-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

Neuroevolutionary inventory control in multi-echelon systems

Citation for published version:

Prestwich, SD, Tarim, SA, Rossi, R & Hnich, B 2009, Neuroevolutionary inventory control in multi-echelon
systems. in F Rossi & A Tsoukias (eds), Algorithmic Decision Theory: First International Conference, ADT
2009, Venice, ltaly, October 20-23, 2009. Proceedings. vol. 5783 LNAI, Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer-
Verlag GmbH, pp. 402-413. DOI: 10.1007/978-3-642-04428-1_35

Digital Object Identifier (DOI):
10.1007/978-3-642-04428-1_35

Link:
Link to publication record in Edinburgh Research Explorer

Document Version: _
Early version, also known as pre-print

Published In:
Algorithmic Decision Theory

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN o ACCESS

Download date: 05. Apr. 2019

https://core.ac.uk/display/28963658?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-642-04428-1_35
https://www.research.ed.ac.uk/portal/en/publications/neuroevolutionary-inventory-control-in-multiechelon-systems(7b0a3688-766e-467a-81de-b2a09e8c71da).html

Neuroevolutionary Inventory Control
in Multi-Echelon Systems*

S. D. Prestwich, S. A. Tarin?, R. Rossi, and B. Hnich

LCork Constraint Computation Centre, Ireland
20perations Management Division, Nottingham UniversitgiBess School, Nottingham, UK
3Logistics, Decision and Information Sciences Group, Wirggen UR, the Netherlands
4Faculty of Computer Science, Izmir University of Economitsrkey
s.prestw ch@s. ucc.ie, arntar @ahoo.comtr,
roberto.rossi @wur.nl, brahimhnich@eu.edu.tr

Abstract. Stochastic inventory control in multi-echelon systemsgsdsard prob-
lems in optimisation under uncertainty. Stochastic progréng can solve small
instances optimally, and approximately solve large instarvia scenario reduc-
tion techniques, but it cannot handle arbitrary nonlinesrstraints or other non-
standard features. Simulation optimisation is an altéreaapproach that has
recently been applied to such problems, using policies réngire only a few

decision variables to be determined. However, to find ogtonaear-optimal so-

lutions we must consider exponentially large scenaricstreieh a corresponding
number of decision variables. We propose a neuroevolutjoapproach: using

an artificial neural network to approximate the scenarie,tamd training the net-
work by a simulation-based evolutionary algorithm. We slesyerimentally that

this method can quickly find good plans.

1 Introduction

In the area of optimisation under uncertainty, one of thetmgure fields is inventory
control. This field has achieved excellent theoretical arattical results using tech-
nigues such as dynamic programming, but some problems arkaitge or complex
to be solved by classical methods. Particularly hard arsetliavolvingmulti-echelon
systemsin which multiple stocking points form a supply chain. Irchicases we may
resort to simulation-based methods. Simulation alone nravaluate a plan, but when
combined with an optimisation algorithm it can be used to fiedr-optimal solutions
(or plans). This approach is callstnulation optimisatioffSO) and has a growing lit-
erature in many fields including production schedulingwoek design, financial plan-
ning, hospital administration, manufacturing design, terasanagement and distribu-
tion. It is a practical approach to optimisation under utaiaty that can handle prob-
lems containing features that make them difficult to moddlsoive by other methods:
for example non-linear constraints and objective functaomd demands that are corre-
lated or have unusual probability distributions.

* B. Hnich is supported by the Scientific and Technological €Resh Council of Turkey
(TUBITAK) under Grant No. SOBAG-108K027.

SO approaches to inventory control are typically based tinips known to be opti-
mal in certain situations, involving a small number of remrgoints and reorder quanti-
ties. For example iifis, S) policies whenever a stock level falls belet is replenished
up to S, while in (R, S) policies the stock level is checked at times specifiedtbgnd
if it falls below S then it is replenished up t§. SO can apply standard optimisation
techniques such as genetic algorithms to these policies&igrang genes to reorder
points and replenishment levels. In more complex situatiovolving constraints, mul-
tiple stocking points, etc, these policies may be suboptimeerms of expected cost,
though they can have other desirable properties such amuwagplanning stability.
But a cost-optimal plan for a multi-stage problem with rersgumust specify an order
quantity in every possible scenario, so the plan must besepited via acenario tree
The number of scenarios might be very large, or infinite inddage of continuous prob-
ability distributions, making the use of SO problematiceario reduction techniques
may be applied to approximate the scenario tree, but it nmghalways be possible to
find a small representative set of scenarios.

An alternative form of approximation is to use an artificialunal network (ANN)
to represent the policy. For example, the inputs to the ANNMabe the current stock
levels and time, and the outputs could be the recommendthadgtvhether or not to
replenish and by how much). We must then train the ANN so teaecommendations
correspond to a good plan. No training data is availabledohs problem so the usual
ANN backpropagation training algorithm cannot be appliedtead we may use an
evolutionary algorithm to train the network to minimise s hisneuroevolutionary
approach has been applied to control problems [8, 9, 21] aqdialying strategies for
games such as Backgammon [16] and Go [14], but it has not beensévely applied
to inventory control. In this paper we apply neuroevolutiostochastic inventory con-
trol in multi-echelon systems. Section 2 presents our ntktBection 3 evaluates the
method experimentally, Section 4 surveys related work, &@ction 5 concludes the
paper.

2 A neuroevolutionary approach

To approximate the scenario tree, we construct a functiamselinput is a vector con-
taining the time period and current inventory levels, anaseéhoutput is a vector of
order quantities (which might be zero). We design the fumcéutomatically by simu-
lation optimisation.

2.1 Scenario treecompression by neural network

An obvious choice for this function is an artificial neurakwerk (ANN), which can
approximate any function with arbitrary accuracy given fiigent number of units.
ANNSs also come with a ready-made algorithm for optimisatibie well-known back-
propagation algorithm. However, there is a problem witk #pproach: we do not have
training data available (this also precludes the use of 8upygector Machines). To
obtain training data we would have to solve a set of instarenes there is no known
method for solving the harder instances to optimality.dadtwe must use an ANN to

Fig. 1. The feedforward ANN used

solve a problem imeinforcement learningn which we must choose its weights in order
to maximise reward (in this case to minimise expected cBsf)kpropagation cannot be
used for this task, but we can instead use an evolutionaoyittigh (EA) whose genes
are the weights and whose fitness function is minus the ctés. feuroevolutionary
approach has been applied to control problems and gamérigarn

In our experiments we began with a standard three-layefdegdrd ANN, which
is a universal function approximator: it can approximatg aamction to arbitrary ac-
curacy given a sufficient number of hidden units. We triededént numbers of hid-
den units, including multiple hidden layers, with diffetéransfer functions in all the
units (including sigmoids, limiter functions and polyn@héxpressions), and with two
alternative representations of time peribdas an integet = 1... P and using the
well-knownunary encodingvhich is often used to represent symbolic ANN inputs and
gave better results here. In the unary encoding we assaeckiteary variable with each
period, and periodis represented by a vect@y,...,0,-1,1,0¢11,...,0p). Surpris-
ingly, we obtained best results using an extremely simpieardk, with no hidden layer
and the identity transfer functiofixz) = z. No bias term is needed because the unary
encoding already provides a time-dependent bias.

The ANN corresponding to three stocking points is shown guFé 1, where Si
denotes the'” stock level, Oi thei*” order level, and Tj thg*” binary variable in
the unary time encoding. All units use the identity trandferction. Each arrowed
line connecting two units in the diagram has an associateghiveso the ANN has
K (P + K) weights, wherdX is the number of stocking points. This ANN represents a
simple set of affine relationships

Oj = Z Siwij + wy;

wherew;; is the ANN weight between stock levé] and order leveD;, andwy; is the
ANN weight between time and order leveD;. (An affine transformation is a linear
transformation followed by a translation.) One would ngiect this to yield an efficient

or even a sensible policy, but our policy is not yet complsteva have not handled the
problem constraints.

2.2 Congtraint handling

The ANN forms only part of the policy. We also need a way of Hamythe constraints
of the problem, which forbid (i) negative orders (corresgiog to selling unused stock
back to the supplier), and (ii) negative stock levels. We tkdin the ANN by an EA
and there are several ways of handling constraints in EAsu¥éeadecoderwhich
transforms the (possibly infeasible) ANN solution into dhat violates no constraints.
Decoders are a way of finding feasible solutions from chrames that represent in-
feasible states. They are problem-specific and ours wortdlas's. Suppose at period
t we have stock level§; and the ANN suggests ordering quantit@s We modify
each quantity); by
O; — max(Ol-, 0)

to avoid violating constraints of type (i). Then for any iy point: that supplies a
set of stocking pointX; we modify its order leveD; by

O; «— max Oi, Z Oj - S;

JEX;

This ensures that each supplier orders sufficient stocKfibits deliveries, and avoids
violating constraints of type (ii). The policy is now the cpasition of the ANN and the
decoder, which transforms the affine function of the ANN iatoontinuous piecewise
affine function.

Note that we must modify the order levels of the stocking fso@arlier in the supply
chain first. This is always possible if the supply chain ishi@ torm of a directed acyclic
graph. If lateral transshipments are allowed (orders betvegocking points at the same
level) or if there are constraints on order sizes or storagacities then the decoder
must be modified; we leave this issue for future work.

2.3 Theevolutionary algorithm

To train the ANN we use an EA. There are many such algorithntisériterature, and
we now describe our choice and the design decisions behiRuistly, we decided not
to use genetic recombination. When training an ANN by EA oae encounter the
well-knowncompeting conventiormoblem (see [20] for example). This is caused by
two forms of symmetry: an ANN’s hidden units can be permutétheut changing
its output, and a hidden unit’s weights can all be multipligd-1 without changing its
output. Thus if there ark hidden units then there a2éh! equivalent ANNs. Crossover
is unlikely to give good results unless the parent chrom@soane aiming for symmet-
rically similar representations, though it is possible &sidgn crossover operators that
handle the symmetries [23]. This problem does not apply tswople ANN because it
has no hidden units, but in experiments crossover did notaugresults so we do not
use it.

We decided to use @ + 1)-Evolution Strategy (ES) because it is almost exactly a
steady-state genetic algorithm without crossover, andfanemt method for handling
noise in the fitness function is known for a steady-state tieaggorithm (see below).
However, we adapted it toellular ES, in which each chromosome is notionally placed
in an artificial space and nearby chromosomes form its neigtitwod. Cellular algo-
rithms can reduce premature convergence, which we foune @ firoblem with our
initial standard ES. In our ES the population sizg jst each iteration a new chromo-
somec’ is created by mutating a randomly selected chromosgmued ifc’ is fitter than
the least-fit chromosome€ in the neighbourhood af then it replaces*, otherwisec’
is discarded. We used a ring topology and define the neighbodrof a chromosome
to be its two adjacent chromosomes.

A common form of mutation adds normally distributed noise#zh gene, but we
use a method that gave better results in experiments. Fbretmomosome we gen-
erate two uniformly distributed random numbepsin the range(0,1) andgq in the
range(0, 0.5). Then for each allele in the chromosome, with probabjlitye change
it, otherwise with probability — p we leave it unchanged. If we do change it then with
probability ¢ we set it to 0, otherwise with probability— ¢ we add a random number
with Cauchy distribution to itCauchy mutatiomas been shown to speed up EAs [24].
It can be computed agan(u) whereu is a uniformly distributed random variable in the
range(—m,) ands is a scale factor. For each chromosome we compute a randden sca
factor, itself with Cauchy distribution and fixed scale tact00. Finally, if no allele was
modified (which is possible for smal) then we modify one randomly selected allele
as described. This rather complex mutation operator igdesito generate a variety of
random moves, with different numbers of modified alleles différent scale factors.
All chromosomes initially contain alleles generated rantjousing the same Cauchy
distribution. We do not use the well-known technique of -selpting step sizes, be-
cause in gu + 1)-ES offspring with reduced mutation variances are alwagégored

2].

2.4 Handling uncertainty

When demand is probabilistic the fitness function of the EAdssy. In such cases we
must average costs over a number of simulations. In soméopie®0 approaches to
inventory control, this problem was tackled by averagingte@ver a small number of
simulations because the simulations were computatiorafhensive: for example [13]
use 3 samples. The standard deviation of the sample mearaoflam variable with
standard deviation is o/+/n wheren is the number of samples, so a large number of
samples may be needed for very noisy fitness functions. Hengse& smaller problems
than those in [13] so we can afford to use a much larger numbsinwlations and
obtain reliable cost estimates. To do this for every chranwswould be expensive but
there are more efficient methods, and we useytkedy averaged samplimgsampling
scheme of [17]. This requires two parameters to be tuned &w#er:U and.S. On
generating a new chromosomi takesS samples to estimate its fitness before placing
it into the population. It then selects another chromosefm@vhich may bec) for
resampling anotherS samples are taken fef and used to refine its fithess estimate.
¢’ is the chromosome with highest fithess among those with féweerU samples, so

the function ofU is to prevent any chromosome from being sampled more tinaes th
necessary. If all chromosomes in the population have bemplsd U times then no
resampling is performed. The algorithm is summarised infE@.

train(u,S,U)
create ANN popul ation of size p
eval uat e popul ati on using S sanples
whil e not (term nation condition)
sel ect a parent
breed an offspring O by nutation
eval uate O using S sanpl es
if Ofitter than locally least-fit chronpsonme L
replace L by O
select globally fittest chronpsone F with #sanples< U
if F exists
re-evaluate F using S nore sanples
return best chronobsome found w th #sanples>U

Fig. 2. Cellular evolution strategy with resampling

The aim of this resampling method is to obtain chromosoméls gbod fitness
averaged over many samples, while expending a smaller nuofilsamples on less-
promising chromosomes. In our experiments welset 10000 so that cost estimates
are obtained over 10000 samples, but by setfing 1 we only expend approximately
200 samples per chromosome on average (this number was liguexperiment). As
the population size is 50, aiid x 200 = 10000, this implies that a typical chromosome
uses little more than one sample before being rejected aslusifig smallS also has an
effect beyond reducing the average number of samples pemcdsome: it encourages
exploration by preserving less-fit chromosomes for lon@ér.found this to be a very
beneficial effect.

Some points are glossed over in Figure 2 for the sake of rdagalbirstly, if S is
not a divisor ofU then fewer thart’ samples are needed in the final resampling of any
chromosome to bring its total td. Secondly, the termination condition is unspecified,
and we simply use a timeout. Thirdly, if no chromosome tiasamples on termination
then we must choose another chromosome to return. To ausj&tbhould be assigned
a sufficiently large value so that in experiments there isagva chromosome withl
samples on termination. This value must be chosen by expatation.

2.5 Discussion of the method

We refer to our method as NEMUHENeuro-Evolution for MUIti-Echelon systems).
NEMUE is the result of many experiments with alternativesi@ns. We experimented
with an array of ANNs, one for each time period. This model ha® weights and

! The “lady of the lake” in Arthurian legend.

clearly subsumes the model above: any plan that can be espegsby that model can
also be represented by this one. The results should therb®oat least as good, but
in experiments they were significantly worse. We believé tthet ANN array is simply
harder to train than a single ANN.

We also tried a non-unary encoding of time, in which ordeels\are linear func-
tions of stock levels and polynomial functions of time. Rigithe polynomial degree
makes the size of the ANN independent of the number of timsger Using a cubic
function of time gave reasonable results but was inferighéounary encoding.

We used a decoder to handle the problem constraints, b #ierother ways of
handling constraints in EAs. The simplest is to upenalty functiorwhich adds a large
artificial cost for each violated constraint. In our probl#rs forces the ANN to learn
to order sufficient stock in order to avoid stockout. We tréeedenalty function but it
gave inferior results to the decoder.

3 Experiments

Ultimately we are interested in solving large, realistiegntory problems with multiple
stocking points, stochastic lead times, correlated demand other features that make
classical approaches impractical. Unfortunately thezenarknown methods for solving
such problems to optimality, so there is no way of evaluatingmethod. Instead we
consider more modest problems to test the ability of NEMUErtd good plans.

Our benchmark problems have two multi-echelon topologdsorescentandse-
rial. In the arborescent case we have three stocking points AdEawith C supplying
A and B, while in the serial case C supplies B which suppliekvoth cases we have
linear holding costs, linear penalty costs, fixed orderingtg, and stationary proba-
bilistic demands. The closing inventory levels for periate I = I | + Q4 — d*,
IB =1B | +QF —dP andIf = IZ | + QF — Q#* — QF whereQ; is the order placed
in periodt andd; is the demand in period If I, < 0 then the incurred cost is [;.,
otherwise it isl;.h, wherer is the penalty cost antl the holding cost. Suppliers are
not allowed to run out of stock. We prepared 28 instances tif thee arborescent and
serial types, with various costs and 2—9 time periods, gigitotal of 56 instances with
a range of characteristics as follows. The holding cost#fd8 and C are 4, 5 and 1
respectively for arborescent instances 1-14; 3, 2 and Ilhorascent instances 15-28;
and 3, 2 and 1 for all serial instances. For the arborescstatrines the penalty costs for
A and B are 12 and 25 respectively for instances 1-14; and 8 &mdnstances 15-28.
For all the serial instances the penalty cost for instance 22i The ordering costs for
A, B and C are 150, 130 and 170 respectively for arborescstanaes 1-14; 80, 75
and 100 for arborescent instances 15-28; and 75, 80 and 1@{ &erial instances.
For space reasons we do not specify the demands in detailigbused 10 patterns for
arborescent instances and 4 patterns for serial instahrceach period we specify a
deterministic demand which is then multiplied by eit}%elvith probability 0.25,1 with
probability 0.5, or% with probability 0.25. Thus the number of possible scersaito
3%, giving 59,049 scenarios for the largest problefs<£ 10).

We solved these problems in two ways: using Stochastic Bnogring (SP) [3] and
NEMUE. SP is a field of Operations Research designed to sgitimmisation problems

under uncertainty via scenario reduction techniques: eesgmtative subset of all pos-
sible scenarios is selected and used to generate a detgim@gjuivalent optimisation

problem, which is then typically solved using integer linpeogramming. We use the
SP results to evaluate the quality of plans found by NEMUE djtimal replenishment
plans are obtained using the following Stochastic IntegegRamming model:

min E[C] = 215\]:1 ZpEP (a,,&,,t + hpI;rt + wpIZ;)
st.t=1,....,Nandpe P

It = Ipt—1+ Qpe — Qp, .t — dpt

I, = I;t -1,

th S M(Spt

5pt S {O, 1} th >0

where

: total holding and ordering/set-up cost of the system dvegreriods;

: fixed ordering/set-up cost;

: proportional inventory holding cost per period;

: the set of all stocking points;

: the set of stocking points supplied directly by the stogkiointyp;

d,: : random demand at stocking pojntin periodt;

dpe - @ binary variable that takes the value of 1 if a replenishiroeours
: at stocking poinp in periodt and 0 otherwise;

I, : the inventory level at the end of perioat stocking poinp;

Q.+ - the order quantity at the beginning of periodt stocking poinp;

I == Q

andI* andI~ denote positive and negative closing inventory levels.epxdor the
lowest echelon stocking pointé; is zero.M is some large positive number. In this
stochastic model here-and-novpolicy is adapted: all decision variables are set before
observing the realisation of the random variables. Theaa®xt equivalent model is
obtained using the compiler described in [22] and solved @PLEX 11.2.

Results comparing SP and NEMUE are shown in Table 1. All SB were termi-
nated after one hour and all NEMUE results after 30 minutes 218 GHz Pentium (R)
4 with 512 RAM, each figure being the best of six five-minutestiithe NEMUE pa-
rameters used werg = 1, U = 10000 andu = 50. SP runs that were aborted because
of memory problems are denoted by “—". (In the few cases tiRafdsind and proved
optimality, this sometimes took much less than one hour)ddiumns marked “%opt”
denote the optimality gap: a reported cosind gapg means that SP proved that the
optimal solution cannot have cost lower thén= ¢(100 — ¢) /100 (this does not imply
the existence of a solution with cag). In several cases NEMUE finds superior plans
to those found by SP, showing that on larger instances Stéafind optimal plans. In
a few cases NEMUE appears to find plans that are slightly btée optimal: this is
of course impossible, and is a consequence of the empidtataof the data. In such
cases we assume that NEMUE found an optimal plan.

SP was unable to find provably optimal plans for all but thellstinstances. We
believe that for the medium-sized instances SP finds optiaals but does not prove
optimality before timeout. For the largest instances SPorgrof memory, though we

arborescent serial
SP NEMUE SP NEMUE
periods cost %opt cost %op# periods cost %opt cost %apt
1 4 2507 02573 261 4 995 0 993 0
2 53124 1.43180 3|12 51269 0.71298 2|9
3 6 3657 2.7 3775 5|73 6 1493 1.81491 1|7
4 74214 5.6 4250 6/44 71794 7.41797 7i6
5 84654 8.24722 9|55 8 2087 12.0 1987 7|6
6 95472 16.9 5164 11,% 92741 25.7 2295 113
7 10 — ? 5590 7 10 — ? 2603 ?
8 4 2100 02169 3)28 41311 0.21306 0|0
9 52626 0.6 2722 4|19 51598 2.21594 2{0
10 63311 1.8 3409 4|60 6 1833 4.31832 4|2
11 74065 2.54153 4{61 72024 6.7 2024 6(7
12 8 4454 3.4 4542 5|32 82160 9.32142 8|5
13 95158 10.35115 953 92678 25.1 2264 114
14 10 — ? 5432 A4 10 — ? 2407 ?
15 41342 0.2 1340 0{15 41104 01104 0
16 51657 1.81671 2|66 51417 2.11423 2|5
17 61930 2.21938 2|67 61759 4.11763 43
18 72180 4.52192 5|08 72057 5.42055 5|3
19 82428 6.12393 4|19 8 2266 6.6 2258 6|3
20 92853 13.9 2617 6[20 92706 17.7 2479 102
21 10 — ? 2864 21 10 — ? 2627 ?
22 4 1086 01096 022 4 828 0 828 0
23 51334 0.21330 0|@3 5 931 0 934 033
24 6 1680 0.6 1677 0|24 61259 1.31265 1|8
25 72055 0.7 2051 0|85 71633 2.41639 2|8
26 82219 1.12220 1{26 8 1757 2.71766 3|2
27 92479 2.02531 4|7 91983 3.92000 4|7
28 10 — ? 2665 28 10 — ? 2150 ?

Table 1. Experimental results

use the state-of-the-art CPLEX solver and a powerful mackam Intel Core 2 Duo
CPU E7200 with 2.53 GHz and 3GB of RAM). On the largest insésnfor which
SP did not run out of memory, it was unable to prove optimaditgn within several
days. Thus our benchmark problems straddle the borderiseleability by classical
methods.

Despite the simplicity of the policy and the large numberadrsarios (at least on
the larger instances) the NEMUE results are remarkably goad 3 of the 28 arbores-
cent instances and 19 of the 28 serial instances, NEMUE fplars that were at least
as good as those found by SP. On the three serial instanceicin SP found prov-
ably optimal plans, NEMUE found equally good plans. On mdshe larger instances
NEMUE found better plans than SP. These results show thad: r@latively simple,
continuous, piecewise affine function can closely appraxéra large policy tree for
multi-echelon systems; (ii) such a function can be effetyivepresented by an affine
function followed by a decoder function; (iii) the affine fttion can be learned in a
reasonable time by evolutionary search; (iv) that our apgings more scalable than SP.

It is tempting to speculate that with improved heuristics &nger runtimes we
might find optimal strategies fall instances. But there is no guarantee that all sce-
nario trees can be well-approximated in this way, and in neostensive experiments
on arborescent instance 1 (for example) we have been urmbietan optimal plan.
Nevertheless, the results are very promising.

4 Related work

Though simulation was originally used only to evaluate sohs found by other means,
the field of SO has recently become more popular — see theysafyg]. SO may be
recursiveor non-recursiveln the non-recursive approach an approximate cost fumctio
is learned during a simulation phase, then this functioniremised using an optimisa-
tion algorithm during a second phase. NEMUE is an exampleainsive SO in which
simulation and optimisation alternate and inform eachmothe

A tutorial and survey of the application of SO to inventoryntol is given in a
recent paper [12]. Relatively little work has been done guiyapg SO to multi-echelon
systems, and we have been unable to find any other work ontonwecontrol via
neuroevolution, though several papers use EAs to evolvesplfor example [1, 13,
15, 18]). Another difference of NEMUE is that it aims to apxiroate optimal policy
trees, whereas most SO methods aim to find parameters foiakpeticies such as
(s,5). A different way of using ANNSs for inventory control is to sl a set of training
instances by some other method, then train an ANN to learntddiwd good solutions
from new instances (for example [6]). But we then need anatlyorithm to solve the
problems, which is the aim of NEMUE. A related approach tornevolution isgenetic
programming in which an EA is used to evolve an algorithm for solving tmetgem,
instead of an ANN. This approach has also been applied taiawecontrol [11].

Another interesting approach to sequential decision groblsuch as those in in-
ventory control is the field variously referred torssuro-dynamic programmingempo-
ral difference learningandapproximate dynamic programminghis blend of dynamic
programming and simulation has been applied to many prablaotuding inventory

control: see for example [4, 7,10, 19]. A drawback is thatg&déechniques are needed
to cope with the well-known “curse of dimensionality”: thast number of states that
result from a simple discretisation of the continuum ofestah these problems. In con-
trast, neuroevolution can directly handle a continuum atiest.

5 Conclusion

We have proposed what seems to be the first neuroevolutionettyod for approxi-
mating optimal plans in multi-echelon stochastic inveptwontrol problems. Large or
infinite scenario trees are approximated by a neural netwehich is trained by an
evolutionary algorithm with resampling, while problem stnaints are handled by a
decoder. Because the method is simulation-based and usesagpurpose techniques
such as evolutionary algorithms and neural networks, isamé rely on special proper-
ties of the problem and can be applied to inventory probleitisivon-standard features.
We showed experimentally that the method can find near-gpsaiutions. In future
work we will extend the method to handle problem features sisccapacity constraints.

References

1. J. Arnold, P. Kochel. Evolutionary Optimisation of a Mtllocation Inventory Model With
Lateral Transshipment8th International Working Seminar on Production Economigés
1996, Preprints 2, pp. 401-412.

2. T. Back, F. Hoffmeister, H.-P. Schwefel. A Survey of Bwobn Strategiesdth International
Conference on Genetic Algorithirk91.

3. J. R. Birge, F. Louveaux. Introduction to Stochastic Paogning. Springer, New York,
1997.

4. S. K. Chaharsooghi, J. Heydari, S. H. Zegordi. A Reinforest Learning Model for Supply
Chain Ordering Management: an Application to the Beer Gdpeeision Support Systems
45(4):949-959, 2008.

5. M. C. Fu. Optimization for Simulation: Theory vs PractitéFORMS Journal of Computing
14:192-215, 2002.

6. L. K. Gaafar, M. H. Choueiki. A Neural Network Model for $aig the Lot-Sizing Problem.
Omega28(2):175-184, 2000.

7. 1. Giannoccaro, P. Pontrandolfo. Inventory Manageme8Lpply Chains: a Reinforcement
Learning Approachlnternational Journal of Production Economi@8(2):153—-161, 2002.

8. F. Gomez, J. Schmidhuber, R. Miikkulainen. Efficient Nanear Control Through Neu-
roevolution.Journal of Machine Learning Researél837-965, 2008.

9. N. M. Hewahi. Engineering Industry Controllers Using Kmavolution. Artificial Intelli-
gence for Engineering Design, Analysis and Manufactufi@l):49-57, 2005.

10. C.Jiang, Z. Shenga. Case-Based Reinforcement Ledmibynamic Inventory Control in
a Multi-Agent Supply-Chain SystenExpert Systems with ApplicatioB$(3 part 2):6520—
6526, 2009.

11. P. Kleinau, U. W. Thonemann. Deriving Inventory-Cohfolicies With Genetic Program-
ming. OR Spectrun26(4):521-546, 2004.

12. P. Kochel. Simulation (Optimisation) in Inventory Tmg Tutorial,8th ISIR Summer School
on New and Classical Streams in Inventory Management: Atbsim Research and Open-
ing Frontiers 2007.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

P. Kochel, U. Nielander. Simulation-Based Optinigatof Multi-Echelon Inventory Sys-
tems.International Journal of Production Economi¢s503-513, 2005.

A. Lubberts, R. Miikkulainen. Co-Evolving a Go-PlayiNgural Network Genetic and Evo-
lutionary Computation ConferencKaufmann, 2001, pp. 14-109.

A. L. Olsen. An Evolutionary Algorithm for the Joint Repishment of Inventory with In-
terdependent Ordering CostSenetic and Evolutionary Computation Conference, Lecture
Notes in Computer Scienwel. 2724, Springer, 2003, pp. 2416-2417.

J. B. Pollack, A. D. Blair. Co-Evolution in the Successfearning of Backgammon Strategy.
Machine Learning32(3):225-240, 1998.

S. D. Prestwich, S. A. Tarim, R. Rossi, B. Hnich. A Ste&dgte Genetic Algorithm With
Resampling for Noisy Inventory ContrdlOth International Conference on Parallel Problem
Solving From Nature, Lecture Notes in Computer Sciente5199, Springer, 2008, pp. 559—
568.

S. D. Prestwich, S. A. Tarim, R. Rossi, B. Hnich. A Cultukigorithm for POMDPs from
Stochastic Inventory Contrdbth International Workshop on Hybrid Metaheuristics, lueet
Notes in Computer Scienwel. 5296, Springer, 2008, pp. 16-28.

B. Van Roy, D. P. Bertsekas, Y. Lee, J. N. Tsitsiklis. A NeDynamic Programming Ap-
proach to Retailer Inventory Managemetoceedings of the IEEE Conference on Decision
and Contro| 1997.

J. Schaffer, D. Whitley, L. Eshelman. Combinations oh&i Algorithms and Neural Net-
works: A Survey of the State of the Attternational Workshop on Combinations of Genetic
Algorithms and Neural Network4992, pp. 1-37.

K. O. Stanley, R. Miikkulainen. Evolving Neural Netwsrfhrough Augmenting Topolo-
gies.Evolutionary Computatiod0(2):99-127, 2002.

S. A. Tarim, S. Manandhar, T. Walsh. Stochastic ConmgtRiiogramming: A Scenario-Based
Approach.Constraints11:53—-80, 2006.

D. Thierens. Non-Redundant Genetic Coding of Neurahyets. International Conference
on Evolutionary ComputatigriNagoya, Japan, 1996, pp. 571-575.

X. Yao, Y. Liu, G. Lin. Evolutionary Programming Made E&sIEEE Transactions on Evo-
lutionary Computatior8(2):82—-102, 1999.

