466 research outputs found

    Propagation Aspects in Vehicular Networks

    Get PDF

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    In-vehicle channel sounding in the 5.8-GHz band

    Get PDF
    The article reports vehicular channel measurements in the frequency band of 5.8 GHz for IEEE 802.11p standard. Experiments for both intra-vehicle and out-of-vehicle environments were carried out. It was observed that the large-scale variations (LSVs) of the power delay profiles (PDPs) can be best described through a two-term exponential decay model, in contrast to the linear models which are suitable for popular ultra-wideband (UWB) systems operating in the 3- to 11-GHz band. The small-scale variations (SSVs) are separated from the PDP by subtracting the LSV and characterized utilizing logistic, generalized extreme value (GEV), and normal distributions. Two sample Kolmogorov-Smirnov (K-S) tests validated that the logistic distribution is optimal for in-car, whereas the GEV distribution serves better for out-of-car measurements. For each measurement, the LSV trend was used to construct the respective channel impulse response (CIR), i.e., tap gains at different delays. Next, the CIR information is fed to an 802.11p simulation testbed to evaluate the bit error rate (BER) performance, following a Rician model. The BER results strongly vouch for the suitability of the protocol for in-car as well as out-of-car wireless applications in stationary environments.The article reports vehicular channel measurements in the frequency band of 5.8 GHz for IEEE 802.11p standard. Experiments for both intra-vehicle and out-of-vehicle environments were carried out. It was observed that the large-scale variations (LSVs) of the power delay profiles (PDPs) can be best described through a two-term exponential decay model, in contrast to the linear models which are suitable for popular ultra-wideband (UWB) systems operating in the 3- to 11-GHz band. The small-scale variations (SSVs) are separated from the PDP by subtracting the LSV and characterized utilizing logistic, generalized extreme value (GEV), and normal distributions. Two sample Kolmogorov-Smirnov (K-S) tests validated that the logistic distribution is optimal for in-car, whereas the GEV distribution serves better for out-of-car measurements. For each measurement, the LSV trend was used to construct the respective channel impulse response (CIR), i.e., tap gains at different delays. Next, the CIR information is fed to an 802.11p simulation testbed to evaluate the bit error rate (BER) performance, following a Rician model. The BER results strongly vouch for the suitability of the protocol for in-car as well as out-of-car wireless applications in stationary environments

    Millimeter wave radio channels: properties, multipath modeling and simulations

    Get PDF
    Based on the characterization of realistic radio channels, results presented in this dissertation lead towards an understanding that when moving up to the higher frequencies, frequency itself does not play a significant role in defining the channel modeling methodology. In fact, how a propagation channel is illuminated is of fundamental importance. Therefore, millimeter wave (mmWave) system properties such as a high antenna directivity and system bandwidth are shown to have a great influence on the channel model definition. In this thesis, a fundamental assumption made in the state-of-the-art millimeter wave wireless channel models is challenged. It has been shown that Rayleigh-Rice fading assumption made in the state-of-the-art channel models for resolvable channel taps does not remain valid. This is mainly due to the sparse multipath illumination caused by high antenna directivity and high bandwidth of a mmWave system.Studies presented in this thesis are based on the characterization of realistic radio channels obtained from exhaustive channel sounding campaigns. Mainly, three fundamental problems of wireless channel modelling have been investigated for millimetre wave (mmWave) radio channel modelling application, namely (i) Frequency dependence of propagation, (ii) Impact of antenna directivity on the channel model definition, and (iii) Impact of system bandwidth on the radio channel modelling. A detailed description of these problems is as follows: (i) Frequency Dependence of Propagation. Multi-band measurement campaigns arecarried out using directional antennas which do an omni-directional scan of the propagation environment. During the measurements, Tx-Rx systems are placed at fixed positions and the propagation environment remained as static as possible. Using synthesized omni-directional power delay profiles (PDPs), we aim to investigate if there exists a frequency dependency in the multipath dispersion statistics, e.g. delay and angular spreads. (ii) Impact of Antenna Directivity on the Channel Model Definition. Small-scale fading measurements are carried out which emulate a scenario, where a radio communication link is established through a single multipath cluster which is illuminated using antennas with different Half Power Beam Widths (HPBW). The major goal here is to investigate the impact of spatial multipath filtering on the small-scale fading due to high antenna directivity. In particular, the impact on variations in the receive signal strength and the validity of narrowband wide-sense stationary assumption (both in time and frequency domains) is investigated. (iii) Impact of System Bandwidth on the Radio Channel Modelling. Small-scale fading measurements are used to illuminate multipath clusters in a lecture room scenario. The primary objective is to investigate the impact of high system bandwidth on variations in the receive signal strength, randomness in the cross-polarization power ratio (XPR) and richness of the multipath scattering. Based on the characterization of realistic radio channels, results presented in this dissertation lead towards an understanding that when moving up to the higher frequencies, frequency itself does not play a significant role in defining the channel modelling methodology. In fact, how a propagation channel is illuminated is of fundamental importance. Therefore, mmWave system properties such as a high antenna directivity and system bandwidth are shown to have a high influence on the channel model definition. In general, fade depth scaling as a function of system bandwidth is quite well understood. We demonstrate that, the high antenna directivity of mmWave systems result in a further reduction in the fading depth. In addition, we explore some new directions to this line of research which are based on the second-order statistical analysis of the channel impulse response (CIR) vector. Our results emphasize that, fading statistics of resolvable channel taps in a mmWave radio channel cannot be modelled as Rayleigh-Rice distributed random variables. This is primarily due to the fact that channels with sparse scattering conditions are illuminated due to high antenna directivity and bandwidth of mmWave systems. Consequently, the complex Gaussian random variable assumption associated with Rayleigh-Rice fading distributions does not remain valid. Further, it has been demonstrated that, high antenna directivity and bandwidth of mmWave systems also raise a question mark on the validity of wide-sense stationary (WSS) assumption in the slow-time domain of mmWave radio channels. Results presented in this contribution are novel and they provide theoretically consistent insights into the measured radio channel.In dieser Arbeit werden drei grundlegende Probleme der Modellierung von Drahtloskanalen fur die Anwendung bei der Funkkanalmodellierung im Millimeterwellenbereich (mmWave) untersucht, namlich (i) die Frequenzabhangigkeit der Ausbreitung, (ii) der Einfluss der Antennenrichtwirkung auf die Definition des Kanalmodells und (iii) der Einfluss der Systembandbreite auf die Funkkanalmodellierung. Die detaillierte Beschreibung dieser Probleme lautet wie folgt: (i) Frequenzabhangigkeit der Ausbreitung. Mehrband-Messkampagnen werden mitRichtantennen durchgefuhrt, die eine omnidirektionale Abtastung der Ausbreitungsumgebung vornehmen. Wahrend der Messungen werden die Tx-Rx-Systeme an festen Positionen platziert und die Ausbreitungsumgebung bleibt so statisch wie moglich. Mit Hilfe von synthetisierten omnidirektionalen Verzogerungs-Leistungsprofilen soll untersucht werden, ob es eine Frequenzabhangigkeit in der Mehrwegeausbreitungsstatistik gibt, z.B. in der Verzogerung und der Winkelspreizung. (ii) Einfluss der Antennenrichtwirkung auf die Definition des Kanalmodells. Es werden Messungen des schnellen Schwunds durchgefuhrt, die ein Szenario emulieren, bei dem eine Funkverbindung uber ein einzelnes Mehrwege-Cluster aufgebaut wird, das mit Antennen mit unterschiedlichen Strahlbreiten ausgeleuchtet wird. Das Hauptzielist hier die Untersuchung des Einflusses der raumlichen Filterung auf den schnellen Schwund aufgrund der hohen Antennenrichtwirkung. Insbesondere wird die Auswirkung auf Variationen der Empfangssignalstarke und die Gultigkeit der Annahme der schmalbandigen Stationaritat im weiteren Sinne (sowohl im Zeit- als auch im Frequenzbereich) untersucht. (iii) Einfluss der Systembandbreite auf die Funkkanalmodellierung. Messungen desschnellen Schwunds werden verwendet, um Mehrwege-Cluster in einem Horsaal-Szenario auszuleuchten. Das primare Ziel ist es, den Einfluss einer hohen Systembandbreite auf die Variationen der Empfangssignalstarke, die Zufalligkeit des Kreuzpolarisationsverhaltnisses und die Reichhaltigkeit der Mehrwegstreuung zu untersuchen. Basierend auf der Charakterisierung realistischer FunkkanĂ€le fĂŒhren die in dieser Dissertation vorgestellten Ergebnisse zu dem VerstĂ€ndnis, dass beim Ubergang zu höheren Frequenzen die Frequenz x selbst keine signifikante Rolle bei der Definition der Kanalmodellierungsmethodik spielt. Vielmehr ist es von grundlegender Bedeutung, wie ein Ausbreitungskanal ausgeleuchtet wird. Daher zeigt sich, dass mmWave-Systemeigenschaften wie eine hohe Antennenrichtcharakteristik und Systembandbreite einen hohen Einfluss auf die Definition des Kanalmodells haben. Im Allgemeinen ist die Skalierung der Schwundtiefe als Funktion der Systembandbreite ziemlich gut verstanden. Wir zeigen, dass die hohe Antennenrichtwirkung von mmWave-Systemen zu einer weiteren Reduzierung der Schwundtiefe fĂŒhrt. ZusĂ€tzlich erforschen wir einige neue Richtungen in diesem Forschungsbereich, die auf der Analyse der Statistik zweiter Ordnung des Kanalimpulsantwort-Vektors basieren. Unsere Ergebnisse unterstreichen, dass die Schwund-Statistiken der auflösbaren Kanalabgriffe in einem mmWave-Funkkanal nicht als Rayleigh-Rice-verteilte Zufallsvariablen modelliert werden können. Dies liegt vor allem daran, dass durch die hohe Antennenrichtwirkung und Bandbreite von mmWave-Systemen Kanale mit spĂ€rlichen Streubedingungen ausgeleuchtet werden. Folglich ist die Annahme komplexer Gaus’scher Zufallsvariablen, die mit Rayleigh-Rice Schwundverteilungen verbunden ist, nicht mehr gĂŒltig. Des Weiteren wird gezeigt, dass die hohe Antennenrichtwirkung und Bandbreite von mmWave-Systemen auch die GĂŒltigkeit der Annahme von StationaritĂ€t im weiteren Sinne im Slow-Time-Bereich von mmWave-FunkkanĂ€len in Frage stellt. Die in diesem Beitrag vorgestellten Ergebnisse sind neuartig und bieten theoretisch konsistente Einblicke in den gemessenen Funkkanal

    Dual-Band Non-Stationary Channel Modeling for the Air-Ground Channel

    Get PDF
    Multiple air-to-ground (AG) radio propagation channels are experimentally characterized for two frequency bands, C-band and L-band. These characterizations are aimed to support the specification of the control and non-payload communication (CNPC) links being designed for civil unmanned aircraft systems (UAS). The use of UAS is expected to grow dramatically in the coming decades. In the United States, UAS will be monitored and guided in their operation within the national airspace system (NAS) via the CNPC link. The specifications of the CNPC link are being designed by government, industries, academia and standards bodies such as the Radio Technical Commission for Aeronautics (RTCA). Two bands have been allocated for the CNPC applications: from 5030 to 5091 MHz in C-band and a portion of the aeronautical L-band from 960 to 1215 MHz. The project under which this work was conducted is entitled “Unmanned Aircraft Systems Research: The AG Channel, Robust Waveforms, and Aeronautical Network Simulations”, and this is a sub-project of a NASA project entitled “Unmanned Aircraft Systems Integration in the National Airspace System.” Measurements and modeling for radio propagation channels play an essential role in wireless communication system design and performance evaluation; such models estimate attenuation, delay dispersion, and antenna diversity in wireless channels. The AG channel differs significantly from classic cellular, ground-to-satellite, and other terrestrial wireless channels, particularly in terms of antenna heights and velocity. The previous studies about the AG channels are reviewed and the significant gaps are indicated. NASA Glenn Research Center has conducted an AG channel measurement campaign for multiple ground station local environments, including over sea, over freshwater, desert, suburban, near urban, hilly and mountainous settings. In this campaign, over 316 million power delay profiles (PDPs) or channel impulse responses (CIRs), over 82 flight tracks, have been collected. The measurement equipment was a dual-band single-input multiple-output (SIMO) wideband channel sounding system with bandwidth of 50 MHz in C-band and 5 MHz in L-band. Given the dynamic nature of the AG environments, the channels are statistically non-stationary, meaning that the channel’s statistical parameters change over time/space. We have estimated, via two distinct methods, that the stationarity distance is approximately 15 m—this is the distance over which the channel characteristics can be assumed to be wide sense stationary. The AG channel attenuation is considered as a combination of large scale path loss, small scale fading, and airframe shadowing. The large scale path loss is modeled by both the log-distance model and two-ray models. The theoretical flat earth and curved earth two-ray models are presented, along with their limitations, boundaries and some enhancements. Numerous propagation effects in the AG channels are discussed, and this includes earth spherical divergence, atmospheric refraction, atmospheric gas and hydrometeor attenuations, and ducting. The small scale fading is described by the Ricean distribution, which for unit-energy normalizations are completely characterized by Ricean K-factors; these K-factors are approximately 28.7 dB in C-band and 13.1 dB in L-band. The line-of-sight (LOS) signal can be obstructed by the airplane itself in some specific maneuvers, and this is termed airframe shadowing. For the specific flights and NASA aircraft used in our measurements, the shadowing duration was found to be on average 30 seconds, and the shadowing loss can be as large as 40 dB. The statistics, models and simulation algorithm for the airframe shadowing are provided. The wideband characteristics of the AG channel are quantified using root-mean-square delay spread (RMS-DS), and illustrated by sequences of PDPs. Tapped delay line (TDL) models are also provided. Doppler effects for over water channels are also addressed. Given the sparsity of the diffuse multipath components (MPCs) in the AG channels and generally short lifetime of these MPCs, the CIRs are modeled by the two-ray model plus intermittent 3rd, 4th or 5th “rays.” Models for intermittent ray probability of occurrence, duration, relative power, phase, and excess delay are provided. The channels at C-band and L-band were found to be essentially uncorrelated; this conclusion holds for the specific antenna locations used in our experiments (the aircraft underside), but is not expected to change for arbitrary antenna locations. For the aircraft antenna locations employed, intra-band signals are highly correlated, and this is as expected for channels with a dominant LOS component; analytical correlation computations show interesting two-ray effects that also appear in measurements. Multiple aircraft antennas and carefully selected locations are recommended for mitigating airframe shadowing for the CNPC link. Future work for AG channel modeling includes characterization of L-band delay dispersion and L-band TDL models, estimation of building and/or tree shadowing for small UAS that fly at very low altitudes, evaluation of multiple ground site(s) antenna diversity, and AG channel modeling via geometric techniques, e.g., ray-tracing

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Time- and Frequency-Varying KK-Factor of Non-Stationary Vehicular Channels for Safety Relevant Scenarios

    Full text link
    Vehicular communication channels are characterized by a non-stationary time- and frequency-selective fading process due to fast changes in the environment. We characterize the distribution of the envelope of the first delay bin in vehicle-to-vehicle channels by means of its Rician KK-factor. We analyze the time-frequency variability of this channel parameter using vehicular channel measurements at 5.6 GHz with a bandwidth of 240 MHz for safety-relevant scenarios in intelligent transportation systems (ITS). This data enables a frequency-variability analysis from an IEEE 802.11p system point of view, which uses 10 MHz channels. We show that the small-scale fading of the envelope of the first delay bin is Ricean distributed with a varying KK-factor. The later delay bins are Rayleigh distributed. We demonstrate that the KK-factor cannot be assumed to be constant in time and frequency. The causes of these variations are the frequency-varying antenna radiation patterns as well as the time-varying number of active scatterers, and the effects of vegetation. We also present a simple but accurate bi-modal Gaussian mixture model, that allows to capture the KK-factor variability in time for safety-relevant ITS scenarios.Comment: 26 pages, 12 figures, submitted to IEEE Transactions on Intelligent Transportation Systems for possible publicatio

    Propagation aspects of vehicle-to-vehicle communications - an overview

    Get PDF
    Vehicle-to-vehicle (VTV) wireless communications have many envisioned applications in traffic safety, congestion avoidance, etc., but the development of suitable communications systems and standards requires accurate models for the VTV propagation channel. This paper provides an overview of existing VTV channel measurement campaigns, describing the most important environments, and the delay spread and Doppler spreads obtained in them. Statistical as well as geometry-based channel models have been developed based on measurements and intuitive insights. A key characteristic of VTV channels is the nonstationarity of their statistics, which has major impact on the system performance. Extensive references are provided

    Geometry-Based Channel Models for Car-to-Car Communication Systems and Applications

    Get PDF
    In last two decades, intelligent transportation systems (ITS) have received considerable attention due to new road traffic safety applications that significantly improve the efficiency of traffic flow and reduce the number of road accidents. Consequently, there has been an increased interest in studying and developing car-to-car (C2C) communication systems, which play a key role in ITS. C2C communications has also gained the attention of standardization bodies, such as the IEEE1 and 3GPP LTE2, which aim to provide improvements in C2C communication systems. As it follows from the title, in this dissertation, we present the state-of-the-art regarding the modeling and analysis of different C2C channels in C2C communication systems. In C2C communication systems, the underlying radio channel differs from the conventional fixed-to-mobile (F2M) and fixed-to-fixed (F2F) channels in the way that both the mobile transmitter and the mobile receiver are in motion. In this regard, reliable and robust traffic telematic systems have to be designed, developed and tested. This leads to a demand for new radio channel models for C2C communication systems. Therefore, this dissertation is devoted to design, develop and validate new geometry-based channel models for C2C communication systems. In particular, two goals are aimed, which are study and investigation of the propagation characteristics of C2C fading channels and analyzing the performance of C2C communication systems over those fading channels correlated in time and space.publishedVersio

    Extending TDL based non-WSSUS vehicle-to-everything channel model

    Get PDF
    In den vergangenen Jahrzehnten haben drahtlose Kommunikationssysteme eine rasante Entwicklung durchgemacht und es wurden viele Untersuchungen durchgefĂŒhrt, seit Maxwell die Existenz von elektromagnetischer Wellen vorausgesagt hat. In den letzten Jahren hat die Forschung im Bereich der vehicle to X (V2X)-Kommunikation stetig zugenommen. V2X beschreibt die FĂ€higkeit, Daten zwischen einem Fahrzeug oder vehicle (V) und “allem” zu ĂŒbertragen. In Zukunft könnten Fahrzeuge mit ihrer Umgebung kommunizieren, um VerkehrsunfĂ€lle zu vermeiden und Staus zu verringern. Dazu werden sie ihr Geschwindigkeits- und Positionsdaten ĂŒber Ad-hoc-Fahrzeugnetze senden und empfangen können. Um die Verkehrssicherheit zu erhöhen, ist eine zuverlĂ€ssige Kommunikationsverbindung notwendig. Die grĂ¶ĂŸte Herausforderung bei der Fahrzeugkommunikation besteht darin, dass sich die Eigenschaften des Physical Layers aufgrund der inhĂ€renten MobilitĂ€t innerhalb des Kanals, der hohen Fahrzeuggeschwindigkeiten, der unterschiedlichen Antennenpositionen und der vielen Handover aufgrund kleinerer Zellen schnell Ă€ndern. Dies bringt eine Reihe von Herausforderungen in Bezug auf die Kanalcharakterisierung mit sich. Es handelt sich um einen Kanal mit starker Zeitvarianz und es treten viele ÜbergĂ€nge auf. Somit handelt es sich um einen nicht-stationĂ€rer (non-stationary) Kanal. Das Hauptziel dieser Untersuchung ist es, eine Methode zu finden, mit der der Kanal einer komplexen Umgebung in einer einfachen Form mit weniger strengen Beziehungen zur Geometrie dargestellt werden kann. Dabei werden die statistischen Eigenschaften Ă€hnlich der Messdaten beibehalten. In dieser Arbeit werden nichtstationĂ€re tapped delay line (TDL)-Modelle verwendet, um vehicle to infrastructure (V2I)-KanĂ€le zu beschreiben. Es wird eine neue Strategie zur Extraktion von TDL-Kanalmodellparametern aus Messdaten vorgeschlagen. Dieser Ansatz basiert auf einer bestehenden Methode zur Ableitung von Parametern fĂŒr ein TDLModell. Es wird gezeigt, dass mit einer anderen Methode zur Auswahl der Taps die Anzahl der Abgriffe, die zur Rekonstruktion der root mean square delay spread (RMS-DS) eines Kanals erforderlich sind, erheblich reduziert werden kann. Ein neuer Ansatz zur ĂŒberprĂŒfen der Korrektheit der Ableitung der Kanalmodellparameter wird aufgezeigt. Die DurchfĂŒhrbarkeit der Methode wird anhand von Channel Sounding Messungen bestĂ€tigt. In dieser Dissertation wird ein Generator zur Erzeugung von Kanalimpulsantworten entwickelt und das nichtstationĂ€re Verhalten der KanĂ€le durch die Verwendung eines ON/OFF-Prozesses beschrieben. Es werden Markov-Ketten unterschiedlicher Ordnung modelliert, um das nicht-stationĂ€re Verhalten besser zu erfassen. Die Untersuchung zeigt, dass Markov-Ketten erster Ordnung mit zwei ZustĂ€nden vorzuziehen sind, um das hĂ€ufige ON/OFF-Verhalten von Mehrwegpfaden darzustellen, und dass die Markov-Modelle zweiter und dritter Ordnung keine großen Auswirkungen haben. Eine Methode zur Erweiterung eines single input single output (SISO)-TDL-Modells auf multiple input multiple output (MIMO) unter der non-wide sense stationary uncorrelated scattering (non-WSSUS)-Annahme wird eingefĂŒhrt, um TDL-Kanalmodelle fĂŒr V2I MIMO-Systeme zu entwickeln. Die Analyse bewertet die SISO- mit der MIMO-Konfiguration in Bezug auf die KanalkapazitĂ€t. Es werden verschiedene MIMO-Konfigurationen untersucht, und es wird gezeigt, dass die Position der Antennen eine wichtige Rolle spielt. Die Verwendung von nur vier Antennen am transmitter (Tx) und receiver (Rx), die in unterschiedliche Richtungen abstrahlen, fĂŒhrt zu einem qualitativen Sprung in der LeistungsfĂ€higkeit des Systems.In the past decades, wireless communication systems have undergone rapid development, and many investigations have been done since Maxwell predicted the existence of electromagnetic waves. In recent years, vehicle to X (V2X) communication research has been growing steadily. V2X describes the ability to transmit data between a vehicle (V) and “everything”. In the future, vehicles might be able to communicate with their environment to prevent traffic accidents and reduce congestion by allowing vehicles to transmit and receive data through a vehicular ad hoc network at their speed and position. In order to achieve the ultimate goal of enhancing transportation safety, it is crucial to establish reliable communication links. The main challenge of vehicular communications introduces new properties because the physical layer properties are rapidly changing due to inherent mobility within the channel, high vehicle speeds, varying antenna positions, and many handovers due to smaller cells. This brings up a number of challenges in terms of channel characterization because it is a strong time-variant channel and many transitions occur; therefore, it is a non-stationary channel. In this thesis, non-stationary tapped delay line (TDL) models are used to describe the vehicle to infrastructure (V2I) channels. This thesis proposes a new strategy to extract TDL channel model parameters from measurement data. The proposed approach is based on an existing method to derive parameters for a TDL model. It will be shown that with a different method of choosing taps, the number of taps necessary to regenerate the root mean square delay spread (RMS-DS) of a channel can be significantly reduced. An approach is proposed to verify the correctness of the channel model parameters derivation. The feasibility of the method will be confirmed using channel-sounding measurements. This dissertation devises a generator to produce channel impulse responses (CIRs) and describes the non-stationary behavior of the channels via employing an ON/OFF process. Different order Markov chains are modeled with the aim of better capturing the non-stationary behavior. The investigation shows that first-order two-state Markov chains are preferable to represent multipath’s frequent ON/OFF behavior, and the second- and third-order Markov models do not make enormous effects. A method for extending a single input single output (SISO)-TDL model to multiple input multiple output (MIMO) under non-wide sense stationary uncorrelated scattering (non-WSSUS) assumption is introduced to develop TDL channel models for the V2I MIMO systems. The analysis evaluates SISO- with MIMO configuration in terms of channel capacity. Different MIMO configurations are explored, and it will be illustrated that the position of antennas plays an important role. Using only four antennas at the transmitter (Tx) and receiver (Rx) that radiate towards different directions will make a qualitative leap in the performance of the system
    • 

    corecore