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ABSTRACT 

The Effect of Artery Bifurcation Angles on Fluid Flow and Wall 

Shear Stress in the Middle Cerebral Artery 

 

Zachary Ramey Jones 

 

  

 Saccular aneurysms are the abnormal plastic deformation of veins and arteries 

that can lead to lethal thrombus genesis or internal hemorrhaging.  Medication and 

surgery greatly reduce the mortality rates, but treatment is limited by predicting who 

will develop aneurysms.  A common location for saccular aneurysm genesis is at the 

main middle cerebral artery (MCA) bifurcation.  The main MCA bifurcation is 

comprised of the M1 MCA segment, parent artery, and two M2 segments, daughter 

arteries.  Studies have found that the lateral angle (LA) ratio of the MCA bifurcation 

is correlated with aneurysm formation.  The LA ratio is defined as the angle between 

the M1 and the larger M2 divided by the angle between the M1 and the smaller M2.  

When the LA ratio is equal to 1, perfectly symmetrical, no aneurysms are found at the 

MCA bifurcation.  When the LA ratio is greater than 1.6, aneurysms are commonly 

found at the MCA bifurcation.  In the research described here, varying MCA 

bifurcation angles were compared to uncover any changes to fluid flow  and wall 

shear stress that could stimulate aneurysm growth.  Eight pre-aneurysm MCA 

bifurcation models were created in SolidWorks® using 120 degrees, 90 degrees, and 

60 degrees as the angle between the M1 and the larger M2.  LA ratios of 1, 1.6 and 

2.2 were then used to characterize the other branch angle (60 degrees with a LA ratio 

of 1 was excluded).  These models were imported into COMSOL Multiphysics® 

where the laminar fluid flow module was used to simulate non-Newtonian blood 

flow.  Fluid flow profiles showed little to no change between the models.  Shear 

stress changed when the LA ratio was increased, but the changed varied between the 

120, 90 and 60 degree models.   120 degree models had a 3.87% decrease in max 

shear stress with a LA ratio of 2.2 while the 90 degree models had 7.5%  decrease in 

max shear stress with a LA ratio of 2.2.  Each daughter artery had distinct areas of 

high shear stress when the LA ratio equaled 1.  Increasing the LA ratio or decreasing 

the bifurcation angle caused the areas of shear stress to merge together.  Increasing 

LA ratio caused shear stress to decrease and spread around the MCA bifurcation.  The 

reduction in max wall shear stress for high LA ratios supports current aneurysm 

genesis hypothesizes, but additional testing is required before bifurcation geometries 

can be used to predicted aneurysm genesis.   
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CHAPTER 1: INTRODUCTION 

1.1: Thesis Overview 

 Currently, there are no reliable ways to predict who will develop an aneurysm.  

Multiple studies have been performed to determine the etiology of aneurysms, but all of 

them have been inconclusive.  This thesis will expand upon the study performed by 

Takashi Sadatomo, et al., [1] in 2013 where they correlated  the occurrence of aneurysms 

in the main middle cerebral artery (MCA) to asymmetry between the bifurcation angles.  

The study characterized the bifurcation angle using the lateral angle (LA) ratio, defined 

as the angle of the M1 MCA segment to the larger M2 segment divided by the angle of 

the M1 to the other, smaller M2 segment. LA ratio of 1.0 indicated perfect symmetry 

while greater LA ratios indicated increased asymmetry.  The study found that LA ratios 

greater than 1.6 in the MCA bifurcation were associated with the presence of an 

aneurysm.  The goal of this thesis was to create MCA models using the morphological 

differences found in the study by Sadatomo to examine changes in the fluid flow and wall 

shear stress and how they pertain to aneurysm genesis.  Additionally, this thesis will lay 

the foundation for future aneurysm models for Cal Poly Biofluidics Laboratory. 

 This thesis hypothesizes that lateral angle ratios greater than 1.6 at the MCA 

bifurcation cause alterations in fluid flow and wall shear stress.  Background research of 

the MCA regarding morphology, physiology, loading conditions, properties of blood, 

flow rates, and previous aneurysm studies was performed.  To test the effect of 

bifurcation angles, COMSOL Multiphysics® was used to perform finite element analysis 

(FEA) using the laminar flow module to simulate blood flow through the main MCA 

bifurcation.  One control model was created, with an additional seven other models with 
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varying bifurcation angles.  All models were simulated over two cardiac cycles.  To 

verify the simulations, the control MCA model was compared to literature values and a 

particle image velocimetry (PIV) experiment.  The flow rates, wall shear stress during 

systole and diastole, area affected by high shear stress, and shear stress over the cardiac 

cycle were compared between models.  Current aneurysm etiology hypothesis were then 

compared to the results to better understand aneurysm genesis in the MCA with regards 

to bifurcation symmetry. 

1.2: Motivation 

 Cerebrovascular diseases are the fourth leading cause of death in America behind 

heart disease, cancer, and lower respiratory diseases.  In 2011 alone, cerebrovascular 

diseases killed 128,931 people [2].  Included in this category are cerebral aneurysms.  

Cerebral aneurysms are the abnormal expansion of cerebral arteries and veins leading to 

intracranial bleeding and thrombus genesis.  Cerebral aneurysms rupture at a rate of 10 

out of 100,000 people per year [3].  This translate to about 30,000 cases a year in the 

United States [3].  Ruptured aneurysms primarily occur between the ages of 30-70 years 

old, with a peak around 60-70 years old [4].  Ruptured aneurysms are the main cause for 

spontaneous subarachnoid hemorrhaging (SAHa).  SAHa has a high mortality rate with 

10% of cases dying on route to the hospital and an additional 8% dying from excessive 

bleeding during surgery [4].  Of the survivors, two thirds report permanent reduction in 

quality of life [4].   

 The chance of developing a cerebral aneurysm in a life time is 2%, with 30% of 

cases having multiple aneurysms present, but the rate varies between countries [4].  

Surgical removal of cerebral aneurysms before they rupture is ideal, with procedure 
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mortality rates around 1%, but most aneurysms go undetected due to the lack of 

immediate symptoms.  About half of cerebral aneurysms are asymptomatic, while 32% 

exhibit chronic symptoms and 17% have acute symptoms [5].  Symptoms can start 

appearing when the aneurysm grows large enough to put pressure on nerves and the 

surrounding tissue or when the aneurysm ruptures.  Acute symptoms include ischemia, 

headaches, seizures, and cranial neuropathies.  Chronic symptoms are headaches, visual 

deficits, weakness, and facial pains.  Cerebral aneurysms are known to form from 

bacterial infections, atherosclerosis, and trauma to the brain, but 98% of aneurysms 

spontaneously form [4].  There are multiple ways to treat aneurysms once found, but 

detection is a limiting factor in preventing deaths caused by aneurysms. 

1.3: Previous Aneurysm Studies 

 Multiple studies have used FEA to simulate hemodynamics to better understand 

what stimulates aneurysm formation.  A FEA study by Jaclyn Alfano, et al, [6] modeled 

114 cerebral bifurcations from volunteers using 3D digital subtraction angiography.  Each 

bifurcation was simulated to find the wall shear stress and wall shear stress gradient 

which was compared to a literature study of intracranial aneurysm locations.  They found 

that intracranial aneurysms favored bifurcations with high magnitudes of wall shear stress 

and high positive wall shear stress gradients.  Their study matched findings from an 

animal study which showed high hemodynamic shear stress promotes aneurysm genesis 

[6].  Other studies had similar results.  A study by Z. Kulcsár, et al., [7] performed digital 

subtraction angiography on three patients before and after aneurysm formation.  The 

three patients had a medical history with aneurysms, but none were present when the 

study began.  Computational fluid dynamics were simulated for all patients using the 
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digital scans before and after aneurysm formation.  The study found that the point of 

aneurysm formation exhibited high wall shear stress and high wall shear stress gradient.  

Additionally, relatively high pressure was found uniformly around the point of aneurysm 

genesis.  Changes to mechanical stimuli was hypothesized to cause destructive cellular 

remodeling, leading to aneurysm formation [8]. 

 FEA has also been used to analyze how aneurysms grow and what causes them to 

rupture.  Contrary to how aneurysms form, multiple studies have found that low wall 

shear stress in the aneurysm sac is related to aneurysm growth.  A study by Masaaki 

Shojima, et al, [9] analyzed the wall shear stress and velocity in 20 digital scans of MCA 

bifurcations with aneurysms present.  Their findings can be seen in Figure 1. 

 

 

Figure 1: FEA of wall shear stress and blood velocity in a MCA bifurcation with an 

aneurysm [9]. 
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 They found that the wall shear stress in the aneurysm sac is much lower, 1.64 Pa 

compared to wall shear stress in the vessel region of the MCA, 3.64 Pa.  The areas of low 

wall shear stress were typically towards the tip of the aneurysm.  Additionally, the neck 

of the aneurysm experienced high wall shear stress, 14.39 Pa, relative to the vessel.  

These findings also match a study by T. Tanoue, et al, [10].  This study followed two 

patients with anterior communicating artery aneurysms over 27 months.  One patient's 

aneurysm grew while the other did not.  Using FEA, they found that areas of growth had 

extremely low wall shear stress and blood flow, 0.2 Pa and 0.1 m/s respectively, while 

the areas of nongrowth  had wall shear stress around 1.4 Pa with an average blood flow of 

0.23 m/s.  They hypothesized that the lack of stimulation led to degradation of the 

endothelial cells inside the aneurysm causing the aneurysm to grow. 

 Low wall shear stress is also associated with ruptured aneurysms.  A study by 

Youchi Miura, et al., [11] found that aspect ratio, wall shear stress, normalized wall shear 

stress, oscillatory shear index, and wall shear stress gradient all were associated with 

ruptured aneurysms.  They modeled and simulated fluid dynamics in 43 ruptured and 63 

unruptured aneurysms using 3D rotational angiography images of intracranial aneurysms.  

Size of the aneurysm bulb was not found to be a factor in aneurysm rupture for 

aneurysms smaller than 10mm.  Additionally, the oscillatory shear index gradient was not 

a factor in aneurysm rupture.  After multivariate analysis, only low wall shear stress had a 

significant association with aneurysms that ruptured. 

 Vessel and aneurysm geometries are also important for designing aneurysm 

treatments.  A study by Luciana Parlea, et al., [12] characterized the morphology of 

intracranial saccular aneurysms by comparing features like dome height, width, neck 
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width, and semi-axis height.  Intracranial aneurysms were found to be mostly spherical in 

shape except for anterior communicating artery saccular aneurysms, which were more 

pear-shaped.  Most aneurysm sacs on bifurcations projected in parallel with the parent 

artery.  The study found no morphological differences in sac features when comparing 

ruptured versus unruptured aneurysms.   

   An FEA study similar to this thesis has also been performed.  A study by 

Michalis Xenos, et al., [13] compared different bifurcation angles and their effect on wall 

shear stress and pressure at the iliac bifurcation.  They used an idealized model of the 

iliac bifurcation with a fusiform abdominal aorta aneurysm located right before the 

bifurcation.  The study found that as the angle of the bifurcation decreased, the peak wall 

shear stress dropped, but the area of high wall shear stress increased.  They hypothesized 

that the increase in area of high wall shear stress could cause additional aneurysms to 

form in the iliac arteries.  
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CHAPTER 2: BACKGROUND 

2.1: Artery Physiology 

 Arteries are blood vessels that transport blood away from the heart during 

rhythmic contractions of cardiac muscles which create a pressure gradient.  The pressure 

from the heart depends on the cardiac cycle with the maximum pressure during systole, 

contraction of the heart, and the lowest pressure at diastole, refilling of the heart [14].  As 

the blood flows away from the heart, the arteries divide and get smaller.  Once the 

arteries reach about 30 micrometers in diameter, they become arterioles [14].  Arterioles 

have more smooth muscle than arteries, which helps them regulate the flow of blood to 

various parts of the body depending on signals from the brain.  This is done by 

contracting the smooth muscles to control the area of the lumen.  Arterioles eventually 

become capillary beds which transfer nutrients and waste between the blood and 

surrounding tissue by osmosis.  Blood then flows back to the heart through venules and 

veins. 

 Arteries have three unique layers to deal with the pressure from the heart.  The 

first layer and the thinnest is the tunica intima.  The tunica intima is comprised of a single 

layer of vascular endothelial cells that helps reduce friction as blood flows through the 

vessel, as well as transduce mechanical stimuli to chemical signals for the rest of the 

arterial layers [15].  The endothelial cells are attached to a basement membrane 

comprised of connective tissues and collagen bundles that anchors it to middle layer 

called the tunica media [16].  A layer of elastic fibers called internal elastic lamina 

separates the tunica intima and the tunica media.  The tunica media layer provides the 

bulk of the mechanical properties of the artery and is comprised of smooth muscle cells, 
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elastin fibers, and collagen.  The smooth muscle cells allow for the vessel to constrict and 

modify pressure and flow through the vessel by changing the radius of the lumen. 

Collagen provides tensile strength, while elastin allow expansion of the vessel and 

dampening of the pulsatile blood flow from the heart.  The external elastic lamina 

separates the tunica media from the outermost arterial layer, the tunica externa.  The 

tunica externa is composed of collagen fibers that help anchor the vessel in the body, 

nerve fibers that stimulate the tunica media, lymphatic vessels, and blood vessels to 

supply nutrients to the deeper layers [15].  All layers can be seen in Figure 2 below. 

 

 

Figure 2: Diagram of the Artery Layers [14]. 
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 There are physiological differences depending on where the artery is in the body.  

Arteries closer to the heart, like the aorta, have more elastin compared to arteries further 

away like cerebral arteries [15]. Intracranial arteries have reduced or even missing 

external elastic lamina because arteries upstream from the cerebral arteries dampen the 

majority of the pulsatile blood flow.  The smooth muscle layer is usually reduced or 

disorganized at bifurcations as one vessel splits into two [15].  This restructuring makes 

bifurcations weaker and more susceptible to damage with changes in pressure, shear 

stress, and flow rates.  The apex of bifurcations was once thought to be weaker 

structurally, but instead consists of tight bands of collagen fibers causing it to be more 

stable [4].  One rat study found that early stage aneurysm growth occurred distal to the 

apex of the bifurcation, with only later stages involving the apex of the bifurcation [4].   

2.2: Aneurysm Physiology and Pathology 

 Aneurysm comes from the Greek word "aneurusma", "ana" meaning throughout 

and "eurus" meaning wide [15].  Aneurysms are the abnormal permanent expansion of 

either artery or vein walls.  They are typically found in arteries of people over 50, but it is 

not uncommon for aneurysms to be found in younger people and in veins.  Aneurysms 

form rapidly over the course of a month where the vessel wall is rapidly remodeling [17].  

The chance of rupture during vessel remodeling is high regardless of the aneurysm's final 

size [17].  Once an aneurysm forms, it is classified into two types, fusiform and saccular.  

Fusiform aneurysms are spindle shaped and are commonly located before and after 

bifurcations in the abdominal aorta, iliac arteries, and popliteal arteries of the knee [15].  

Saccular aneurysm are small balloons/berry shaped and are normally found at arterial 

bifurcations and sharp curves [15].  Because of the shape, saccular aneurysms are also 
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commonly referred to as berry aneurysms.  The carotid artery and the Circle of Willis are 

common locations for saccular aneurysms to form in the brain.  This thesis will be 

focusing on saccular aneurysms because they are the more prevalent aneurysm found at 

the MCA bifurcation.  Figure 3 gives an example of what the two types of aneurysm look 

like. 

 

Figure 3: Diagram of Fusiform and Saccular aneurysms [15]. 

 

 Aneurysms are further classified by diameter or size.  Saccular aneurysms are 

classified using the maximum diameter of the aneurysm bulb with small being less than 

10 mm, large between 10-25mm, and giant being greater than 25mm [18].  Over half of 

the aneurysms that are treated are considered small and a quarter being large [18].  

Aneurysms are also classified by location with a focus on the parent artery and 

angiographic features.  Other metrics that are tracked are the growth rate of the bulb, 

aneurysm neck diameter, shape of the bulb, life style of the patient, and number of 
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aneurysms found.  All of these classifications give insight into the chance of rupture and 

how to treat the aneurysm. 

 Aneurysms are usually accidentally found when looking for other vascular or 

cerebral diseases.  Saccular aneurysms that are not related to bifurcations or branching 

arteries are found primarily in the internal carotid artery, ICA [18].  64% of aneurysms 

that are treated on branching arteries are found on the ophthalmic and posterior 

communicating artery that branches from the ICA [18].  The most treated bifurcations for 

saccular aneurysms are the MCA, the anterior communicating artery, and ICA 

bifurcations with a 40%, 29%, and 15%, respectively, chance of incidence [18].  The 

chance of finding an aneurysm in a side branch or at a bifurcation is equal [18].  The 

common techniques for finding aneurysms are computed tomography (CT), magnetic 

resonance imaging (MRI), CT angiography, and MR angiography.  These imaging 

techniques cannot reliably detect saccular aneurysms smaller than 2-3mm in diameter, 

however [15].  For more precise measurements of an aneurysm, a more invasive 

technique called subtraction angiography is used, but it is slowly being replaced with 

improvements to CTA and MRA technology [15]. 

 Once found, aneurysm treatment falls under two categories.  Aneurysms under 

10mm are treated with medication, but aneurysms over 10mm in diameter often require 

surgical removal [17].  Additionally, if the aneurysm has ruptured or is growing at a rate 

of 0.90mm or greater per year, surgical removal is recommended regardless of size [5].  

Saccular aneurysms have two main surgical options, packing or surgical clipping.  

Packing uses various materials to fill the aneurysm sac.  The packing material limits 

blood flow into the aneurysm and causes a stable clot to prevent additional blood flow 
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into the aneurysm [19].  The most common material used is platinum coils, but polymers, 

glue, and hydrocoils are in use, too [15].  This method works well for smaller aneurysms 

and is minimally invasive due to the use of a catheter.  Surgical clipping is much more 

invasive, but can be used on aneurysms of any size, ruptured or unruptured.  Surgeons 

place metal clips and staples at the aneurysm's neck cutting off blood flow into the 

aneurysm [20].  An example of aneurysm clipping can be seen in Figure 4. 

 

Figure 4: Example of surgical clipping of an aneurysm at a bifurcation [20]. 

 

 Surgical clipping stops blood flow into the aneurysm and allows for it to clot.  

Aneurysms can also be clipped and then dissected out if clotting is not viable.  The body 

will heal the vessel where the clipping occurred leaving a healthy blood vessel.  Once 
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removed, the chance of additional aneurysm formation or the regrowth of the removed 

aneurysm is very low, 1.8% and 0.52% respectively [5]. 

 How and why aneurysms form is still unknown.  It is known that alcohol 

consumption, smoking, and high blood pressure are risk factors for aneurysm genesis 

[21].  Originally, doctors thought the main cause of aneurysms was from bacterial 

infections of the vessel wall.  Aneurysms were commonly found in patients with syphilis, 

heart valve infections, and infections from bloodletting.  With better antibacterial drugs, 

aneurysm formation from bacterial infection has dropped significantly [15].  Gene 

disorders affecting the collagen in the blood vessels have also been known to cause 

aneurysms.    Two examples are Marfan's and Ehlers-Danlos's Syndromes which cause 

abnormalities in the syntheses of elastin and collagen leading to lower mechanical 

properties [15].  Aneurysms also seem to have genetic predisposition, but additional 

studies are required [22].  Only a fraction of aneurysms come from bacteria and gene 

disorders, with the main etiology currently unknown.  The two leading hypothesizes for 

aneurysm genesis are the flow shear mediated hypothesis and the fatigue/remodeling 

hypothesis.  The shear mediated hypothesis proposes that specific fluid flow patterns and 

shear stresses alter the normal signaling pathways that maintain homeostasis.  The stimuli 

change can be lower or greater than normal, as long as it is not damaging the vessel.  As a 

person ages, the vessels remodel over time, and various formations form that disturb 

normal blood flow.  The changes in stimuli cause destructive remodeling that causes 

vessel wall thinning leading to aneurysm formation.  Fatigue/remodeling hypothesis 

instead focuses on failure of the vasculature structural proteins due to increased cyclic 

stresses.  The high cyclic stress leads to fatigue damage and reorganization of the 
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structural proteins into less stable configurations.  Regardless of the pathway that triggers 

remodeling, the end result is thinning of the smooth muscle layer and the plastic 

expansion of the vessel wall. 

 Once the aneurysm forms, it will either stabilize or continue to grow until it 

ruptures or is surgical removed.  One theory for saccular aneurysm growth is multiple 

permanent vortices inside the sac stimulate the vascular endothelial cells to cause the 

aneurysm to grow.  Another theory is pressure inside the aneurysm sac is the major 

contributor to aneurysm growth with the tensile stress in the walls stimulating aneurysm 

growth [15].  Predicting when an aneurysm will rupture after growing is better 

understood than aneurysm growth.  The aneurysm will rupture when the internal stress on 

the wall are greater than the yield strength.  Computer models have been developed to 

determine when an aneurysm will rupture under idealized geometries and conditions [9].  

The inability to determine precise geometries and vessel wall properties limits the use of 

these models for rupture analysis in clinical applications.  Another approach is to 

compare aneurysms that ruptured versus those that do not.  Studies have found that 

aneurysms with lower shear stress and a higher oscillatory shear index rupture more often 

[11]. 

2.3: Middle Cerebral Artery Bifurcation Characterization 

 The middle cerebral artery (MCA) is part of the giant circulatory anastomosis in 

the brain called the Circle of Willis.  The MCA is comprised of four different segments 

identified as the M1, M2, M3, and M4.  The MCA originates from the internal carotid 

artery (ICA) on its respective side.  The ICA bifurcates to create the M1 segment of the 

MCA and the anterior cerebral artery.  The M1 segment then bifurcates into the superior 



15 
 

and inferior M2 segments.  Superior and inferior refer to the orientation of the arteries 

rather than the physical size.  This is often called the main MCA bifurcation, but can 

potentially trifurcate or quadfurcate.  The M2 segments then bifurcate into the M3 

segments, which further divides to create the M4 segments.  A diagram showing the 

Circle of Willis and side branches of the cerebral arteries can be seen below in Figure 5.  

Figure 6 shows a dissected cadaver MCA bifurcation. 
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Figure 5: Diagram of Cerebral Arteries [18].  The area of interest is the main MCA 

bifurcation located in the middle left side of the diagram. 
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Figure 6: Surgical dissection of MCA bifurcation [23]. 

 

 The area of interest is the main bifurcation of the MCA due to the likelihood of 

finding aneurysms.  Like most biological structures, the dimensions and geometries vary 

greatly from person to person.  The M1 segment has been measured to have a length of 

20±8 mm with the M2 segment having a mean length of 12.1 mm [24, 25].  The inner 

diameter of the M1 varies from 1.9 mm to 3.3 mm with the inner diameter of the M2 

branches ranging from 1.6mm to 2.5 mm [1, 25, 26].  The difference in diameter between 

the M2 segments is called the daughter artery (DA)  ratio which is the M2 segment with 

the larger diameter divided by the M2 segment with the smaller diameter [1].  Healthy 

DA ratios are around 1.4±0.4 with the inferior M2 branch being slightly larger than the 

superior M2 [1].  The larger daughter artery is generally 60-80% smaller than the M1 

segment.  There is no statistical difference regarding diameter and lengths between the 

left and right MCA [1]. 
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 Another defining characteristic of the main MCA bifurcation is the angle at which 

the daughter, M2, arteries bifurcate from the parent, M1, artery.  In healthy individuals, 

the superior M2 branch has an average bifurcation angle of 117.1±22.1° and the inferior 

M2 branch has an average angle of 107.2±24.9° [1].  In healthy arteries, the LA ratio is 

1.3±0.5 [1].  The larger diameter M2 branch usually has a greater branch angle, but 

symmetrical branch angles and asymmetrical branch angles with the smaller daughter 

artery having the greater angle are possible.  Again, no statistical difference has been 

found between the left and right MCA.  Figure 7 shows a healthy main MCA bifurcation. 

 

 
 

Figure 7: Representation of healthy LA and DA ratios [1]. (a)The entire cerebral 

vasculature.  (b and c)Lateral angle measurements. 

a b 

c 
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 Aneurysms on the other hand have much different averages for the superior lateral 

angle, inferior lateral angle, and the LA ratios.  In the main MCA bifurcations with 

aneurysms, the superior M2 branch has an average angle of 92.3±33.6° and the inferior 

branch has an average angle of 93.2±38.3° [1].  The LA ratio increases to 2.2 ±1.4, 

indicating the chance of finding an aneurysm increases as asymmetry increases [1].  An 

example of diseased MCA bifurcation geometries can be seen in Figure 8. 

 

 
 

Figure 8: Representation of a MCA bifurcation with an aneurysm [1]. (a)The entire 

cerebral vasculature.  (b and c)Lateral angle measurements. 

a b 

c 
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 The aneurysm in Figure 8 can be found on the right side of the bifurcation.  The 

cut-off LA ratio for aneurysm formation was 1.6, where the likelihood of finding an 

aneurysm was greater than not finding an aneurysm.  The DA ratio for MCA bifurcations 

with aneurysms increased to 1.7±0.7, but there is no correlation between the DA ratio and 

aneurysm genesis.  However, DA ratios lower than 1.7 are correlated to ruptured 

aneurysms [1].   

2.4: Loading Conditions 

 A healthy adult heart beats around 68±11 beats per minute (BPM) [27].  Heart 

rates can vary depending on the person, the physical activity being performed, or the 

position of the body.  Each heart beat generates a pressure gradient that pumps the blood 

through the body with an average blood pressure around 120 over 70 for humans [14].  

The first number, 120, represents the systolic pressure or peak pressure of the heart in 

mmHg.  The 70 represents the diastolic pressure or the lowest pressure of the cardiac 

cycle in mmHg.  The pressure in the MCA is lower due to elevation and distance from 

the heart.  This gives the MCA a uniform 15 mmHg decrease in pressure giving a range 

of 55 to 105 mmHg over the cardiac cycle [28]. 

 Each heart beat also expels a quantity blood called the stroke volume.  The stroke 

volume for adults is around 70 ml per beat, or 4800 ml/min [14].  The stroke volume can 

vary depending on ventricle contraction strength, preloading, heart size, and duration of 

contraction.  Of the 70 ml per beat, only a small fraction reaches the middle cerebral 

artery.  The average flow rate though the MCA ranges from 121 ml/min to 158 ml/min 

[29].    The flow rate can fluctuate depending on age, body position, exercise, or vascular 

diseases.  The MCA can experience an average flow rate up to 6.0 ml/s during peak 



21 
 

systole and a low of 1.7 ml/s during diastole [30].  Depending on the diameter of the 

middle cerebral artery, velocity ranges can be as low as 23 cm/s and as high as 106 cm/s 

[29, 31].   

  Various tests can be performed to quantify blood flow.  Some are noninvasive 

like MRI and Doppler ultrasound while others are invasive like subtraction angiography.  

By knowing some of the variables like pressure, size of the vessel, or flow rate, 

mathematical equations can be used to accurately approximate blood flow and solve for 

missing variables.  One such equation is the Hagen-Poiseulle equation, equation 1, below, 

that uses pressure drop and area of the lumen to determine flow rate [32]. 

 

 
  

          

   
 (1) 

  

 R is the inner radius of the blood vessel, P0 and PL are pressures at the opening 

and end, μ is the dynamic viscosity of the fluid, Q is the volumetric flow rate, and L is the 

length of the vessel.  The Hagen-Poiseulle equation assumes that the flow is laminar, 

Newtonian, and flowing through a straight, rigid pipe, which are reasonable assumptions 

for most arterial segments [32].  Greater pressures are required to achieve similar flow 

rates in curved arteries. 

 Similar to equations that model blood flow, there are equations that model the 

pressure waveform of the cardiac cycle.  The Windkessel model is one the oldest models, 

developed in the 1900s by German physiologist Otto Frank, and models the heart and 

vasculature using electrical circuit theory [33].  The heart is a pressure pump and is 

modeled as a voltage source.  Blood flow is modeled as current and blood vessels are 
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modeled as wires and resistors.  The Windkessel model assumes that blood vessels have 

the ability to store fluid leading to the equation 2 below [34]. 

 

 
    

  

  
      (2) 

    

 Q is the flow rate in and out of the blood vessel and V is the volume of stored 

blood due to the compliance of the vessel.  Compliance is the ability to yield elastically 

and stretch creating a larger lumen based on vessel pressure.  Each vessel has its own 

compliance based on the amount of elastin and other structural proteins and is modeled as 

a capacitor.  The simplest of the Windkessel models is the 2-Element circuit seen in 

Figure 9.   

 

Figure 9: Two, Three, and Four Element Windkessel Model Diagram [33]. 
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 The 2-element model consists of a capacitor for the compliance of the vessel and 

a resistor for the resistance to flow caused by peripheral vasculature.  Solving this circuit 

for the flow rate, I(t), for a 2-element Windkessel model yields equation 3 [34]. 

 

 
     

    

 
  

     

  
 (3) 

 

 R is the peripheral resistance in mmHg*s/ml and C is the compliance of the vessel 

in ml/mmHg.  The Windkessel model splits the cardiac cycle into two parts, one for 

systole and one for diastole.  The electrical circuit is solved normally during systole.  

During diastole, the voltage source is removed leaving an open circuit, causing the 

capacitor to release its stored power.  The 2-element model is generally not used anymore 

since it has a poor waveform accuracy when approximating the systole relationship 

between flow rate and pressure.  The 3-element model fixes this by adding a second 

resistor to the beginning of the circuit as seen above in Figure 9.  The 4-element model 

adds an inductor in parallel to the first resistor in the 3-element model and helps increase 

accuracy at frequency lower than 10hz.  Figure 10, below, shows a previous study 

comparing measured arterial pressure in the aorta to a simulated 3-element Windkessel 

model 
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Figure 10: Graph comparing the 3-element Windkessel model to measured pressure in a 

human aorta [35]. 

 

 Adding additional elements brings the simulated model closer to measured 

pressures.  The 3-element does a good job of matching the overall shape of the pressure 

waveform given the appropriate flow rate, resistances, and compliance.  The 3-element 

model has some error when the changing between systole and diastole. 

 Matlab code created by Mathew Howe simulating the 2, 3, and 4-element models 

was used to generate the pressure and flow rate waveforms for the middle cerebral artery.  

Mr. Howe's code used the 4-element Windkessel model to solve for the pressure 

waveform in the aorta, given the flow rate and vasculature properties.  Howe's code split 

the Windkessel into two different equations, one for systole and one for diastole.  His 
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code used the ordinary differential equation (ODE) seen below, equation 4, to solve for 

the systole portion of the cardiac cycle [36]. 

 

 
   

  
 
        

 

 
 
  

  
    

   

   
  

  

  
 
 

 
 (4) 

 

 R0 is the proximal resistance of conducting arteries, R is the peripheral resistance 

of the capillary and veins, C is the capacitance of the blood vessel, and L is the 

inductance.  After systole, the heart valve closes and the flow rate plus its derivatives 

become zero.  This creates an open circuit leading to the discharge of the capacitor.  

Solving the new circuit gives equation 5 that models the pressure during diastole [36]. 

 

 
            

 
    
              (5) 

 

 tD is the time when diastole starts, while R and C are the same as in systole.  This 

exponential decay starts at the same pressure as the end of systole and then drops back to 

the starting pressure of the cardiac cycle.  An example of what the 3-element Windkessel 

simulation looks like can be seen below in Figure 11. 
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Figure 11: Example of a 3-element Windkessel model of Howe's original code for the 

pressure waveform in the aorta. 

 

 This waveform was generated assuming 75 beats per minute using a half sine 

wave as the flow rate.  The variables used were R=0.80, R0=0.05, C=1.75 [36].  The end 

of systole and the beginning of diastole can be seen at 0.32 seconds.   

 Some modifications to Howe's code and variables were made to simulate the 

Windkessel model for the MCA.  The 3-element model was used because of frequencies 

in the final model were not below 10hz, so there would be little difference between the 3 

and 4 element models.  The initial settings, BPM, duration of systole, and  time steps of 

the Windkessel simulation were left unchanged since they fell within healthy ranges for a 

human.  BPM was 75, duration of systole was 0.32 seconds, and the number of data 

points for the simulation was 100.  Howe's code had a switch case statement that solved 
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for 2, 3, and 4-element Windkessel models.  Another switch case statement was added to 

allow predefined settings for pulmonary and systemic Windkessel models for the aorta.  

The switch case statement was hard-coded to pick the systemic 3-element Windkessel 

model for the aorta by setting the model_type variable to 3 and system_type variable to 1.  

The variables for the hardcoded choice were then changed to simulate the MCA.  The 

variable L equaled zero due to the use of the 3-element model, while R, R0, C were 

obtained through research.   

 The final alteration to Howe's code was implementing a new flow rate equation.  

Studies show that the velocity waveform matches the pressure waveform in the MCA 

[28].  Since the pressure waveform in the MCA is scaled down 15 mmHg compared to 

the aorta, the pressure waveform created by Howe's code for the aorta was used as a 

template to create the flow rate waveform for the MCA.  This was done by running 

Howe's original code for the systemic 3-element Windkessel model. The array for the 

solved pressure and time was then exported into Excel.  The pressure waveform was 

scaled down by dividing it by 13 to achieve homeostatic flow rates.  A polynomial trend 

line was placed on the scaled down pressure waveform to create the equation to describe 

flow rate. The equation can be seen in equation 6. 

 

                                                 

             
(6) 

 

 The variable x represents time.  The polynomial had a coefficient of 

determination of 0.99 indicating a good fit for the flow rate waveform.  The polynomial 
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was then exported into Howe's Matlab code where it replaced the flow rate in the 

Windkessel.m file.  The polynomial and its derivatives also replaced the flow rate in 

Windkessel_DE.m in order for Matlab to solve the Windkessel ODE.    The flow rate 

used for the Windkessel model and the simulated pressure waveform for the MCA can be 

seen in Figure 12 and Figure 13. 

 

 

Figure 12: Flow Rate of blood in the MCA. 
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Figure 13: Simulated Windkessel cardiac pressure waveform for the MCA. 

 

 The pressure waveform seen in Figure 13 used a starting pressure of 65 mmHg 

with R=5.54, R0=10.5, C=0.265, and L=0 [37].  These values were obtained from 

literature and then adjusted to correct the pressure range and end pressure.  The pressure 

waveform simulated with the Windkessel model for the MCA has a smaller range 

between diastole and systole, but still within healthy levels. 

2.5: Rheology and Shear Stress 

 Blood is fluid mixture of plasma and cells.  Plasma is primarily water with 

various proteins, electrolytes, hormones, and gases mixed in.  The cells that make up 

blood are the erythrocytes, leukocytes, and platelets [14].  Erythrocytes, red blood cells, 

make up 95% of the cell volume in the blood and the volume fraction of erythrocytes is 

around 40-60% [32].  Platelets make up 4.9%  of the cell volume and leukocytes, white 
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blood cells, are the left over 0.1% [32].  These cells, along with the proteins and ions in 

the plasma, give blood its unique fluidic properties.  Blood has a density of 1060 kg/m
3
, a 

pH of 7.4, and a viscosity at high shear rates of 0.0035 cP at 37°C [32].  Blood is a shear 

thinning, non-Newtonian, fluid.  The viscosity changes depending on the velocity of the 

blood, with low velocities leading to higher viscosities and high velocities leading to 

lower viscosities.  This leads to a nonlinear shear rate to shear stress relationship. 

 There are several different equations that model the viscosity of blood.  The 

simplest way is to assume blood is a Newtonian fluid with a constant viscosity, usually 

around 3.0 to 4.0cP depending blood composition and temperature.  This method is 

chosen for large arteries like the aorta where fluid flow is fast.  When Newtonian 

viscosity isn't a valid assumption, there are multiple accurate non-Newtonian models 

available.  The Casson equation is a empirically derived non-Newtonian model that 

requires a minimum force for stagnant blood to start flowing.  It describes the shear stress 

to shear rate relationship of blood and can be rearranged into equation 7 to solve for 

viscosity [38]. 

   

 

        
  
  
 

 

 (7) 

 

 τ0 is the yield stress of blood, μ0 is the Newtonian viscosity of blood, and    is the 

shear rate.  At higher shear rates, this equation will asymptotically approach the 

Newtonian viscosity for blood, 0.0035 cP.  The Casson equation is dependent on 

anything that changes viscosity of blood, like protein concentration, cell volume 
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fractions, and temperature [38].  The Casson equation accuracy breaks down at shear 

rates below 10 s
-1

 [39] 

 Another model for non-Newtonian viscosity is the Power law model seen in 

equation 8 [40]. 

 

        
    

(8) 

 

 μ0 is the Newtonian viscosity of blood,    is the shear rate, and n is a constant.  

This model is particularly good at simulating blood at low velocities, around 0.025 m/s, 

but loses accuracy at high velocities, greater than 0.6m/s [40].  This model would be good 

for predicting viscosity in berry aneurysms, but poor for healthy arteries or arteries that 

feed blood flow into the aneurysm. 

 A good balance is the Carreau-Yasuda model for blood viscosity seen in equation 

9, which works for both fast and slow fluid velocities [40]. 

 

 
                         

  
   
  (9) 

 

 μinf is the Newtonian viscosity of blood, μ0 is the zero shear rate viscosity of 

blood,    is the shear rate, λ and n are both constants related to the simulated fluid.  This 

model accurately simulates blood viscosity at low velocities similar to the Power law 

model, but also matches Newtonian fluids at higher velocities [40].  This property makes 

the model ideal for blood flow in berry aneurysms since it can accurately simulate the 

viscosity of both the arteries and the aneurysm bulb in the same model.   
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 Modeling the viscosity accurately is important for determining the fluid flow and 

shear stress.  Wall shear stress plays a major role in homeostasis and calculating shear 

stress is very important in predicting the formation and diagnosing circulatory diseases.  

One way to estimate the wall shear stress acting on a blood vessel is to use Hagen-

Poiseuille equation, equation 1, above, to estimate the flow rate and then use the 

relationship in equation 10 to predict the wall shear stress [32]. 

 

 
   

   

   
 

(10) 

 

 This equation uses the same assumptions as Hagen-Poiseuille: laminar, 

Newtonian fluid and a straight rigid pipe.  μ is the Newtonian viscosity of the fluid, Q is 

the averaged flow rate in the vessel, R is the radius to the lumen.  Changes in 

temperature, vessel geometry, and blood composition can lower the accuracy of this 

equation.  Computer models can also predict shear stress, but instead use a generalized 

equation seen below to find shear stress anywhere in the model [41]. 

 

        
(11) 

 

 μ is the viscosity of the fluid and    is the shear rate.  For Newtonian fluids, the 

viscosity is constant and shear stress is dependent on shear strain.  For blood, the 

viscosity is not constant and leading to non-glinear characteristics. 

 To maintain the artery and its layers, the endothelial cells in the tunica intima 

transduce the mechanical forces into chemical signals to maintain vessel homeostasis.  
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The mechanical forces the endothelial cells reacts to are pressure, circumferential 

stretch/tension, and shear stress.  Shear stress in particular controls endothelium survival.  

Too little shear stress has shown to trigger apoptosis and random endothelium 

orientations while large shear stress damages the endothelium [42].  The endothelium 

also requires pulsatile shear stress for cells to proliferate and grow.  It is believed that 

nitric oxide, NO, is the key mediator for vessel homeostasis through shear stress.  NO is 

made by the enzyme ecNOS found in the endothelium.  Figure 14 showcases some of the 

hypothesized pathways in which shear stress causes NO production. 

 

 

Figure 14: Hypothesized pathways for mechanical stimuli to ecNOS activation [42]. 
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 There are four main pathways that are believed to transduce shear stress to ecNOS 

activation.  One pathway is through caveolae.  Caveolae are areas in the plasma 

membrane rich in cholesterol, causing the membrane to be more rigid.  Caveolae are 

known to  interact with signaling proteins like G proteins, c-Src-family tryosine kinases, 

ras, and PKC family kinases [42].  Additional research is required to better understand 

how caveolae mechanical properties and signaling cascade lead to NO production.  The 

second pathway is through α/β integrins, which are transmembrane glycoproteins that are 

adhesion receptors for cell to cell interactions.  It is unknown which integrins cause the 

activation of ecNOS, but lab results shown that β1 and β3 integrins partially control NO 

release.  Another pathway for ecNOS activation is through G protein.  G proteins are a 

transmembrane grouping of proteins that transduce stimuli into chemical signaling using 

a cascade of protein activation.  For shear stress activated G proteins, the cascade is 

believed to stop at the phosphorylation of ras, a GTP binding protein [42].  All three of 

these pathways, the caveolae, integrin, and G proteins, are believed to activate Raf-1, a 

MAP kinase kinase kinase.  Caveolae and integrins are thought to activate Raf-1 though 

the phosphorylation of PKC-α, PKC-ε, and c-Src while G proteins through ras [42].  Raf-

1 activates MEK-1, which activates ERK 1/2 [42].  ERK 1/2 then activates ecNOS as 

well as additional gene activation and the phosphorylation of transcription factors like c-

fos, c-jun, and c-myc [42].  The final hypothesized pathway for ecNOS activation is 

through mechanosensitive ion channels that respond to the mechanical shear stress from 

blood with the change in ion concentration in the cytoplasm leading to ecNOS activation 

[42].  Studies have found blocking K
+
 ion channels stopped shear mediated increases in 

NO production [42].  Most  likely, all these pathways are occurring at the same time with 
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additional pathways that are still unknown.  Additional research is needed to fully 

understand how mechanical stimuli causes NO production, gene activation, and 

transcription factors activation. 

 In healthy cerebral arteries, the shear stress can range from 1 Pa to 7 Pa [41].  At 

arterial bifurcation, however, the shear stress can be many times greater.  Various 

computer models have estimated that the shear stress at the main MCA bifurcation 

averages around 18 to 22 Pa [6, 43].  One study found a peak wall shear stress of 30±5 Pa 

at the MCA bifurcations, but this study lumped all bifurcations of the middle cerebral 

artery together [6].  Another simulation has found a max wall shear stress of 33.17 Pa for 

a mean flow velocity of 75 cm/s at the main MCA bifurcation using idealized geometries 

[44].  The exact homeostatic range for shear stress at the main MCA bifurcation is 

unknown, but current studies show that shear stress is higher compared to non-bifurcating 

arteries. 
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CHAPTER 3: MODELING METHODS 

 3.1: Modeling Overview 

 Multiple models were created using a student license of COMSOL 

Multiphysics®.  COMSOL Multiphysics® is a finite element analysis (FEA) 

multiphysics software suite that can simulate fluid flows, particle tracings, and 

mechanical stresses.  The models simulated were various bifurcation angles of the main 

MCA bifurcation in order to observe changes in fluid flow and wall shear stress.  The 

geometries were created in SolidWorks® and imported into COMSOL where various 

post processing techniques were performed to verify the accuracy of the computer model 

and compare results between models. 

 FEA works by breaking down complex problems into smaller, easier to solve 

pieces.  This method allows accurate approximations of complex problems using the 

weak forms of the governing equations to solve ordinary differential equations, partial 

differential equations, and linear equations.  Governing equations are the equations that 

describe the physics being simulated.  The simulation is first partitioned into many simple 

subdomains that are comprised of elements and nodes in the shape of pyramids, prisms, 

and hexahedrals.  Each of these subdomains have an elemental equation that locally 

approximates the governing equations.  The elemental equations are solved using either 

linear algebra or numerical integration depending on the governing equations.  The 

subdomains are then stitched together through the nodes to recreate the original problem 

and boundary conditions are applied to achieve an approximate solution.  Increasing the 

number of subdomains increases the accuracy of the simulation, but adds to the 

computation time of the problem. 
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3.2: Fluid Flow Module and Loading Conditions 

 The first simulations created were 2D models with idealized geometries in order 

to set up the fluid dynamic modules in COMSOL.  The models were created in COMSOL 

using the built in computer aided design (CAD) software.  The geometries modeled were 

5mm long M1 parent artery with a symmetrical 120° bifurcation to the two M2 daughter 

arteries that were also 5mm long.  The diameter of the parent artery was 3mm, the 

superior daughter artery, left side, was 2.475 mm, and the inferior daughter artery, right 

side was 2.250 mm in diameter.  The idealized bifurcation can be seen in Figure 15. 

 

 

Figure 15: Velocity profile of Idealized 2D bifurcation with non-Newtonian laminar flow 

 

 This base geometry was then used to create iterative simulations starting with 

Newtonian creep flow.  Once basic fluid motion was achieved, the model was changed to 

Newtonian laminar flow, then to non-Newtonian creep flow, and finally non-Newtonian 
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laminar flow.  All 2D models were stationary models except for the final non-Newtonian 

laminar flow model which was a time dependent model to allow the simulation of the 

cardiac cycle. 

 First, a material called blood was created and was given a density of 1060 kg/m
3
 

with a viscosity of 0.0035 cP, the density and viscosity for Newtonian blood at 37°C.  

This material was assigned to the entire domain of the 2D model.  The fluid properties 

section under creep and laminar flow had its density and viscosity set to the created blood 

material for both Newtonian models.  For the non-Newtonian models, the density was set 

to the created blood material, but the viscosity was simulated using the Carreau-Yasuda 

model, equation 9, for viscosity.  Carreau-Yasuda viscosity model was chosen because it 

could accurately simulate viscosity in arteries and in aneurysms, which was a future 

ambition for these models.  The variable for Carreau-Yasuda model were set to simulate 

blood with μ0=0.056 Pa*s, μinf=0.0035 Pa*s, λ=3.313 s, and n=0.3568 [40, 45]. 

 To simulate the fluid flow, two different fluid modules were used.  The first and 

more simplistic module was fluid creep flow.  Creep flow, also known as stokes flow, is 

the Navier-Stokes equation for fluid flow with one side equal to zero to yield equation 12 

and equation 13. 

 

                                
(12) 

          
(13) 

 

 The ∇, del operator, is the vector differential operator, ρ is the density of the fluid, 

I is the identity matrix, μ is the viscosity of the fluid, v is the fluid velocity, T is the 
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transpose of a matrix, and F is the force acting on the fluid.  Creep flow is generally used 

for fluids with Reynolds numbers much less than one where viscous forces dominate.  

The simplification of Navier-Stokes makes solving the differential equation much faster 

and saves on computation time at the cost of accuracy.  Once the creep flow was 

implemented successfully, it was replaced with the laminar fluid flow module.  Laminar 

flow uses the same Navier Stokes equation, but does not simplify it yielding equation 14 

and 15 below. 

 

 
 
  

  
                                          (14) 

          
(15) 

 

 Similar to creep flow, ∇ is the del operator for a vector, ρ is the density of the 

fluid, I is the identity matrix, μ is the viscosity of the fluid, v is the fluid velocity, and F is 

the force acting on the fluid.  With the added terms, a nonlinear partial differential 

equation is created, which greatly adds to the computation time, but greatly increases the 

accuracy for simulating fluid with a Reynolds number less than 2000.  Laminar flow 

module was chosen over creep flow because blood flow in arteries falls around a 

Reynolds number of 600 [46].  

 To simulate the loading conditions for the MCA, the walls of the model were set 

to rigid with the no slip condition, velocity at the wall is zero.  Previous studies have 

found that the changes to hemodynamics is small when comparing rigid MCA models to 

elastic models [11].  The pressure waveform data created by the 3-element Windkessel 

model, Figure 13, was moved into excel, extrapolated to four heart beats, and then 
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imported into COMSOL using the interpolation function.  The pressure waveform was 

then placed on the inlet, the parent artery, and outlets, the two daughter arteries.  The inlet 

was set to laminar inflow with an entrance length of 0.4m to remove inlet anomalies and 

to allow the laminar flow profile to fully develop.  The flow rate waveform used in the 

Windkessel model was then used with the Hagen-Poiseulle equation to create a pressure 

drop between the inlet and outlet that would drive the blood through the bifurcation.  The 

radius used in Hagen-Poiseulle was adjusted to get proper flow rates to offset the 

equation's assumptions. The pressure drop over time was created in Excel and imported 

into COMSOL using the interpolation function and was subtracted from the outlet 

boundary condition to generate fluid flow.  A time dependent study to simulate the model 

was made with 0.008 second time steps and simulated 4 heart beats, 3.224 seconds. 

3.3: Geometries of Model 

 With the confirmation of the fluid modules working correctly the 2D simulation 

was converted into a 3D simulation.  All settings for fluid flow, materials, boundary 

conditions, and the time dependent study were left unchanged.  New idealized 3D MCA 

bifurcation models were made using SolidWorks.  SolidWorks was used over COMSOL 

CAD because it could smooth the model around the bifurcation point.  Three base angles, 

120°, 90°, 60°, were chosen to be the angle between the M1 and the larger M2.  LA ratios 

of 1.0, 1.6, and 2.2 were then applied to each of the base angles to create eight models.  

60 degrees with a LA ratio of 1 was excluded since MCA bifurcation at that angle never 

exhibited symmetrical bifurcation angles.  The parent artery was 3mm in diameter and 

both M2 daughter arteries were 2.12 mm in diameter.  The daughter arteries are the same 

diameter to remove any effects they might have on fluid flow and wall shear stress.  
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Without this, fluid flow would change and bias a side for higher flow rates, leading to 

changes in wall shear stress not related to angle geometries.  The model was created by 

making a line outline of the desired bifurcation angle.  The outline was seeded with 

multiple planes perpendicular to the lines and circles representing vessel diameters were 

add to each plane.  The loft function was used to connect each circle to create the 

bifurcation.  The bifurcation apex was then chamfered to complete the model.  Figure 16 

and Figure 17 below shows the model with the base angle 120 with a LA ratio of 1 (120°-

120°) that was used as a control for verification and comparison between models. 

 

 

Figure 16: SolidWorks model of an idealized healthy MCA bifurcation. 

 



42 
 

 

Figure 17: Dimensions for 120-120 bifurcation. 

 

 The LA ratio of 1 was chosen because it fell within the range for healthy MCA 

bifurcations, as well as the minimum LA ratio.  A LA ratio of 1.6 was chosen because it 

was the cut off point for finding aneurysms at the MCA bifurcation.  The final LA ratio, 

2.2, was the average ratio for MCA bifurcations with aneurysms.  The base angles were 

chosen based on bifurcation angles ranges for healthy and aneurysm diseased MCA 

bifurcations.  120 degrees was the average homeostatic angle.  90 degrees was the 

average angle for MCA bifurcations with aneurysms.  60 degrees was an extreme case 

found only in MCA bifurcations with aneurysms.  The models were made to match 

images of the MCA bifurcation during operations or imaging since no digital scans were 

available to import into COMSOL.  All models were imported into COMSOL and 
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cleaned up using COMSOL CAD.  To make computation faster, the models were split in 

half and a symmetry condition in laminar flow module was placed on the face of 

symmetry. 

3.4: Meshing 

 Once all the models were imported and the simulations were ready, a mesh 

analysis was performed to find the minimum meshing required to get accurate results.  

The 120 base angle with a LA ratio of 1 model, the 120-120 model, was simulated for 

one cardiac cycle at various mesh settings until convergence was achieved.  The average 

velocity of the inlet and outlets were recorded along with the shear stress at a point on the 

bifurcation at time 0.3 seconds.  The results can be seen in Table I and Figure 18. 

 

Table I: Convergence study of fluid velocities and shear stress for 120-120 model at 0.3 

second 

DOF 
Inlet Velocity 

(m/s) 

Sup. Outlet 

Velocity 

(m/s) 

Inf. Outlet 

Velocity 

(m/s) 

Probed Shear 

Stress 

(Pa) 

4060 0.48807 0.50112 0.49759 11.86948 

7228 0.5095 0.52037 0.52076 13.44398 

12676 0.5139 0.52352 0.52354 17.36827 

28772 0.52185 0.52639 0.52624 18.94956 

49928 0.51757 0.52079 0.52024 19.96198 

106912 0.52321 0.52483 0.52575 22.7529 

247900 0.52488 0.5235 0.52324 22.76307 
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Figure 18: Line plot of probed shear stress at the bifurcation related to Degrees of 

freedom. 

 

 The shear stress and velocities both converged between 100k DOF and 250K 

DOF.  The mesh settings used were COMSOL's predefined finer mesh size for fluid 

dynamics.  Some minor alterations to the mesh settings were done to remove unneeded 

elements and nodes and increase element density around the apex of the MCA 

bifurcation.    The fully meshed MCA bifurcation can be seen in Figure 19 below. 
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Figure 19: Mesh of the boundary and domain elements for 120°-120° model. 

 

 The domain was set to the predefined finer setting while the boundary was set to 

the predefined extra fine setting.  The parent artery had boundary set to the predefined 

finer setting to reduce the number of elements on the parent vessel wall.  The predefined 

settings used the mesh fluid dynamic setting in COMSOL.  This setting created a gradient 

in element size with smaller elements being on the boundaries of the model and larger 

elements in the middle of the domain.  Laminar flow causes little turbulence to the flow 

in the center of the vessel so less meshing is required to model the fluid.  Meshing gets 

finer closer to the boundary because the fluid velocity reduces rapidly as it approaches a 

velocity of 0, the no slip condition.  The predefined mesh fluid dynamic settings also 

added a layer of elements between the boundary and the domain.  These elements are 

extremely thin and help approximate the wall shear stress more accurately.  Two were 
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used since additional layers had little effect.  The final settings can be seen in Figure 19 

above with a domain mesh size range of 0.318mm to 0.095mm and a boundary mesh size 

range of 0.178 mm to 0.019 mm.  These sizes match other computational fluid dynamic 

models and should accurately model all the MCA bifurcation models [7].  All models 

used a mixture of hexahedral and tetrahedral elements.  Hexahedral elements 

approximate stresses better so they were used for the boundaries of the model where wall 

shear stress will be calculated.  Tetrahedral elements were used for the domain since they 

model complex 3D structures more accurately.  All models were run on the BMED local 

server cluster with a computation time ranging from 1 to 2 hours depending on the 

number of elements and study length. 

3.5: PIV Settings 

 A particle tracing module was added when all the settings were finalized and the 

fluid velocities were simulated.  The particle study would be compared to a PIV study by 

Shigekazu Takeuchi and Taeshi Karino as another verification method for the computer 

model [47].  The PIV study was performed on ICAs and MCAs from human cadavers at 

normal flow rates.  The 120-120 model was used since it was the closest match to the 

geometries of the cadaver's MCA.  Fluid particle tracing works in COMSOL by using 

pre-simulated fluid flow and applying particle that interact with the fluid flow.  The 

loading conditions for the particle study were set to 3.1 ml/s in order to match the PIV 

experiment.  This was achieved by putting a pressure drop of 447 Pa between the inlet 

and outlets.  Particles with a density of 1060 kg/m
3
 and with a diameter of 80μm were 

created to match blood and the particles use in the PIV study.  125 particles were set to be 

released from the inlet every 0.01 seconds matching the fluid velocity at the inlet.  To 
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simulate how the particles would react to the fluid, a drag force was applied to each 

particle.  The drag force used the simulated fluid velocity and the viscosity to apply a 

force to the particle using equation 16 and 17. 

 

 
  

 

  
        (16) 

 
   

    

   
 (17) 

 

 mp is the mass of the particle, ρp is the density of the particle, dp is the diameter of 

the particle, μ is the viscosity of the fluid, u is the velocity of the fluid, and v is the 

particle velocity.   This force causes the particle to change its velocity with regards to the 

changing fluid flow and viscosity.  The model walls and symmetry plane were set to 

bounce the particles off with the outlets removing the particles.  Bounce was chosen 

because the particles would bounce off the walls in the PIV.  
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CHAPTER 4: RESULTS 

4.1: Initial Testing 

 A preliminary model of a simple cylinder was simulated to compare COMSOL's 

fluid physics to proven analytical equations.  The cylinder was 3 mm in diameter and 

10mm long.  A pressure drop of 747 Pa was placed between the inlet and outlet to create 

an average velocity of 0.6 m/s.  A stationary study was performed using the same mesh 

settings as the MCA models, leading to a final mesh of 60,000 tetrahedral and hexahedral 

elements.  The analytical equations used were equation 1, Hagen-Poiseulle, and equation 

10, wall shear stress for a straight tube.  The average velocity  and average wall shear 

stress were then simulated for blood as a Newtonian and non-Newtonian fluid in the 

cylinder.  The results can be seen in Table II. 

 

Table II: Comparison between analytical equations and simulation results for simple 

cylinder. 

 

Velocity [m/s] Shear stress [Pa] 

 

Newtonian Non-Newtonian Newtonian Non-Newtonian 

Hand Calculation 0.6 0.5645 5.6 5.952 

Simulation 0.59518 0.5560 5.54672 5.920 

Error [%] 0.8033 1.5058 0.9514 0.5376 

 

 

 The analytical equations were quite accurate when compared to the computer 

simulation.  Very little error, less than 1%, was observed between the Newtonian models 

and the hand calculations.  The non-Newtonian model had higher error in the velocity 

compared to the shear stress, but was still very low.  The low error indicated that the fluid 

physics were correctly implemented in the computer model and accurately simulated 

blood flow through a straight cylinder. 
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4.2: Model Validation  

 To ensure that the loading conditions and geometries were also implemented 

correctly, a comparison between literature values and the healthy 120°-120° MCA 

bifurcation was performed.  The model was simulated over two cardiac cycles with non-

Newtonian laminar flow.  The minimum, maximum, and average fluid flow rate and 

velocity were calculated at the inlet.  The average wall shear stress on the vessel wall and 

the max wall shear stress at the bifurcation were also calculated.  The data comparing the 

simulation to literature is tabulated in Table III. 

 

Table III: Comparison of literature values to MCA control model 

 

Literature Simulation 

Velocity range [m/s] 0.23 - 1.06 0.241 - 0.539 

Average Velocity [m/s] 0.32 - 0.82 0.38 

Flow rate range [ml/s] 1.7 - 6.0 1.71 - 3.81 

Average flow rate [ml/s] 2.5-3.3 2.71 

Shear stress on vessel wall [Pa] 1.0-7.0 3.93 

Max Shear Stress [Pa] 25-35 41.31 

 

 

 The velocity of blood in the simulated model was lower when compared to the 

velocity range found in literature.  The velocity averaged over the cardiac cycle was 

particularly low. The velocity is quite dependent on the radius of the blood vessel so it 

was expected that the simulation would have velocities on the low side because a large 

vessel radius was used.  The flow rate is a better indicator for model accuracy it is 

determined by the nutrient requirements of the brain and vary less between people.  The 

flow rate range and average flow rate were accurate and fell within the range of literature 

values.  The vessel wall shear stress fell within the homeostasis range for arteries, but the 



50 
 

max shear stress was higher than literature values.  The max shear stress was found just 

after the bifurcation.  The max shear stress was high compared to the limited studies 

analyzing the shear stress at the MCA bifurcation.  Additionally, wall shear stress greater 

than 40 Pa is common in the Circle of Willis [7].  The control model was within or close 

to healthy blood flow and shear stress values, indicating the geometries and fluid flow 

modules were correct.  

 Additionally, the control 120°-120° bifurcation model was simulated with the 

COMSOL particle tracing module and compared to a journal article that performed PIV 

on MCAs taken from cadavers.  The PIV experiment used a steady flow rate with a 

mixture of different sized plastic beads in a blood like solution. The control model was 

set up to have similar loading conditions as the journal article and was seeded so that a 

similar trace density was achieved.  Figure 20 compares the PIV from the article to the 

particle tracings from the COMSOL model. 

 

Figure 20: (left)PIV experiment from literature.  (right)Particle tracings from simulated 

model. 
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 The computer particle trace looks similar to the PIV experiment.  Both have 

relatively straight flow lines in the parent artery with an equal split at the bifurcation.  No 

backflow is present in both.  The main difference between the PIV study and the 

computer model was the decrease in vortices in the computer model.  The computer 

model had the vortices at the bifurcation, but did not develop secondary vortices after the 

split.  This could be attributed to the perfectly smooth vessel walls in the model, the 

model only showing half of the vortices due to symmetry conditions, or a perfectly linear 

flow rate into the bifurcation.  The equal split and the initial vortices indicate that the 

computer particle trace is satisfactory and further supports that the simulation is working 

as intended. 

4.3: Fluid Flow 

 A comparison of fluid flow profiles were simulated using the laminar flow 

module in COMSOL for every angle iteration of the MCA bifurcation.  All models were 

simulated for two cardiac cycles, 1.616 seconds, using 0.008 sec time steps.  Loading 

conditions and fluid settings were the same between models with the only change being 

the bifurcation angles.  Figure 21 shows the comparison between the flow profiles at peak 

systole for all models.  Enlarged images of each individual flow profile can be found in 

appendix B. 
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Figure 21: Flow profile at peak systole for all bifurcation angles. (a-h) 120°-120°, 120°-

75°, 120°-54.54°, 90°-90°, 90°-56.25°, 90°-40.91°, 60°-37.5°, 60°-27-27° respectively. 

 

 The peak velocity for every model was around 1 m/s.  All models had little to no 

flow at the tip of the bifurcation and interior side of the bifurcation curves.  Increasing the 

LA ratio caused the area of slow flow on the interior side to increase in size.  The slow 

flow at the bifurcation tip was not affected by changing the bifurcation angle or the LA 

ratio.  The inlet profile and outlet profile for both daughter arteries look similar for all 

models.  The side with the smaller bifurcation angle appeared to have slower velocities 

during the bifurcation, but matched once the vessel straightened. 

 Post processing was used to average the flow rates at the inlet and outlets for one 

cardiac cycle.  The flow rates was averaged over the 2nd cardiac cycle, 0.808 to 1.616 
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seconds, to avoid undeveloped flow profiles caused by zero fluid flow in the model at 

time zero.  All models had the same length from the inlet to the outlets.  The flow rates 

for each model can be found in Table IV. 

 

Table IV: Table of averaged inlet and outlet flow rates for all models. 

 

Inlet flow rate 

[ml/s] 

Superior outlet 

flow rate [ml/s] 

Inferior outlet 

flow rate 

[ml/s] 

120-120 2.721 1.363 1.366 

120-75 2.693 1.374 1.326 

120-54.54 2.692 1.369 1.329 

90-90 2.680 1.345 1.341 

90-56.25 2.679 1.350 1.335 

90-40.9 2.698 1.351 1.343 

60-37.5 2.591 1.303 1.286 

60-27.27 2.608 1.326 1.279 

 

 The flow rate splits in half for both 120°-120° and 90°-90° models.  Increasing 

the LA ratio caused the flow rate not to divide equally.  The flow rate was higher in the 

side with the greater bifurcation angle.  Also, the inlet flow rate decreased as the base 

bifurcation angles become smaller.  Increasing the LA ratio also lead to smaller decrease 

in inlet flow rates.  The decrease in inlet flow rate lead to a decrease in outlet flow rates.  

Overall, very little change between flow rates was found.  

4.4: Wall Shear Stress 

 Additionally, wall shear stress was compared between models.  The wall shear 

stress was calculated using the viscosity and shear rate.  The wall shear stress was 
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calculated over two cardiac cycles.  The results of wall shear stress at peak systole can be 

seen below in Figure 22 with enlarge images of each models shear stress in appendix B. 

 

 

Figure 22: Shear Stress Comparison.  (a-h) 120°-120°, 120°-75°, 120°-54.54°, 90°-90°, 

90°-56.25°, 90°-40.91°, 60°-37.5°, 60°-27-27° respectively. 

 

 For all models, two points of maximum shear stress appeared just after the 

bifurcation on both daughter arteries.  The max shear was always on the opposite side of 

where the parent artery entered the bifurcation.  Changes to the base bifurcation angle 

and the LA ratio caused the shear stress to decrease in magnitude and spread out through 

the daughter arteries.  The base angles, 120°, 90°, 60°, were quite different compared to 
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each other, while the LA ratio changes had little effect on wall shear stress.  The 120° 

base angle had most of its wall shear stress localized right after the bifurcation.  All LA 

ratios had a distinct separation between the shear stress on the superior M2 and the 

inferior M2 arteries.  Increasing the LA ratio only caused a slight drop in max shear 

stress, 41 Pa to 39 Pa.  The 90° base angle models had less separation of shear stress with 

the point of bifurcation being surrounded with 15 Pa of shear stress.  Increasing the LA 

ratios caused an increase in unification of the shear stress at the bifurcation.  The drop in 

max shear stress as the LA ratio increased was 39 Pa to 36 Pa.  The 60° base angle 

models had complete unification of the shear stress between the branched arteries.  The 

area of unification also had increased shear stress, around 25 Pa.  The peak shear stress 

was much lower, around 29 Pa for both models, and was not affected by the LA ratio. 

 To quantify the changes in shear stress between models, the max wall shear stress 

during systole and diastole were calculated from every MCA simulation.  A 16 Pa cutoff 

was used to determine the area of high shear stress at the bifurcation.  This was done by 

using COMSOLs post processing boundary integration function using equation 18 as the 

argument. 

 

                      (18) 

 

 spf.mu is the viscosity and spf.sr is the shear rate calculated by the simulation.  16 

Pa was used because it is the average shear stress at the MCA bifurcation.  The percent 

change was calculated using to the healthy 120°-120° MCA model as the control.  The 

shear stress found in each model can be seen in Table V and Table VI.  
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Table V: Max shear stress during systole and diastole with maximum area of shear stress 

at MCA bifurcation 

 

Max Shear (Pa) Area  of Shear 

Stress (mm^2) 

 

Systole Diastole 

120-120 41.31 12.33 19.41 

120-75 40.78 11.88 22.77 

120-54.54 39.71 11.91 24.52 

90-90 39.57 11.22 24.11 

90-56.25 38.28 11.08 26.87 

90-40.9 36.57 10.76 25.37 

60-37.5 29.18 8.71 27.96 

60-27.27 28.90 9.10 28.39 

 

 

Table VI: Percent change in shear stress between different models compared to 120-120 

control model 

 

Systole Diastole 
Area of shear 

stress 

120-120 0.00% 0.00% 0.00% 

120-75 1.28% 3.65% 17.34% 

120-54.54 3.87% 3.40% 26.35% 

90-90 4.21% 9.01% 24.26% 

90-56.25 7.33% 10.16% 38.46% 

90-40.9 11.47% 12.72% 30.71% 

60-37.5 29.36% 29.39% 44.10% 

60-27.27 30.04% 26.19% 46.31% 

 

 

 Comparing the models, it appears that there was a decrease in maximum shear 

stress in both systole and diastole as the angle of bifurcation becomes more asymmetrical 

and as the base angle becomes smaller.  Only a 3.87% change was observed when 

increasing the LA ratio for the 120° models.  The 90° models had a larger change in shear 

stress with LA ratio increase.  The shear stress decreased by 7.26% when comparing the 

90° model with LA ratio of 1 to LA ratio of 2.2.  Diastole showed similar drops in wall 
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shear stress.  The area of the bifurcation affected by high shear stress increased when the 

LA ratio increased and when the bifurcation angle decreased.   

 Next, the wall shear stress was plotted versus the distance from the bifurcation 

point.  A 2D plot of wall shear stress was taken from the edge created by the plane of 

symmetry intersecting the top of the MCA bifurcation.  Wall shear stress was calculate 

using the viscosity and shear rate at the boundary of the model.  The data was moved into 

excel and the center of the bifurcation was set as the origin.  The 60° base angle was 

compared to the control model.  The remaining models were compared within their 

respective base angle.  The wall shear stress to distance from bifurcation can be seen in 

Figure 23, Figure 24, and Figure 25. 

 

 

Figure 23: Shear stress versus Distance from bifurcation for 120° base angle. 
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Figure 24: Shear stress versus Distance from bifurcation for 90° base angle. 

 

 

 

Figure 25: Shear stress versus Distance from bifurcation for 60° base angle. 
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  Normal MCA bifurcations have two peaks of wall shear stress.  The first peak 

appears right after the bifurcation and then a second, smaller, peak occurs further down 

the vessel.  The second peak moves further away from the point of bifurcation as the 

bifurcation angle decreases, either from LA ratios or smaller base angle.  The distance 

shifted by the second shear stress peak seemed equal when comparing angle decreases 

caused by LA ratios or the base angle.  Little change is observed on the base angle side of 

the bifurcation when the LA ratio changes. 

 Finally, shear stress was plotted over an entire cardiac cycle for all models.  A 

probe point was placed at the point of max shear stress and the shear stress was calculated 

using the boundary viscosity and shear rate.  Again, the second cardiac cycle was used to 

avoid initial flow anomalies when loading conditions are first applied.  All models were 

plotted against each other to create Figure 26. 
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Figure 26: Probed max shear stress of all models over one cardiac cycle 

 Changing the LA ratios for the 120° base models caused no noticeable changes 

over the cardiac cycle.  The 90°-90° model had similar shear stress as the 120° angle 

models, but increasing the LA ratio caused a notable decrease in peak shear stress during 

systole.  A slight drop in diastole occurred also, but the overall waveform was similar to 

the 120° models.  The 60° base models had matching waveforms with low shear stress in 

systole and diastole.  The waveforms between all probed models look the same, just 

difference magnitudes in the peak and the start/end point. 
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CHAPTER 5: DISCUSSION 

   Overall, the flow rate and profile changed little with changes to the bifurcation 

angle.  It was expected that the outlet flow rate would be affected by the angle of 

bifurcation.  Fluids prefer the path of least resistance so the more linear path, the lower 

the resistance.  This led to a slight difference in flow rate between the daughter arteries 

with the smaller bifurcation angle having a lower flow rate.  Additionally, decreases in 

the base bifurcation angles caused the overall flow rate in and out of the model to drop.  

This is probably due to the added resistance to flow caused by the geometries caused by 

head loss, fluid energy lost due to friction, as the fluid changes direction.  Greater 

vortices were observed with larger LA ratio, but aneurysms tend to not form on the inside 

of curves.  These vortices though leave less room for fluid to flow into the daughter 

artery and helps increase flow rate around the top portion of the bifurcation causing 

higher wall shear stress across more area. 

 The base angle and LA ratios had a much greater impact on shear stress compared 

to the fluid flow profiles.  Decreasing the base angle caused greater bending leading to 

additional head loss which was converted into shear stress.  Changing the LA ratio had 

the same, but smaller effect on shear stress.  Surprisingly, the change in shear stress with 

changes to the LA ratio is dependent on the base angle with the 90 degree models being 

more affected by the LA ratio increase.  This could mean that there is an angle that 

maximizes the drop in shear stress as the LA ratio increases.  It appears 90 degrees could 

be one of these angles which could explain why it is the average angle for bifurcations 

with aneurysms. 
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 Based on these simulations, it appears aneurysm formation could be linked to 

both hypothesizes explaining aneurysm genesis.  The flow mediated hypothesis is 

supported by the decrease in max shear stress at areas of high shear stress as the 

bifurcation angles decrease and LA ratios increase.  The minimum shear stress decreases 

slightly also.  These decreases could alter the range of oscillatory shear stress which 

could stimulant vessel wall remodeling.  The fatigue hypothesis is also supported with the 

expansion of the area affected by high wall shear stress.  Healthy vessel walls usually 

experience shear around 1-7 Pa so the increased area in high shear stress, 16 Pa or 

greater, could easily put stress on parts of the vessel that normally don't experience high 

shear stress.  This is further supported by the simulations showing an increase in areas of 

high shear stress around the MCA bifurcation for geometries that are linked to aneurysm 

formation.  Previous studies also support high wall shear stress as a key factor in 

stimulating aneurysm genesis.  Since aneurysms form at the point of bifurcation, it is 

likely that the fatigue hypothesis is correct when dealing with aneurysm growth at the 

MCA bifurcation. 

 The biggest limitation of the bifurcation models are the ideal geometries.  Ideally, 

digital scans of the main MCA bifurcation would be used from volunteers to get accurate 

geometries, which would affect the fluid flow and ultimately the mechanical stress on the 

vessel wall.  Modeling the internal carotid artery upstream from the MCA would also get 

a more accurate inlet flow profile.  The inlet flow was perfectly linear, which is not the 

case seen the PIV experiment from the cadavers which included the ICA.  This could 

alter the outlet flow rate of the daughter arteries and lead to different flow profiles.  

Another limitation was the SolidWorks models were perfectly smooth tubes with perfect 
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curvatures when the artery bifurcated.  It is known that human vessels remodel constantly 

and blemishes appear during maintenance [15].  These flaws can cause micro vortices 

that could play a role in stimulating aneurysm growth.  Another limitation is the mesh 

size and computation time.  Increasing the number of degrees of freedom will always 

yield more accurate results.   
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CHAPTER 6: CONCLUSION 

 LA ratios do effect shear stress and fluid flow through the main MCA bifurcation, 

but only when the MCA bifurcates at angles smaller than homeostasis ranges.  Healthy 

bifurcations with at least one daughter artery bifurcating at 120 degrees show little to no 

changes in fluid flow or wall shear stress regardless of the angle of the other daughter 

artery.  When the base angle was 90 degrees or less, LA ratios started to cause noticeable 

drops in the max shear stress over the cardiac cycle, as well as noticeable increases in the 

area of high shear stress at the bifurcation.   

 Computer models allow for quick implementation of new features and geometries 

for future studies.  The current models could be used to determine the base angle for 

which LA ratios start to have noteworthy impact on the magnitude of shear stress and 

shear area.  Additionally, changes to the daughter artery ratios to create asymmetrical 

artery diameters could be explored in their role in mediating fluid flow and shear stress at 

the MCA bifurcation.  Ideally, MRI scans could be obtained and imported into COMSOL 

to observe if similar changes in shear stress and fluid flow occur for non-idealized 

geometries.  Finally, aneurysms could be added to the model to explore how geometries 

affect shear stress and fluid flow in and around aneurysms to better understand why 

aneurysms grow and rupture. 

 In conclusion, the models created indicated that geometries related to aneurysms 

in the MCA cause wall shear stress to decrease and spread out more through the 

bifurcation.  These changes in mechanical stimuli support both leading hypothesizes for 

aneurysm genesis.  Being able to predict conditions that could cause aneurysms can save 

thousands of lives through pretreatment and altering life styles to limit risk factors.  
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Additional information about aneurysms is required to fully understand aneurysm 

etiology.  
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APPENDIX A: GEOMETRIES FOR SOLIDWORKS MODELS 

 

Figure 27: Dimensions of 120 degree base angle model with LA ratio 1.6 (120°-75°). 

 

 

Figure 28: Dimensions of 120 degree base angle model with LA ratio 2.2 (120°-54.54°). 
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Figure 29: Dimensions of 90 degree base angle model with LA ratio 1 (90°-90°) 

 

 

Figure 30: Dimensions of 90 degree base angle model with LA ratio 1.6 (90°-56.25°) 
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Figure 31: Dimensions of 90 degree base angle model with LA ratio 2.2 (90°-40.91°) 

 

 

Figure 32: Dimensions of 60 degree base angle model with LA ratio 1.6 (60°-37.5°) 
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Figure 33: Dimensions of 60 degree base angle model with LA ratio 2.2 (60°-27.27°) 
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APPENDIX B: FLOW PROFILE AND SHEAR STRESS PLOTS 

 

Figure 34: (top)Velocity plot of 120 degree base angle model with LA ratio 1.0.  

(bottom)Shear stress plot of 120 degree base angle model with LA ratio 1.0. 
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Figure 35: (top)Velocity plot of 120 degree base angle model with LA ratio 1.6.  

(bottom)Shear stress plot of 120 degree base angle model with LA ratio 1.6. 
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Figure 36: (top)Velocity plot of 120 degree base angle model with LA ratio 2.2.  

(bottom)Shear stress plot of 120 degree base angle model with LA ratio 2.2. 
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Figure 37: (top)Velocity plot of 90 degree base angle model with LA ratio 1.0.  

(bottom)Shear stress plot of 90 degree base angle model with LA ratio 1.0. 
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Figure 38: (top)Velocity plot of 90 degree base angle model with LA ratio 1.6.  

(bottom)Shear stress plot of 90 degree base angle model with LA ratio 1.6. 
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Figure 39: (top)Velocity plot of 90 degree base angle model with LA ratio 2.2.  

(bottom)Shear stress plot of 90 degree base angle model with LA ratio 2.2. 
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Figure 40: (top)Velocity plot of 60 degree base angle model with LA ratio 1.6.  

(bottom)Shear stress plot of 60 degree base angle model with LA ratio 1.6. 
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Figure 41: (top)Velocity plot of 60 degree base angle model with LA ratio 2.2.  

(bottom)Shear stress plot of 60 degree base angle model with LA ratio 2.2. 
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APPENDIX C: MATLAB CODE FOR WINDKESSEL MODEL 

Windkessel.m file code: 

 

%Garry Howe 

%Modified by Zachary Jones to simulate the Middle Cerebral Artery 

 

clear 

BPM=75; %Heart rate in BPM 

T=60/BPM; %sec per beat 

h=2/5*T; %time heart values are open 

timesteps=100; 

t=0:T/timesteps:T; %time parameter 

M=90; %Output per cycle cm^3 

length_of_t=length(t); 

 

model_type=3; %# of elements 

system_type=1; %Region of body 

 

switch model_type 

    case 2 

        switch system_type 

            case 1 

                 %FOR SYSTEMIC 2 ELE 

                R=5.4; %systemic peripheral resistance in (mmHg/cm^3/sec) 

                C=1.3; %systemic arterial compliance in (cm^3/mmHg)  

                p0=72.3; %torr 

                R0=0; 

                L=0; 

            case 2 

                 %FOR Pulmonary 2 ELE 

                R=.9000; %systemic peripheral resistance in (mmHg/cm^3/sec) 

                C=1.0666; %systemic arterial compliance in (cm^3/mmHg)  

                p0=70; %torr 

                R0=0; 

                L=0; 

        end 

    case 3 

        switch system_type 

            case 1         

                 %FOR SYSTEMIC 3 ELE 

                R=5.54; 

                R0=10.5; 

                C=0.262; 

                p0=65; %torr 

                L=0; 



83 
 

        end         

    case 4 

        switch system_type 

            case 1         

                 %FOR SYSTEMIC 4 ELE 

                R=1; 

                R0=.05; 

                C=.9; 

                p0=70; %torr 

                L=0.004; 

        end              

end 

 

Q = 1466.8*t.^6 - 3832*t.^5+3729.2*t.^4-1605.2*t.^3+251.61*t.^2+5.5689*t+2.2; 

Q0 = 3.5; 

dQ = 5.5689+503.22*t-4815.6*t.^2+14916.8*t.^3-19160*t.^4+8800.8*t.^5; 

 

%Q=sin(pi*rem(t,T)/h).*(t<h); 

%Q0=-M/trapz(Q,t); 

%dQ=pi/h*Q0*cos(pi*rem(t,T)/h).*(t<=h); 

 

time=t; 

save QAMP T h R C Q0 R0 L; 

figure(1) 

plot(t,Q); 

title('Systemic Flow Rate Over One Cardiac Cycle') 

xlabel('t [sec]') 

ylabel('Total Output Q(t) [mL/s]') 

 

 

 %solve the DE 

[~,y]=ode45('WINDKESSEL_DE',[0,h],p0); 

 

 %Find the pressure at the end of systole/beginning of 

 diastole: 

endsysP=y(max(find(y~=0))); 

%endsysP=75; 

 

 %Add the exponetial decay for diastole: 

y(length_of_t)=0; 

t=0:T/timesteps:T; 

y=y'+(t>h).*endsysP.*exp(-(t-h)/(R*C)); 

 

 %Plot the resultant pressure 

figure(2) 

plot(t,y) 
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title(['Blood Pressure Over One Cardiac Cycle Predicted by a 

',num2str(model_type),' Element Windkessel Model']) 

xlabel('t [sec]') 

ylabel('Pressure [mmHg]') 

 

 

Windkessel_DE.m file code: 

 

function dydt = WINDKESSEL_DE(t,y) 

 

load QAMP; 

 

Q = 1466.8*t.^6 - 3832*t.^5+3729.2*t.^4-1605.2*t.^3+251.61*t.^2+5.5689*t+2.2; 

 

dQ = 5.5689+503.22*t-4815.6*t.^2+14916.8*t.^3-19160*t.^4+8800.8*t.^5; 

d2Q = 503.22-9631.2*t+44750.4*t.^2-76640*t.^3+44004*t.^4; 

 

dydt = 1/C*((1+R0/R)*Q+(C*R0+L/R)*dQ+L*C*d2Q-1/R*y); % Evalute ODE at 

time t 

 

end 
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APPENDIX D: COMSOL PIV INSTRUCTIONS 

OVERVIEW: This guide will explain how to set up a PIV study for fluid flow modules 

in COMSOL Multiphysics®.  The fluid flow module's study has to be run 

at least once and can be either a stationary or time dependent study.  This 

guide will be using a stationary study using a laminar flow module. 

 

MODELING INSTRUCTIONS: 

CREATING THE PHYSICS AND STUDY 

1. On the Home toolbar, click on the Add Physics button. 

2. In the Add Physics window, navigate and click on Fluid Flow > Particle Tracing 

for Fluid Flow (ftp).  

3. In the Physics in study subsection, find the table below and uncheck Study 1. 

Study Solve 

Study 1 x 

4. In the Add physics window, click Add to Component. 

5. On the Home toolbar, click on the Add Study button. 

6. In the Add Study window, select Preset Studies>Time Dependent. 

7. In the Physics in study subsection, uncheck laminar flow (spf). 

Physics Solve 

Laminar Flow (spf) x 

8. In the Add Study window, click Add Study. 

These step creates a new particle tracing for fluid flow (FTP) that uses a new time 

dependent study.  This is done so that the FTP study is independent from the study used 

to simulate the fluid flow allowing changes to one without affecting the other. 

 

SETTINGS FOR PARTICLE TRACING FOR FLUID FLOW 

9. In the model builder tree, right click on Particle tracing for fluid flow (ftp)  and 

click on Drag Force. 

10. Select the domain being simulate. 
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11. In the Drag force setting windows under the Drag Force section, find the u and from 

the list, choose Velocity field (spf/fp 1). 

12. In the same section, find μ and from the list, choose Dynamic Viscosity (spf/fp 1). 

This adds a drag force to each particle that uses the pre simulated velocity and viscosity 

to determine the force applied to each particle. 

 

13. In the Model builder tree, right click on Particle tracing for fluid flow (ftp)  and 

click on Inlet. 

14. Select the Boundaries you wish to act as an inlet for the particles 

15. In the Inlet settings window, find the Initial Position section. 

16. From the Initial Position list, choose Density. 

17. Set the N field to the number of particles to be released 

18. Set the ρ field to 1 (1 indicates a uniform distribution). 

19. Find the Initial Velocity section and from the u list, pick Velocity field (spf/fp 1).   

Multiple boundaries can be selected as inlets and the same boundary can have multiple 

different inlets.  ρ can be equations or expressions leading to distributions based on 
model geometries or flow velocities. 
 

 

20. In the Model builder tree, right click on Particle tracing for fluid flow (ftp)  and 

click on Outlet. 

21. Select the desired outlets. 

22. In the Outlet settings window, set Wall condition to Disappear. 

 

 

23. In the Model builder tree, navigate to Particle Tracing for Fluid Flow > Particle 

Properties 1. 

24. In the Particle Properties settings, find ρp field and set the density for the particles. 

25. In the Particle Properties settings, find dp field and set the diameter for the particles. 

26. Leave Charge Number at 0. 
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27. In the Model builder tree, navigate to the study you created in the beginning and 

click on Step 1: Time Dependent. 

28. In the Time Dependent settings window, find the Values of dependent variable 

section. 

29. Select the Values of variables not solved for check box. 

30. From the Method list, choose Solution. 

31. From the Study list, choose Study 1, Stationary (or the study used to solve the fluid 

flow). 

The last 3 steps cause missing variables for the particle tracing for fluid flow to be taken 

from study that solved for the fluid flow.  This step is important or else the particles will 

not move. 

 

 

32. Find the Study Setting section and locate the Range button. 

33. In the Range dialog box, set the Step to a desired time step  

34. In the Stop field, type in the length of the particle simulation. 

35. Click Replace 

36. on the Home toolbar, click Compute. 
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APPENDIX E: LIVELINK
tm

 AND SOLIDWORKS® 

SETTING UP LIVELINK: 

Setting up a Livelink
tm

 to SolidWorks® is very quick.  The two requirements is to have 

both SolidWorks with the file to be livelinked and the COMSOL model that is to receive 

the Livelink open at the same time.  If both are not open, the Livelink will fail when 

synchronized.   

 

1. Open COMSOL Multiphysics® 

2. Open or create a new 3D model 

3. Open or create the SolidWorks® that is to be Livelinked  

4. In the Model Builder, right click geometries and click on Livelink for SolidWorks. 

5. In the Livelink for SolidWorks setting window, find the Import Options. 

6. Change the Length unit option to From CAD document. 

7. Click Synchronize. 

Note: Any changes made to the model in SolidWorks requires the Livelink to be 

resynchronized by pressing the Synchronize button. 

 

 

Additionally, Livelink can pass variables between COMSOL and SolidWorks.  This can 

be used to set up parametric sweeps inside COMSOL using models from SolidWorks. 

 

1. In the Livelink for SolidWorks setting window, find the Parameters in CAD 

Packages.  A table below should appear in the settings window. 

Name Value 

  

 

2. In SolidWorks, find the name of the dimension you wish to Livelink to COMSOL. 

3. Put the name of the dimension into the table above. 

4. Set the value to a number, variable, or predefined parameter. 

5. Any changes made in COMSOL to the value of the Livelinked variable will change 

the SolidWorks model when Synchronize or when a study is computed.  If a 

parametric sweep is performed, the SolidWorks model will update with each step of 

the sweep.   


