx emissions over the FTP cycle, compared to the baseline calibrations. However, a 50% decrease in engine-out soot emissions and substantial increase in exhaust temperature were observed with no penalties on fuel consumption.;The tools developed in this study can play a role in meeting current and future regulations as well as bridging the gap between emissions during certification and real-world engine operations and eventually could play a vital role in meeting the National Ambient Air Quality Standards (NAAQS) in areas such as the port of Los Angeles, California in the South Coast Air Basin
    • …
    corecore