
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Neuroevolutionary inventory control in multi-echelon systems
Citation for published version:
Prestwich, SD, Tarim, SA, Rossi, R & Hnich, B 2009, Neuroevolutionary inventory control in multi-echelon
systems. in F Rossi & A Tsoukias (eds), Algorithmic Decision Theory: First International Conference, ADT
2009, Venice, Italy, October 20-23, 2009. Proceedings. vol. 5783 LNAI, Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer-
Verlag GmbH, pp. 402-413. DOI: 10.1007/978-3-642-04428-1_35

Digital Object Identifier (DOI):
10.1007/978-3-642-04428-1_35

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Algorithmic Decision Theory

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28963658?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-642-04428-1_35
https://www.research.ed.ac.uk/portal/en/publications/neuroevolutionary-inventory-control-in-multiechelon-systems(7b0a3688-766e-467a-81de-b2a09e8c71da).html


Neuroevolutionary Inventory Control
in Multi-Echelon Systems⋆

S. D. Prestwich1, S. A. Tarim2, R. Rossi3, and B. Hnich4

1Cork Constraint Computation Centre, Ireland
2Operations Management Division, Nottingham University Business School, Nottingham, UK

3Logistics, Decision and Information Sciences Group, Wageningen UR, the Netherlands
4Faculty of Computer Science, Izmir University of Economics, Turkey

s.prestwich@cs.ucc.ie, armtar@yahoo.com.tr,
roberto.rossi@wur.nl, brahim.hnich@ieu.edu.tr

Abstract. Stochastic inventory control in multi-echelon systems poses hard prob-
lems in optimisation under uncertainty. Stochastic programming can solve small
instances optimally, and approximately solve large instances via scenario reduc-
tion techniques, but it cannot handle arbitrary nonlinear constraints or other non-
standard features. Simulation optimisation is an alternative approach that has
recently been applied to such problems, using policies thatrequire only a few
decision variables to be determined. However, to find optimal or near-optimal so-
lutions we must consider exponentially large scenario trees with a corresponding
number of decision variables. We propose a neuroevolutionary approach: using
an artificial neural network to approximate the scenario tree, and training the net-
work by a simulation-based evolutionary algorithm. We showexperimentally that
this method can quickly find good plans.

1 Introduction

In the area of optimisation under uncertainty, one of the most mature fields is inventory
control. This field has achieved excellent theoretical and practical results using tech-
niques such as dynamic programming, but some problems are too large or complex
to be solved by classical methods. Particularly hard are those involvingmulti-echelon
systems, in which multiple stocking points form a supply chain. In such cases we may
resort to simulation-based methods. Simulation alone can only evaluate a plan, but when
combined with an optimisation algorithm it can be used to findnear-optimal solutions
(or plans). This approach is calledsimulation optimisation(SO) and has a growing lit-
erature in many fields including production scheduling, network design, financial plan-
ning, hospital administration, manufacturing design, waste management and distribu-
tion. It is a practical approach to optimisation under uncertainty that can handle prob-
lems containing features that make them difficult to model and solve by other methods:
for example non-linear constraints and objective function, and demands that are corre-
lated or have unusual probability distributions.

⋆ B. Hnich is supported by the Scientific and Technological Research Council of Turkey
(TUBITAK) under Grant No. SOBAG-108K027.



SO approaches to inventory control are typically based on policies known to be opti-
mal in certain situations, involving a small number of reorder points and reorder quanti-
ties. For example in(s, S) policies whenever a stock level falls belows it is replenished
up toS, while in (R, S) policies the stock level is checked at times specified byR, and
if it falls below S then it is replenished up toS. SO can apply standard optimisation
techniques such as genetic algorithms to these policies by assigning genes to reorder
points and replenishment levels. In more complex situations involving constraints, mul-
tiple stocking points, etc, these policies may be suboptimal in terms of expected cost,
though they can have other desirable properties such as improved planning stability.
But a cost-optimal plan for a multi-stage problem with recourse must specify an order
quantity in every possible scenario, so the plan must be represented via ascenario tree.
The number of scenarios might be very large, or infinite in thecase of continuous prob-
ability distributions, making the use of SO problematic. Scenario reduction techniques
may be applied to approximate the scenario tree, but it mightnot always be possible to
find a small representative set of scenarios.

An alternative form of approximation is to use an artificial neural network (ANN)
to represent the policy. For example, the inputs to the ANN could be the current stock
levels and time, and the outputs could be the recommended actions (whether or not to
replenish and by how much). We must then train the ANN so that its recommendations
correspond to a good plan. No training data is available for such a problem so the usual
ANN backpropagation training algorithm cannot be applied.Instead we may use an
evolutionary algorithm to train the network to minimise costs. Thisneuroevolutionary
approach has been applied to control problems [8, 9, 21] and to playing strategies for
games such as Backgammon [16] and Go [14], but it has not been extensively applied
to inventory control. In this paper we apply neuroevolutionto stochastic inventory con-
trol in multi-echelon systems. Section 2 presents our method, Section 3 evaluates the
method experimentally, Section 4 surveys related work, andSection 5 concludes the
paper.

2 A neuroevolutionary approach

To approximate the scenario tree, we construct a function whose input is a vector con-
taining the time period and current inventory levels, and whose output is a vector of
order quantities (which might be zero). We design the function automatically by simu-
lation optimisation.

2.1 Scenario tree compression by neural network

An obvious choice for this function is an artificial neural network (ANN), which can
approximate any function with arbitrary accuracy given a sufficient number of units.
ANNs also come with a ready-made algorithm for optimisation: the well-known back-
propagation algorithm. However, there is a problem with this approach: we do not have
training data available (this also precludes the use of Support Vector Machines). To
obtain training data we would have to solve a set of instances, and there is no known
method for solving the harder instances to optimality. Instead we must use an ANN to



S1

S2

S3

T1

TP

O1

O2

O3

Fig. 1. The feedforward ANN used

solve a problem inreinforcement learning, in which we must choose its weights in order
to maximise reward (in this case to minimise expected cost).Backpropagation cannot be
used for this task, but we can instead use an evolutionary algorithm (EA) whose genes
are the weights and whose fitness function is minus the cost. This neuroevolutionary
approach has been applied to control problems and game learning.

In our experiments we began with a standard three-layer feedforward ANN, which
is a universal function approximator: it can approximate any function to arbitrary ac-
curacy given a sufficient number of hidden units. We tried different numbers of hid-
den units, including multiple hidden layers, with different transfer functions in all the
units (including sigmoids, limiter functions and polynomial expressions), and with two
alternative representations of time periodt: as an integert = 1 . . . P and using the
well-knownunary encodingwhich is often used to represent symbolic ANN inputs and
gave better results here. In the unary encoding we associatea binary variable with each
period, and periodt is represented by a vector(01, . . . , 0t−1, 1, 0t+1, . . . , 0P ). Surpris-
ingly, we obtained best results using an extremely simple network, with no hidden layer
and the identity transfer functionf(x) = x. No bias term is needed because the unary
encoding already provides a time-dependent bias.

The ANN corresponding to three stocking points is shown in Figure 1, where Si
denotes theith stock level, Oi theith order level, and Tj thejth binary variable in
the unary time encoding. All units use the identity transferfunction. Each arrowed
line connecting two units in the diagram has an associated weight, so the ANN has
K(P + K) weights, whereK is the number of stocking points. This ANN represents a
simple set of affine relationships

Oj =
∑

i

Siwij + wtj

wherewij is the ANN weight between stock levelSi and order levelOj , andwtj is the
ANN weight between timet and order levelOj . (An affine transformation is a linear
transformation followed by a translation.) One would not expect this to yield an efficient



or even a sensible policy, but our policy is not yet complete as we have not handled the
problem constraints.

2.2 Constraint handling

The ANN forms only part of the policy. We also need a way of handling the constraints
of the problem, which forbid (i) negative orders (corresponding to selling unused stock
back to the supplier), and (ii) negative stock levels. We will train the ANN by an EA
and there are several ways of handling constraints in EAs. Weuse adecoderwhich
transforms the (possibly infeasible) ANN solution into onethat violates no constraints.
Decoders are a way of finding feasible solutions from chromosomes that represent in-
feasible states. They are problem-specific and ours works asfollows. Suppose at period
t we have stock levelsSi and the ANN suggests ordering quantitiesOi. We modify
each quantityOi by

Oi ← max(Oi, 0)

to avoid violating constraints of type (i). Then for any stocking point i that supplies a
set of stocking pointsXi we modify its order levelOi by

Oi ← max



Oi,





∑

j∈Xi

Oj



− Si





This ensures that each supplier orders sufficient stock to fulfil its deliveries, and avoids
violating constraints of type (ii). The policy is now the composition of the ANN and the
decoder, which transforms the affine function of the ANN intoa continuous piecewise
affine function.

Note that we must modify the order levels of the stocking points earlier in the supply
chain first. This is always possible if the supply chain is in the form of a directed acyclic
graph. If lateral transshipments are allowed (orders between stocking points at the same
level) or if there are constraints on order sizes or storage capacities then the decoder
must be modified; we leave this issue for future work.

2.3 The evolutionary algorithm

To train the ANN we use an EA. There are many such algorithms inthe literature, and
we now describe our choice and the design decisions behind it. Firstly, we decided not
to use genetic recombination. When training an ANN by EA one can encounter the
well-knowncompeting conventionsproblem (see [20] for example). This is caused by
two forms of symmetry: an ANN’s hidden units can be permuted without changing
its output, and a hidden unit’s weights can all be multipliedby−1 without changing its
output. Thus if there areh hidden units then there are2hh! equivalent ANNs. Crossover
is unlikely to give good results unless the parent chromosomes are aiming for symmet-
rically similar representations, though it is possible to design crossover operators that
handle the symmetries [23]. This problem does not apply to our simple ANN because it
has no hidden units, but in experiments crossover did not improve results so we do not
use it.



We decided to use a(µ + 1)-Evolution Strategy (ES) because it is almost exactly a
steady-state genetic algorithm without crossover, and an efficient method for handling
noise in the fitness function is known for a steady-state genetic algorithm (see below).
However, we adapted it to acellular ES, in which each chromosome is notionally placed
in an artificial space and nearby chromosomes form its neighbourhood. Cellular algo-
rithms can reduce premature convergence, which we found to be a problem with our
initial standard ES. In our ES the population size isµ, at each iteration a new chromo-
somec′ is created by mutating a randomly selected chromosomec, and ifc′ is fitter than
the least-fit chromosomec∗ in the neighbourhood ofc then it replacesc∗, otherwisec′

is discarded. We used a ring topology and define the neighbourhood of a chromosome
to be its two adjacent chromosomes.

A common form of mutation adds normally distributed noise toeach gene, but we
use a method that gave better results in experiments. For each chromosome we gen-
erate two uniformly distributed random numbers,p in the range(0, 1) and q in the
range(0, 0.5). Then for each allele in the chromosome, with probabilityp we change
it, otherwise with probability1− p we leave it unchanged. If we do change it then with
probabilityq we set it to 0, otherwise with probability1 − q we add a random number
with Cauchy distribution to it.Cauchy mutationhas been shown to speed up EAs [24].
It can be computed ass tan(u) whereu is a uniformly distributed random variable in the
range(−π, π) ands is a scale factor. For each chromosome we compute a random scale
factor, itself with Cauchy distribution and fixed scale factor 100. Finally, if no allele was
modified (which is possible for smallp) then we modify one randomly selected allele
as described. This rather complex mutation operator is designed to generate a variety of
random moves, with different numbers of modified alleles anddifferent scale factors.
All chromosomes initially contain alleles generated randomly using the same Cauchy
distribution. We do not use the well-known technique of self-adapting step sizes, be-
cause in a(µ + 1)-ES offspring with reduced mutation variances are always preferred
[2].

2.4 Handling uncertainty

When demand is probabilistic the fitness function of the EA isnoisy. In such cases we
must average costs over a number of simulations. In some previous SO approaches to
inventory control, this problem was tackled by averaging costs over a small number of
simulations because the simulations were computationallyexpensive: for example [13]
use 3 samples. The standard deviation of the sample mean of a random variable with
standard deviationσ is σ/

√
n wheren is the number of samples, so a large number of

samples may be needed for very noisy fitness functions. Here we use smaller problems
than those in [13] so we can afford to use a much larger number of simulations and
obtain reliable cost estimates. To do this for every chromosome would be expensive but
there are more efficient methods, and we use thegreedy averaged samplingresampling
scheme of [17]. This requires two parameters to be tuned by the user:U andS. On
generating a new chromosomec it takesS samples to estimate its fitness before placing
it into the population. It then selects another chromosomec′ (which may bec) for
resampling: anotherS samples are taken forc′ and used to refine its fitness estimate.
c′ is the chromosome with highest fitness among those with fewerthanU samples, so



the function ofU is to prevent any chromosome from being sampled more times than
necessary. If all chromosomes in the population have been sampledU times then no
resampling is performed. The algorithm is summarised in Figure 2.

train(µ,S, U)
create ANN population of size µ

evaluate population using S samples
while not(termination condition)

select a parent
breed an offspring O by mutation
evaluate O using S samples
if O fitter than locally least-fit chromosome L

replace L by O
select globally fittest chromosome F with #samples< U

if F exists
re-evaluate F using S more samples

return best chromosome found with #samples≥ U

Fig. 2. Cellular evolution strategy with resampling

The aim of this resampling method is to obtain chromosomes with good fitness
averaged over many samples, while expending a smaller number of samples on less-
promising chromosomes. In our experiments we setU = 10000 so that cost estimates
are obtained over 10000 samples, but by settingS = 1 we only expend approximately
200 samples per chromosome on average (this number was foundby experiment). As
the population size is 50, and50×200 = 10000, this implies that a typical chromosome
uses little more than one sample before being rejected as unfit. Using smallS also has an
effect beyond reducing the average number of samples per chromosome: it encourages
exploration by preserving less-fit chromosomes for longer.We found this to be a very
beneficial effect.

Some points are glossed over in Figure 2 for the sake of readability. Firstly, if S is
not a divisor ofU then fewer thanS samples are needed in the final resampling of any
chromosome to bring its total toU . Secondly, the termination condition is unspecified,
and we simply use a timeout. Thirdly, if no chromosome hasU samples on termination
then we must choose another chromosome to return. To avoid this,S should be assigned
a sufficiently large value so that in experiments there is always a chromosome withU
samples on termination. This value must be chosen by experimentation.

2.5 Discussion of the method

We refer to our method as NEMUE1 (Neuro-Evolution for MUlti-Echelon systems).
NEMUE is the result of many experiments with alternative versions. We experimented
with an array of ANNs, one for each time period. This model has12P weights and

1 The “lady of the lake” in Arthurian legend.



clearly subsumes the model above: any plan that can be represented by that model can
also be represented by this one. The results should therefore be at least as good, but
in experiments they were significantly worse. We believe that the ANN array is simply
harder to train than a single ANN.

We also tried a non-unary encoding of time, in which order levels are linear func-
tions of stock levels and polynomial functions of time. Fixing the polynomial degree
makes the size of the ANN independent of the number of time periods. Using a cubic
function of time gave reasonable results but was inferior tothe unary encoding.

We used a decoder to handle the problem constraints, but there are other ways of
handling constraints in EAs. The simplest is to use apenalty functionwhich adds a large
artificial cost for each violated constraint. In our problemthis forces the ANN to learn
to order sufficient stock in order to avoid stockout. We trieda penalty function but it
gave inferior results to the decoder.

3 Experiments

Ultimately we are interested in solving large, realistic inventory problems with multiple
stocking points, stochastic lead times, correlated demands and other features that make
classical approaches impractical. Unfortunately there are no known methods for solving
such problems to optimality, so there is no way of evaluatingour method. Instead we
consider more modest problems to test the ability of NEMUE tofind good plans.

Our benchmark problems have two multi-echelon topologies:arborescentandse-
rial . In the arborescent case we have three stocking points A, B and C, with C supplying
A and B, while in the serial case C supplies B which supplies A.In both cases we have
linear holding costs, linear penalty costs, fixed ordering costs, and stationary proba-
bilistic demands. The closing inventory levels for periodt areIA

t = IA
t−1 + QA

t − dA
t ,

IB
t = IB

t−1 +QB
t − dB

t andIC
t = IC

t−1 +QC
t −QA

t −QB
t whereQt is the order placed

in periodt anddt is the demand in periodt. If It < 0 then the incurred cost is−It.π,
otherwise it isIt.h, whereπ is the penalty cost andh the holding cost. Suppliers are
not allowed to run out of stock. We prepared 28 instances of both the arborescent and
serial types, with various costs and 2–9 time periods, giving a total of 56 instances with
a range of characteristics as follows. The holding costs forA, B and C are 4, 5 and 1
respectively for arborescent instances 1–14; 3, 2 and 1 for arborescent instances 15–28;
and 3, 2 and 1 for all serial instances. For the arborescent instances the penalty costs for
A and B are 12 and 25 respectively for instances 1–14; and 3 and6 for instances 15–28.
For all the serial instances the penalty cost for instance A is 12. The ordering costs for
A, B and C are 150, 130 and 170 respectively for arborescent instances 1–14; 80, 75
and 100 for arborescent instances 15–28; and 75, 80 and 100 for all serial instances.
For space reasons we do not specify the demands in detail, butwe used 10 patterns for
arborescent instances and 4 patterns for serial instances.In each period we specify a
deterministic demand which is then multiplied by either2

3
with probability 0.25,1 with

probability 0.5, or4
3

with probability 0.25. Thus the number of possible scenarios is
3P , giving 59,049 scenarios for the largest problems (P = 10).

We solved these problems in two ways: using Stochastic Programming (SP) [3] and
NEMUE. SP is a field of Operations Research designed to solve optimisation problems



under uncertainty via scenario reduction techniques: a representative subset of all pos-
sible scenarios is selected and used to generate a deterministic equivalent optimisation
problem, which is then typically solved using integer linear programming. We use the
SP results to evaluate the quality of plans found by NEMUE. The optimal replenishment
plans are obtained using the following Stochastic Integer Programming model:

min E[C] =
∑N

t=1

∑

p∈P

(

apδpt + hpI
+
pt + πpI

−

pt

)

s.t. t = 1, . . . , N and p ∈ P
Ipt = Ip,t−1 + Qpt −QPp,t − dpt

Ipt = I+
p,t − I−p,t

Qpt ≤Mδpt

δpt ∈ {0, 1} Qpt ≥ 0

where

C : total holding and ordering/set-up cost of the system overN periods;
a : fixed ordering/set-up cost;
h : proportional inventory holding cost per period;
P : the set of all stocking points;
Pp : the set of stocking points supplied directly by the stocking pointp;
dpt : random demand at stocking pointp, in periodt;
δpt : a binary variable that takes the value of 1 if a replenishment occurs

: at stocking pointp in periodt and 0 otherwise;
Ipt : the inventory level at the end of periodt at stocking pointp;

Qpt : the order quantity at the beginning of periodt at stocking pointp;

andI+ andI− denote positive and negative closing inventory levels. Except for the
lowest echelon stocking points,I− is zero.M is some large positive number. In this
stochastic model ahere-and-nowpolicy is adapted: all decision variables are set before
observing the realisation of the random variables. The certainty equivalent model is
obtained using the compiler described in [22] and solved with CPLEX 11.2.

Results comparing SP and NEMUE are shown in Table 1. All SP runs were termi-
nated after one hour and all NEMUE results after 30 minutes ona 2.8 GHz Pentium (R)
4 with 512 RAM, each figure being the best of six five-minute runs. The NEMUE pa-
rameters used wereS = 1, U = 10000 andµ = 50. SP runs that were aborted because
of memory problems are denoted by “—”. (In the few cases that SP found and proved
optimality, this sometimes took much less than one hour.) The columns marked “%opt”
denote the optimality gap: a reported costc and gapg means that SP proved that the
optimal solution cannot have cost lower thanc′ = c(100− g)/100 (this does not imply
the existence of a solution with costc′). In several cases NEMUE finds superior plans
to those found by SP, showing that on larger instances SP fails to find optimal plans. In
a few cases NEMUE appears to find plans that are slightly better than optimal: this is
of course impossible, and is a consequence of the empirical nature of the data. In such
cases we assume that NEMUE found an optimal plan.

SP was unable to find provably optimal plans for all but the smallest instances. We
believe that for the medium-sized instances SP finds optimalplans but does not prove
optimality before timeout. For the largest instances SP ranout of memory, though we



arborescent serial
SP NEMUE SP NEMUE

# periods cost %opt cost %opt# periods cost %opt cost %opt
1 4 2507 0 2573 2.61 4 995 0 993 0
2 5 3124 1.4 3180 3.12 5 1269 0.7 1298 2.9
3 6 3657 2.7 3775 5.73 6 1493 1.8 1491 1.7
4 7 4214 5.6 4250 6.44 7 1794 7.4 1797 7.6
5 8 4654 8.2 4722 9.55 8 2087 12.0 1987 7.6
6 9 5472 16.9 5164 11.96 9 2741 25.7 2295 11.3
7 10 — ? 5590 ? 7 10 — ? 2603 ?
8 4 2100 0 2169 3.28 4 1311 0.2 1306 0.0
9 5 2626 0.6 2722 4.19 5 1598 2.2 1594 2.0

10 6 3311 1.8 3409 4.610 6 1833 4.3 1832 4.2
11 7 4065 2.5 4153 4.611 7 2024 6.7 2024 6.7
12 8 4454 3.4 4542 5.312 8 2160 9.3 2142 8.5
13 9 5158 10.3 5115 9.513 9 2678 25.1 2264 11.4
14 10 — ? 5432 ?14 10 — ? 2407 ?
15 4 1342 0.2 1340 0.115 4 1104 0 1104 0
16 5 1657 1.8 1671 2.616 5 1417 2.1 1423 2.5
17 6 1930 2.2 1938 2.617 6 1759 4.1 1763 4.3
18 7 2180 4.5 2192 5.018 7 2057 5.4 2055 5.3
19 8 2428 6.1 2393 4.719 8 2266 6.6 2258 6.3
20 9 2853 13.9 2617 6.120 9 2706 17.7 2479 10.2
21 10 — ? 2864 ?21 10 — ? 2627 ?
22 4 1086 0 1096 0.922 4 828 0 828 0
23 5 1334 0.2 1330 0.023 5 931 0 934 0.3
24 6 1680 0.6 1677 0.424 6 1259 1.3 1265 1.8
25 7 2055 0.7 2051 0.525 7 1633 2.4 1639 2.8
26 8 2219 1.1 2220 1.126 8 1757 2.7 1766 3.2
27 9 2479 2.0 2531 4.027 9 1983 3.9 2000 4.7
28 10 — ? 2665 ?28 10 — ? 2150 ?

Table 1. Experimental results



use the state-of-the-art CPLEX solver and a powerful machine (an Intel Core 2 Duo
CPU E7200 with 2.53 GHz and 3GB of RAM). On the largest instances for which
SP did not run out of memory, it was unable to prove optimalityeven within several
days. Thus our benchmark problems straddle the borderline of solvability by classical
methods.

Despite the simplicity of the policy and the large number of scenarios (at least on
the larger instances) the NEMUE results are remarkably good. On 13 of the 28 arbores-
cent instances and 19 of the 28 serial instances, NEMUE foundplans that were at least
as good as those found by SP. On the three serial instances forwhich SP found prov-
ably optimal plans, NEMUE found equally good plans. On most of the larger instances
NEMUE found better plans than SP. These results show that: (i) a relatively simple,
continuous, piecewise affine function can closely approximate a large policy tree for
multi-echelon systems; (ii) such a function can be effectively represented by an affine
function followed by a decoder function; (iii) the affine function can be learned in a
reasonable time by evolutionary search; (iv) that our approach is more scalable than SP.

It is tempting to speculate that with improved heuristics and longer runtimes we
might find optimal strategies forall instances. But there is no guarantee that all sce-
nario trees can be well-approximated in this way, and in moreextensive experiments
on arborescent instance 1 (for example) we have been unable to find an optimal plan.
Nevertheless, the results are very promising.

4 Related work

Though simulation was originally used only to evaluate solutions found by other means,
the field of SO has recently become more popular — see the survey of [5]. SO may be
recursiveor non-recursive. In the non-recursive approach an approximate cost function
is learned during a simulation phase, then this function is minimised using an optimisa-
tion algorithm during a second phase. NEMUE is an example of recursive SO in which
simulation and optimisation alternate and inform each other.

A tutorial and survey of the application of SO to inventory control is given in a
recent paper [12]. Relatively little work has been done on applying SO to multi-echelon
systems, and we have been unable to find any other work on inventory control via
neuroevolution, though several papers use EAs to evolve plans (for example [1, 13,
15, 18]). Another difference of NEMUE is that it aims to approximate optimal policy
trees, whereas most SO methods aim to find parameters for special policies such as
(s, S). A different way of using ANNs for inventory control is to solve a set of training
instances by some other method, then train an ANN to learn howto find good solutions
from new instances (for example [6]). But we then need another algorithm to solve the
problems, which is the aim of NEMUE. A related approach to neuroevolution isgenetic
programming, in which an EA is used to evolve an algorithm for solving the problem,
instead of an ANN. This approach has also been applied to inventory control [11].

Another interesting approach to sequential decision problems such as those in in-
ventory control is the field variously referred to asneuro-dynamic programming, tempo-
ral difference learningandapproximate dynamic programming. This blend of dynamic
programming and simulation has been applied to many problems including inventory



control: see for example [4, 7, 10, 19]. A drawback is that special techniques are needed
to cope with the well-known “curse of dimensionality”: the vast number of states that
result from a simple discretisation of the continuum of states in these problems. In con-
trast, neuroevolution can directly handle a continuum of states.

5 Conclusion

We have proposed what seems to be the first neuroevolutionarymethod for approxi-
mating optimal plans in multi-echelon stochastic inventory control problems. Large or
infinite scenario trees are approximated by a neural network, which is trained by an
evolutionary algorithm with resampling, while problem constraints are handled by a
decoder. Because the method is simulation-based and uses general-purpose techniques
such as evolutionary algorithms and neural networks, it does not rely on special proper-
ties of the problem and can be applied to inventory problems with non-standard features.
We showed experimentally that the method can find near-optimal solutions. In future
work we will extend the method to handle problem features such as capacity constraints.

References

1. J. Arnold, P. Köchel. Evolutionary Optimisation of a Multi-Location Inventory Model With
Lateral Transshipments.9th International Working Seminar on Production Economics, Igls
1996, Preprints 2, pp. 401–412.

2. T. Bäck, F. Hoffmeister, H.-P. Schwefel. A Survey of Evolution Strategies.4th International
Conference on Genetic Algorithms, 1991.

3. J. R. Birge, F. Louveaux. Introduction to Stochastic Programming. Springer, New York,
1997.

4. S. K. Chaharsooghi, J. Heydari, S. H. Zegordi. A Reinforcement Learning Model for Supply
Chain Ordering Management: an Application to the Beer Game.Decision Support Systems
45(4):949–959, 2008.

5. M. C. Fu. Optimization for Simulation: Theory vs Practice. INFORMS Journal of Computing
14:192–215, 2002.

6. L. K. Gaafar, M. H. Choueiki. A Neural Network Model for Solving the Lot-Sizing Problem.
Omega28(2):175–184, 2000.

7. I. Giannoccaro, P. Pontrandolfo. Inventory Management in Supply Chains: a Reinforcement
Learning Approach.International Journal of Production Economics78(2):153–161, 2002.

8. F. Gomez, J. Schmidhuber, R. Miikkulainen. Efficient Non-Linear Control Through Neu-
roevolution.Journal of Machine Learning Research9:937–965, 2008.

9. N. M. Hewahi. Engineering Industry Controllers Using Neuroevolution.Artificial Intelli-
gence for Engineering Design, Analysis and Manufacturing19(1):49–57, 2005.

10. C. Jiang, Z. Shenga. Case-Based Reinforcement Learningfor Dynamic Inventory Control in
a Multi-Agent Supply-Chain System.Expert Systems with Applications36(3 part 2):6520–
6526, 2009.

11. P. Kleinau, U. W. Thonemann. Deriving Inventory-Control Policies With Genetic Program-
ming.OR Spectrum26(4):521–546, 2004.

12. P. Köchel. Simulation (Optimisation) in Inventory Theory. Tutorial,8th ISIR Summer School
on New and Classical Streams in Inventory Management: Advances in Research and Open-
ing Frontiers, 2007.



13. P. Köchel, U. Nieländer. Simulation-Based Optimisation of Multi-Echelon Inventory Sys-
tems.International Journal of Production Economics1:503–513, 2005.

14. A. Lubberts, R. Miikkulainen. Co-Evolving a Go-PlayingNeural Network.Genetic and Evo-
lutionary Computation Conference, Kaufmann, 2001, pp. 14–19.

15. A. L. Olsen. An Evolutionary Algorithm for the Joint Replenishment of Inventory with In-
terdependent Ordering Costs.Genetic and Evolutionary Computation Conference, Lecture
Notes in Computer Sciencevol. 2724, Springer, 2003, pp. 2416–2417.

16. J. B. Pollack, A. D. Blair. Co-Evolution in the Successful Learning of Backgammon Strategy.
Machine Learning32(3):225–240, 1998.

17. S. D. Prestwich, S. A. Tarim, R. Rossi, B. Hnich. A Steady-State Genetic Algorithm With
Resampling for Noisy Inventory Control.10th International Conference on Parallel Problem
Solving From Nature, Lecture Notes in Computer Sciencevol. 5199, Springer, 2008, pp. 559–
568.

18. S. D. Prestwich, S. A. Tarim, R. Rossi, B. Hnich. A Cultural Algorithm for POMDPs from
Stochastic Inventory Control.5th International Workshop on Hybrid Metaheuristics, Lecture
Notes in Computer Sciencevol. 5296, Springer, 2008, pp. 16–28.

19. B. Van Roy, D. P. Bertsekas, Y. Lee, J. N. Tsitsiklis. A Neuro-Dynamic Programming Ap-
proach to Retailer Inventory Management.Proceedings of the IEEE Conference on Decision
and Control, 1997.

20. J. Schaffer, D. Whitley, L. Eshelman. Combinations of Genetic Algorithms and Neural Net-
works: A Survey of the State of the Art.International Workshop on Combinations of Genetic
Algorithms and Neural Networks, 1992, pp. 1–37.

21. K. O. Stanley, R. Miikkulainen. Evolving Neural Networks Through Augmenting Topolo-
gies.Evolutionary Computation10(2):99–127, 2002.

22. S. A. Tarim, S. Manandhar, T. Walsh. Stochastic Constraint Programming: A Scenario-Based
Approach.Constraints11:53–80, 2006.

23. D. Thierens. Non-Redundant Genetic Coding of Neural Networks.International Conference
on Evolutionary Computation, Nagoya, Japan, 1996, pp. 571–575.

24. X. Yao, Y. Liu, G. Lin. Evolutionary Programming Made Faster.IEEE Transactions on Evo-
lutionary Computation3(2):82–102, 1999.


