70,795 research outputs found

    Practical Reasoning in DatalogMTL

    Full text link
    DatalogMTL is an extension of Datalog with metric temporal operators that has found an increasing number of applications in recent years. Reasoning in DatalogMTL is, however, of high computational complexity, which makes reasoning in modern data-intensive applications challenging. In this paper we present a practical reasoning algorithm for the full DatalogMTL language, which we have implemented in a system called MeTeoR. Our approach effectively combines an optimised (but generally non-terminating) materialisation (a.k.a. forward chaining) procedure, which provides scalable behaviour, with an automata-based component that guarantees termination and completeness. To ensure favourable scalability of the materialisation component, we propose a novel semina\"ive materialisation procedure for DatalogMTL enjoying the non-repetition property, which ensures that each specific rule application will be considered at most once throughout the entire execution of the algorithm. Moreover, our materialisation procedure is enhanced with additional optimisations which further reduce the number of redundant computations performed during materialisation by disregarding rules as soon as it is certain that they cannot derive new facts in subsequent materialisation steps. Our extensive evaluation supports the practicality of our approach.Comment: Under consideration in Theory and Practice of Logic Programming (TPLP). arXiv admin note: text overlap with arXiv:2208.0710

    PDDL2.1: An extension of PDDL for expressing temporal planning domains

    Get PDF
    In recent years research in the planning community has moved increasingly towards application of planners to realistic problems involving both time and many types of resources. For example, interest in planning demonstrated by the space research community has inspired work in observation scheduling, planetary rover ex ploration and spacecraft control domains. Other temporal and resource-intensive domains including logistics planning, plant control and manufacturing have also helped to focus the community on the modelling and reasoning issues that must be confronted to make planning technology meet the challenges of application. The International Planning Competitions have acted as an important motivating force behind the progress that has been made in planning since 1998. The third competition (held in 2002) set the planning community the challenge of handling time and numeric resources. This necessitated the development of a modelling language capable of expressing temporal and numeric properties of planning domains. In this paper we describe the language, PDDL2.1, that was used in the competition. We describe the syntax of the language, its formal semantics and the validation of concurrent plans. We observe that PDDL2.1 has considerable modelling power --- exceeding the capabilities of current planning technology --- and presents a number of important challenges to the research community

    Temporal Data Modeling and Reasoning for Information Systems

    Get PDF
    Temporal knowledge representation and reasoning is a major research field in Artificial Intelligence, in Database Systems, and in Web and Semantic Web research. The ability to model and process time and calendar data is essential for many applications like appointment scheduling, planning, Web services, temporal and active database systems, adaptive Web applications, and mobile computing applications. This article aims at three complementary goals. First, to provide with a general background in temporal data modeling and reasoning approaches. Second, to serve as an orientation guide for further specific reading. Third, to point to new application fields and research perspectives on temporal knowledge representation and reasoning in the Web and Semantic Web

    Multiple relaxations in temporal planning

    Get PDF
    CRIKEY is a planner that separates out the scheduling from the classical parts of temporal planning. This can be seen as a relaxation of the temporal information during the classical planning phase. Relaxations in planning are used to guide the search. However, the quality of the relaxation greatly affects the performance of the planner, and in some cases can lead the search into a dead end. This can happen whilst separating out the planning and scheduling problems, leading to the production of an unschedulable plan. CRIKEY can detect these cases and change the relaxation accordingly

    On Relaxing Metric Information in Linear Temporal Logic

    Full text link
    Metric LTL formulas rely on the next operator to encode time distances, whereas qualitative LTL formulas use only the until operator. This paper shows how to transform any metric LTL formula M into a qualitative formula Q, such that Q is satisfiable if and only if M is satisfiable over words with variability bounded with respect to the largest distances used in M (i.e., occurrences of next), but the size of Q is independent of such distances. Besides the theoretical interest, this result can help simplify the verification of systems with time-granularity heterogeneity, where large distances are required to express the coarse-grain dynamics in terms of fine-grain time units.Comment: Minor change

    Real-time and Probabilistic Temporal Logics: An Overview

    Full text link
    Over the last two decades, there has been an extensive study on logical formalisms for specifying and verifying real-time systems. Temporal logics have been an important research subject within this direction. Although numerous logics have been introduced for the formal specification of real-time and complex systems, an up to date comprehensive analysis of these logics does not exist in the literature. In this paper we analyse real-time and probabilistic temporal logics which have been widely used in this field. We extrapolate the notions of decidability, axiomatizability, expressiveness, model checking, etc. for each logic analysed. We also provide a comparison of features of the temporal logics discussed

    Approximate reasoning for real-time probabilistic processes

    Full text link
    We develop a pseudo-metric analogue of bisimulation for generalized semi-Markov processes. The kernel of this pseudo-metric corresponds to bisimulation; thus we have extended bisimulation for continuous-time probabilistic processes to a much broader class of distributions than exponential distributions. This pseudo-metric gives a useful handle on approximate reasoning in the presence of numerical information -- such as probabilities and time -- in the model. We give a fixed point characterization of the pseudo-metric. This makes available coinductive reasoning principles for reasoning about distances. We demonstrate that our approach is insensitive to potentially ad hoc articulations of distance by showing that it is intrinsic to an underlying uniformity. We provide a logical characterization of this uniformity using a real-valued modal logic. We show that several quantitative properties of interest are continuous with respect to the pseudo-metric. Thus, if two processes are metrically close, then observable quantitative properties of interest are indeed close.Comment: Preliminary version appeared in QEST 0
    corecore