9 research outputs found

    Safe Crossover of Neural Networks Through Neuron Alignment

    Full text link
    One of the main and largely unexplored challenges in evolving the weights of neural networks using genetic algorithms is to find a sensible crossover operation between parent networks. Indeed, naive crossover leads to functionally damaged offspring that do not retain information from the parents. This is because neural networks are invariant to permutations of neurons, giving rise to multiple ways of representing the same solution. This is often referred to as the competing conventions problem. In this paper, we propose a two-step safe crossover(SC) operator. First, the neurons of the parents are functionally aligned by computing how well they correlate, and only then are the parents recombined. We compare two ways of measuring relationships between neurons: Pairwise Correlation (PwC) and Canonical Correlation Analysis (CCA). We test our safe crossover operators (SC-PwC and SC-CCA) on MNIST and CIFAR-10 by performing arithmetic crossover on the weights of feed-forward neural network pairs. We show that it effectively transmits information from parents to offspring and significantly improves upon naive crossover. Our method is computationally fast,can serve as a way to explore the fitness landscape more efficiently and makes safe crossover a potentially promising operator in future neuroevolution research and applications

    Shortest Edit Path Crossover: A Theory-driven Solution to the Permutation Problem in Evolutionary Neural Architecture Search

    Full text link
    Evolutionary algorithms (EAs) have gained attention recently due to their success in neural architecture search (NAS). However, whereas traditional EAs draw much power from crossover operations, most evolutionary NAS methods deploy only mutation operators. The main reason is the permutation problem: The mapping between genotype and phenotype in traditional graph representations is many-to-one, leading to a disruptive effect of standard crossover. This work conducts the first theoretical analysis of the behaviors of crossover and mutation in the NAS context, and proposes a new crossover operator based on the shortest edit path (SEP) in graph space. The SEP crossover is shown to overcome the permutation problem, and as a result, offspring generated by the SEP crossover is theoretically proved to have a better expected improvement in terms of graph edit distance to global optimum, compared to mutation and standard crossover. Experiments further show that the SEP crossover significantly outperforms mutation and standard crossover on three state-of-the-art NAS benchmarks. The SEP crossover therefore allows taking full advantage of evolution in NAS, and potentially other similar design problems as well.Comment: 17 pages, 6 figure

    Neuroevolutionary inventory control in multi-echelon systems

    Get PDF

    Effective Task Transfer Through Indirect Encoding

    Get PDF
    An important goal for machine learning is to transfer knowledge between tasks. For example, learning to play RoboCup Keepaway should contribute to learning the full game of RoboCup soccer. Often approaches to task transfer focus on transforming the original representation to fit the new task. Such representational transformations are necessary because the target task often requires new state information that was not included in the original representation. In RoboCup Keepaway, changing from the 3 vs. 2 variant of the task to 4 vs. 3 adds state information for each of the new players. In contrast, this dissertation explores the idea that transfer is most effective if the representation is designed to be the same even across different tasks. To this end, (1) the bird’s eye view (BEV) representation is introduced, which can represent different tasks on the same two-dimensional map. Because the BEV represents state information associated with positions instead of objects, it can be scaled to more objects without manipulation. In this way, both the 3 vs. 2 and 4 vs. 3 Keepaway tasks can be represented on the same BEV, which is (2) demonstrated in this dissertation. Yet a challenge for such representation is that a raw two-dimensional map is highdimensional and unstructured. This dissertation demonstrates how this problem is addressed naturally by the Hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT) approach. HyperNEAT evolves an indirect encoding, which compresses the representation by exploiting its geometry. The dissertation then explores further exploiting the power of such encoding, beginning by (3) enhancing the configuration of the BEV with a focus on iii modularity. The need for further nonlinearity is then (4) investigated through the addition of hidden nodes. Furthermore, (5) the size of the BEV can be manipulated because it is indirectly encoded. Thus the resolution of the BEV, which is dictated by its size, is increased in precision and culminates in a HyperNEAT extension that is expressed at effectively infinite resolution. Additionally, scaling to higher resolutions through gradually increasing the size of the BEV is explored. Finally, (6) the ambitious problem of scaling from the Keepaway task to the Half-field Offense task is investigated with the BEV. Overall, this dissertation demonstrates that advanced representations in conjunction with indirect encoding can contribute to scaling learning techniques to more challenging tasks, such as the Half-field Offense RoboCup soccer domain

    Desarrollo y simplificación de redes de neuronas artificiales mediante el uso de técnicas de computación evolutiva

    Get PDF
    [Resumen] Esta Tesis propone el uso de técnicas de Computación Evolutiva (CE) con el objetivo de automatizar el proceso de desarrollo de Redes de Neuronas Artificiales (RR,NN.AA.). Tradicionalmente, el desarrollo de RR.NN.AA. es un proceso lento, marcado por el gran trabajo que debe de realizar el experto. Por su parte, los métodos existentes para el desarrollo automatizado de RR.NN.AA. han sido analizados, y como resultado se han hallado una serie de carencias graves. Con el objetivo de paliar estas carencias, y de lograr un sistema totalmente automatizado en todas las etapas de desarrollo de RR.NN.AA., se propone el uso de dos técnicas de CE: Programación Genética (PG) y Algoritmos Genéticos (AA.GG.) para lograr un modelo que tenga dichas características. Los resultados obtenidos en los experimentos realizados, así como en la comparación del modelo desarrollado con los existentes, muestran una alta eficiencia del sistema desarrollado, así como una serie de ventajas tales como una optimización de las redes conseguidas.Esta Tesis propone el uso de técnicas de Computación Evolutiva (CE) con el objetivo de automatizar el proceso de desarrollo de Redes de Neuronas Artificiales (RR.NN.AA.). Tradicionalmente, el desarrollo de RR.NN.AA. es un proceso lento, marcado por el gran trabajo que debe de realizar el experto. Por su parte, los métodos existentes para el desarrollo automatizado de RR.NN.AA. han sido analizados, y como resultado se han hallado una serie de carencias graves. Con el objetivo de paliar estas carencias, y de lograr un sistema totalmente automatizado en todas las etapas de desarrollo de RR.NN.AA., se propone el uso de dos técnicas de CE: Programación Genética (PG) y Algoritmos Genéticos (AA.GG.) para lograr un modelo que tenga dichas características

    Non-redundant genetic coding of neural networks

    No full text
    corecore