678 research outputs found

    Efficient non-malleable codes and key derivation for poly-size tampering circuits

    Get PDF
    Non-malleable codes, defined by Dziembowski, Pietrzak, and Wichs (ICS '10), provide roughly the following guarantee: if a codeword c encoding some message x is tampered to c' = f(c) such that c' ≠ c , then the tampered message x' contained in c' reveals no information about x. The non-malleable codes have applications to immunizing cryptosystems against tampering attacks and related-key attacks. One cannot have an efficient non-malleable code that protects against all efficient tampering functions f. However, in this paper we show 'the next best thing': for any polynomial bound s given a-priori, there is an efficient non-malleable code that protects against all tampering functions f computable by a circuit of size s. More generally, for any family of tampering functions F of size F ≀ 2s , there is an efficient non-malleable code that protects against all f in F . The rate of our codes, defined as the ratio of message to codeword size, approaches 1. Our results are information-theoretic and our main proof technique relies on a careful probabilistic method argument using limited independence. As a result, we get an efficiently samplable family of efficient codes, such that a random member of the family is non-malleable with overwhelming probability. Alternatively, we can view the result as providing an efficient non-malleable code in the 'common reference string' model. We also introduce a new notion of non-malleable key derivation, which uses randomness x to derive a secret key y = h(x) in such a way that, even if x is tampered to a different value x' = f(x) , the derived key y' = h(x') does not reveal any information about y. Our results for non-malleable key derivation are analogous to those for non-malleable codes. As a useful tool in our analysis, we rely on the notion of 'leakage-resilient storage' of DavĂŹ, Dziembowski, and Venturi (SCN '10), and, as a result of independent interest, we also significantly improve on the parameters of such schemes

    Limits to Non-Malleability

    Get PDF
    There have been many successes in constructing explicit non-malleable codes for various classes of tampering functions in recent years, and strong existential results are also known. In this work we ask the following question: When can we rule out the existence of a non-malleable code for a tampering class ?? First, we start with some classes where positive results are well-known, and show that when these classes are extended in a natural way, non-malleable codes are no longer possible. Specifically, we show that no non-malleable codes exist for any of the following tampering classes: - Functions that change d/2 symbols, where d is the distance of the code; - Functions where each input symbol affects only a single output symbol; - Functions where each of the n output bits is a function of n-log n input bits. Furthermore, we rule out constructions of non-malleable codes for certain classes ? via reductions to the assumption that a distributional problem is hard for ?, that make black-box use of the tampering functions in the proof. In particular, this yields concrete obstacles for the construction of efficient codes for NC, even assuming average-case variants of P ? NC

    Non-malleable secret sharing against joint tampering attacks

    Get PDF
    Since thousands of years ago, the goal of cryptography has been to hide messages from prying eyes. In recent times, cryptography two important changes: first, cryptography itself evolved from just being about encryption to a broader class of situations coming from the digital era; second, the way of studying cryptography evolved from creating ``seemingly hard'' cryptographic schemes to constructing schemes which are provably secure. However, once the mathematical abstraction of cryptographic primitives started to be too hard to break, attackers found another way to defeat security. Side channel attacks have been proved to be very effective in this task, breaking the security of otherwise provably secure schemes. Because of this, recent trends in cryptography aim to capture this situation and construct schemes that are secure even against such powerful attacks. In this setting, this thesis specializes in the study of secret sharing, an important cryptographic primitive that allows to balance privacy and integrity of data and also has applications to multi-party protocols. Namely, continuing the trend which aims to protect against side channel attacks, this thesis brings some contributions to the state of the art of the so-called leakage-resilient and non-malleable secret sharing schemes, which have stronger guarantees against attackers that are able to learn information from possibly all the shares and even tamper with the shares and see the effects of the tampering. The main contributions of this thesis are twofold. First, we construct secret sharing schemes that are secure against a very powerful class of attacks which, informally, allows the attacker to jointly leak some information and tamper with the shares in a continuous fashion. Second, we study the capacity of continuously non-malleable secret sharing schemes, that is, the maximum achievable information rate. Roughly speaking, we find some lower bounds to the size that the shares must have in order to achieve some forms of non-malleability

    Concurrent Non-Malleable Commitments (and More) in 3 Rounds

    Get PDF
    The round complexity of commitment schemes secure against man-in-the-middle attacks has been the focus of extensive research for about 25 years. The recent breakthrough of Goyal et al. [22] showed that 3 rounds are sufficient for (one-left, one-right) non-malleable commitments. This result matches a lower bound of [41]. The state of affairs leaves still open the intriguing problem of constructing 3-round concurrent non-malleable commitment schemes. In this paper we solve the above open problem by showing how to transform any 3-round (one-left one-right) non-malleable commitment scheme (with some extractability property) in a 3-round concurrent nonmalleable commitment scheme. Our transform makes use of complexity leveraging and when instantiated with the construction of [22] gives a 3-round concurrent non-malleable commitment scheme from one-way permutations secure w.r.t. subexponential-time adversaries. We also show a 3-round arguments of knowledge and a 3-round identification scheme secure against concurrent man-in-the-middle attacks

    Quantum secure non-malleable randomness encoder and its applications

    Full text link
    "Non-Malleable Randomness Encoder"(NMRE) was introduced by Kanukurthi, Obbattu, and Sekar~[KOS18] as a useful cryptographic primitive helpful in the construction of non-malleable codes. To the best of our knowledge, their construction is not known to be quantum secure. We provide a construction of a first rate-1/21/2, 22-split, quantum secure NMRE and use this in a black-box manner, to construct for the first time the following: 1) rate 1/111/11, 33-split, quantum non-malleable code, 2) rate 1/31/3, 33-split, quantum secure non-malleable code, 3) rate 1/51/5, 22-split, average case quantum secure non-malleable code.Comment: arXiv admin note: text overlap with arXiv:2308.0646

    Non-malleable encryption: simpler, shorter, stronger

    Get PDF
    In a seminal paper, Dolev et al. [15] introduced the notion of non-malleable encryption (NM-CPA). This notion is very intriguing since it suffices for many applications of chosen-ciphertext secure encryption (IND-CCA), and, yet, can be generically built from semantically secure (IND-CPA) encryption, as was shown in the seminal works by Pass et al. [29] and by Choi et al. [9], the latter of which provided a black-box construction. In this paper we investigate three questions related to NM-CPA security: 1. Can the rate of the construction by Choi et al. of NM-CPA from IND-CPA be improved? 2. Is it possible to achieve multi-bit NM-CPA security more efficiently from a single-bit NM-CPA scheme than from IND-CPA? 3. Is there a notion stronger than NM-CPA that has natural applications and can be achieved from IND-CPA security? We answer all three questions in the positive. First, we improve the rate in the scheme of Choi et al. by a factor O(λ), where λ is the security parameter. Still, encrypting a message of size O(λ) would require ciphertext and keys of size O(λ2) times that of the IND-CPA scheme, even in our improved scheme. Therefore, we show a more efficient domain extension technique for building a λ-bit NM-CPA scheme from a single-bit NM-CPA scheme with keys and ciphertext of size O(λ) times that of the NM-CPA one-bit scheme. To achieve our goal, we define and construct a novel type of continuous non-malleable code (NMC), called secret-state NMC, as we show that standard continuous NMCs are not enough for the natural “encode-then-encrypt-bit-by-bit” approach to work. Finally, we introduce a new security notion for public-key encryption that we dub non-malleability under (chosen-ciphertext) self-destruct attacks (NM-SDA). After showing that NM-SDA is a strict strengthening of NM-CPA and allows for more applications, we nevertheless show that both of our results—(faster) construction from IND-CPA and domain extension from one-bit scheme—also hold for our stronger NM-SDA security. In particular, the notions of IND-CPA, NM-CPA, and NM-SDA security are all equivalent, lying (plausibly, strictly?) below IND-CCA securit

    Concurrently Non-Malleable Zero Knowledge in the Authenticated Public-Key Model

    Full text link
    We consider a type of zero-knowledge protocols that are of interest for their practical applications within networks like the Internet: efficient zero-knowledge arguments of knowledge that remain secure against concurrent man-in-the-middle attacks. In an effort to reduce the setup assumptions required for efficient zero-knowledge arguments of knowledge that remain secure against concurrent man-in-the-middle attacks, we consider a model, which we call the Authenticated Public-Key (APK) model. The APK model seems to significantly reduce the setup assumptions made by the CRS model (as no trusted party or honest execution of a centralized algorithm are required), and can be seen as a slightly stronger variation of the Bare Public-Key (BPK) model from \cite{CGGM,MR}, and a weaker variation of the registered public-key model used in \cite{BCNP}. We then define and study man-in-the-middle attacks in the APK model. Our main result is a constant-round concurrent non-malleable zero-knowledge argument of knowledge for any polynomial-time relation (associated to a language in NP\mathcal{NP}), under the (minimal) assumption of the existence of a one-way function family. Furthermore,We show time-efficient instantiations of our protocol based on known number-theoretic assumptions. We also note a negative result with respect to further reducing the setup assumptions of our protocol to those in the (unauthenticated) BPK model, by showing that concurrently non-malleable zero-knowledge arguments of knowledge in the BPK model are only possible for trivial languages
    • 

    corecore