722 research outputs found

    The 'Sphere': A Dedicated Bifurcation Aneurysm Flow-Diverter Device.

    Get PDF
    We present flow-based results from the early stage design cycle, based on computational modeling, of a prototype flow-diverter device, known as the 'Sphere', intended to treat bifurcation aneurysms of the cerebral vasculature. The device is available in a range of diameters and geometries and is constructed from a single loop of NITINOL(®) wire. The 'Sphere' reduces aneurysm inflow by means of a high-density, patterned, elliptical surface that partially occludes the aneurysm neck. The device is secured in the healthy parent vessel by two armatures in the shape of open loops, resulting in negligible disruption of parent or daughter vessel flow. The device is virtually deployed in six anatomically accurate bifurcation aneurysms: three located at the Basilar tip and three located at the terminus bifurcation of the Internal Carotid artery (at the meeting of the middle cerebral and anterior cerebral arteries). Both steady state and transient flow simulations reveal that the device presents with a range of aneurysm inflow reductions, with mean flow reductions falling in the range of 30.6-71.8% across the different geometries. A significant difference is noted between steady state and transient simulations in one geometry, where a zone of flow recirculation is not captured in the steady state simulation. Across all six aneurysms, the device reduces the WSS magnitude within the aneurysm sac, resulting in a hemodynamic environment closer to that of a healthy vessel. We conclude from extensive CFD analysis that the 'Sphere' device offers very significant levels of flow reduction in a number of anatomically accurate aneurysm sizes and locations, with many advantages compared to current clinical cylindrical flow-diverter designs. Analysis of the device's mechanical properties and deployability will follow in future publications

    Non-Newtonian and flow pulsatility effects in simulation models of a stented intracranial aneurysm

    Get PDF
    Permission to redistribute provided by publishers.Three models of different stent designs implanted in a cerebral aneurysm, originating from the Virtual Intracranial Stenting Challenge'07, are meshed and the flow characteristics simulated using commercial computational fluid dynamics (CFD) software in order to investigate the effects of non-Newtonian viscosity and pulsatile flow. Conventional mass inflow and wall shear stress (WSS) output are used as a means of comparing the cfd simulations. In addition, a WSS distribution is presented, which clearly discriminates in favour of the stent design identified by other groups. It is concluded that non-Newtonian and pulsatile effects are important to include in order to avoid underestimating wss, to understand dynamic flow effects, and to discriminate more effectively between stent designs. © Authors 2011

    THE EFFECT OF ARTERY BIFURCATION ANGLES ON FLUID FLOW AND WALL SHEAR STRESS IN THE MIDDLE CEREBRAL ARTERY

    Get PDF
    Saccular aneurysms are the abnormal plastic deformation of veins and arteries that can lead to lethal thrombus genesis or internal hemorrhaging. Medication and surgery greatly reduce the mortality rates, but treatment is limited by predicting who will develop aneurysms. A common location for saccular aneurysm genesis is at the main middle cerebral artery (MCA) bifurcation. The main MCA bifurcation is comprised of the M1 MCA segment, parent artery, and two M2 segments, daughter arteries. Studies have found that the lateral angle (LA) ratio of the MCA bifurcation is correlated with aneurysm formation. The LA ratio is defined as the angle between the M1 and the larger M2 divided by the angle between the M1 and the smaller M2. When the LA ratio is equal to 1, perfectly symmetrical, no aneurysms are found at the MCA bifurcation. When the LA ratio is greater than 1.6, aneurysms are commonly found at the MCA bifurcation. In the research described here, varying MCA bifurcation angles were compared to uncover any changes to fluid flow and wall shear stress that could stimulate aneurysm growth. Eight pre-aneurysm MCA bifurcation models were created in SolidWorks® using 120 degrees, 90 degrees, and 60 degrees as the angle between the M1 and the larger M2. LA ratios of 1, 1.6 and 2.2 were then used to characterize the other branch angle (60 degrees with a LA ratio of 1 was excluded). These models were imported into COMSOL Multiphysics® where the laminar fluid flow module was used to simulate non-Newtonian blood flow. Fluid flow profiles showed little to no change between the models. Shear stress changed when the LA ratio was increased, but the changed varied between the 120, 90 and 60 degree models. 120 degree models had a 3.87% decrease in max shear stress with a LA ratio of 2.2 while the 90 degree models had 7.5% decrease in max shear stress with a LA ratio of 2.2. Each daughter artery had distinct areas of high shear stress when the LA ratio equaled 1. Increasing the LA ratio or decreasing the bifurcation angle caused the areas of shear stress to merge together. Increasing LA ratio caused shear stress to decrease and spread around the MCA bifurcation. The reduction in max wall shear stress for high LA ratios supports current aneurysm genesis hypothesizes, but additional testing is required before bifurcation geometries can be used to predicted aneurysm genesis

    Simulation of Pulsatile Flow in Cerebral Aneurysms: From Medical Images to Flow and Forces

    Get PDF
    In this chapter we present a numerical model for the simulation of blood flow inside cerebral aneurysms. We illustrate the process of predicting flow and forces that arise in vessels and aneurysms starting from patient-specific data obtained using medical imaging techniques. Once the three-dimensional geometry is reconstructed, we discuss fluid properties of blood which allows to compute the flow. The flow of an incompressible Newtonian fluid in the human brain is simulated by using a volume penalizing immersed boundary method, in which the aneurysm geometries are represented by the so-called masking function. We impose pulsatile flow forcing, based on the direct measurement of the mean flow velocity in a vessel during a cardiac cycle and focus on effects due to changes in the flow regimes. In slow or very viscous flows the pulsatile forcing dominates the fluid dynamical response, while at faster or less viscous flows the intrinsic unsteadiness of natural incompressible flow is dominant over the pulsatile flow forcing effect. We consider a full range of physiologically relevant conditions and show high frequencies to emerge in the pulsatile response. The strong qualitative transitions in flow behavior and shear stress levels inside an aneurysm cavity at increased flow rates may contribute to the long-term risk of aneurysm rupture

    Beyond the virtual intracranial stenting challenge 2007: non-Newtonian and flow pulsatility effects

    Get PDF
    The attached article is a post print version of the final published version which may be accessed at the link below. Crown Copyright (c) 2010 Published by Elsevier Ltd. All rights reserved.The Virtual Intracranial Stenting Challenge 2007 (VISC’07) is becoming a standard test case in computational minimally invasive cerebrovascular intervention. Following views expressed in the literature and consistent with the recommendations of a report, the effects of non-Newtonian viscosity and pulsatile flow are reported. Three models of stented cerebral aneurysms, originating from VISC’07 are meshed and the flow characteristics simulated using commercial computational fluid dynamics (CFD) software. We conclude that non-Newtonian and pulsatile effects are important to include in order to discriminate more effectively between stent designs

    Numerical Analysis for the Hemodynamics in unruptured Cerebral Aneurysms

    Get PDF
    A cerebral aneurysm is a vascular disorder characterized by abnormal focal dilation of a brain artery which is considered as a serious and potentially life-threatening condition. Cerebral aneurysms affect around 2%-5% of adults and they are fatal and can rupture with an overall mortality rate of more than 50%. Through computational fluid dynamics investigation, this study is offering a closer look into the initiation growth and rupture of cerebral aneurysms. Four focus points are studied in this thesis which are sensitivity analysis of blood viscosity in aneurysms, the effect of cerebral aneurysm size on wall stresses and strain, hazard effects of gravitational forces on aneurysms and the use of porous media to model aneurysm coiling treatment method. This study highly contributes to the advancement of our vision about different aneurysm variables, such as the blood velocity, pressure, wall shear stress and the aneurysm wall stresses and strains. The study aims to provide information for the healthy and diseased cardiovascular functions and to assist in predicting the risk of aneurysm rupture. It provides surgeons with a better understanding of the aneurysm hemodynamics which supports optimal medical treatments

    Comparative study of flow fluctuations in ruptured and unruptured intracranial aneurysms: A lattice Boltzmann study

    Full text link
    Flow fluctuations have recently emerged as a promising hemodynamic metric for understanding the rupture risk of intracranial aneurysms. Several investigations have reported in the literature corresponding flow instabilities using established computational fluid dynamics tools. In this study, the occurrence of flow fluctuations is investigated using either Newtonian or non-Newtonian fluid models in patient-specific intracranial aneurysms using high-resolution lattice Boltzmann method simulations. Flow instabilities are quantified by computing power spectral density, proper orthogonal decomposition and spectral entropy, and fluctuating kinetic energy of velocity fluctuations. Furthermore, these hemodynamic parameters are compared between the ruptured and unruptured aneurysms. Our simulations reveal that the pulsatile inflow through the neck in a ruptured aneurysm is subject to a hydrodynamic instability leading to high-frequency fluctuations around the rupture position throughout the entire cardiac cycle. At other locations, the flow instability is only observed during the deceleration phase; typically, the fluctuations begin there just after peak systole, gradually decay, and the flow returns to its original, laminar pulsatile state during diastole. In the unruptured aneurysm, there is only minimal difference between Newtonian and non-Newtonian results. In the ruptured case, using the non-Newtonian model leads to a considerable increase of the fluctuations within the aneurysm sac

    Shear-thinning effects of hemodynamics in patient-specific cerebral aneurysms.

    Get PDF

    Effects of Casson rheology on aneurysm wall shear stress

    Get PDF
    It is widely accepted that wall shear stress plays an important role in cerebral aneurysm initiation, progress and rupture. Previous works have shown strong evidence in support of the high wall shear stress as a risk factor associated to those biomechanical processes. Patient-specific imagebased computational hemodynamic modeling of vascular systems harboring cerebral aneurysms has demonstrated to be a fast and reliable way to compute quantities difficult or impossible to be measured in-vivo. The accuracy of the simulation results have been successfully validated in the past. Additionally, most model assumptions have shown no impact on the flow characterization whose association with the mentioned processes was investigated. Particularly, the incorporation of the blood rheology in large arterial systems containing aneurysms resulted in similar hemodynamic characterizations for most aneurysms. However, large aneurysms, especially those containing blebs are expected to have flow rates in the range where Newtonian and non-Newtonian models exhibit the largest differences. In order to study the impact of blood rheology in vascular systems harboring specific intracranial aneurysms, unsteady finite element blood flow simulations were carried out over patient-specific models. Those models were reconstructed from rotational angiographic images using region growing and deformable model algorithms. Unstructured finite element meshes were generated using and advancing front technique. Walls were assumed as rigid, traction-free boundary conditions were imposed at the outlets of the models, and a flow rate wave form was imposed at the inlets after scaling according to the Murray's Law for optimal arterial networks. The Casson model was incorporated as a velocity gradient dependent apparent viscosity and the results were compared to those using the Newtonian rheology. Regions with differentiated wall shear stress values and orientations were studied.Fil: Castro, Marcelo Adrian. Universidad Tecnológica Nacional. Secretaria de Ciencia y Técnica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ahumada, Maria Carolina. Universidad Favaloro. Facultad de Ingeniería y Ciencias Exactas y Naturales; ArgentinaFil: Putman, Christopher M.. Innova Fairfax Hospital; Estados UnidosFil: Cebral, Juan Raúl. George Mason University; Estados Unido
    corecore