130 research outputs found

    Clean-in-place monitoring of different food fouling materials using ultrasonic measurements

    Get PDF
    Clean-in-Place is an autonomous technique used to clean the internal surfaces of processing equipment in thefood and drink sector. However, these systems clean for a longer time than required with negative economic andenvironmental impacts. In this work, an ultrasonic sensor system was developed to monitor the cleaning ofdifferent food fouling materials at laboratory scale. The fouling removal of three different food materials wasalso studied at different cleaning fluid temperatures. The three food materials had different cleaning mechanisms,which could be monitored successfully with the ultrasonic system. Tomato paste and gravy appeared to becleaned by mechanical forces whereas malt extract dissolved into the cleaning water. The results yielded fromthe cleaning of the malt was found to be repeatable whereas the tomato and gravy were more variable betweenrepeat experiments. It was found that changes in recorded ultrasonic signals were mainly affected by the area offouling that covered the transducer's active element

    Impact of fouling on flow-induced vibration characteristics in fluid-conveying pipelines

    Get PDF
    This paper addresses monitoring problems commonly encountered in petrochemical enterprises caused by fouling and clogging in the circulating water heat exchangers by monitoring the heat exchanger’s wall vibration signal for early failure detection. Due to the difficulties encountered in simulation caused by the large number of tubes inside the heat exchanger, such methods were discussed by studying in the fluid-conveying pipeline fouling. ANSYS was used to establish the normal model and fouling model of a fluid-conveying pipeline so as to analyze the changing rule of various parameters that are influenced by different inlet velocities. As the inlet velocity and fouling severity continuously increased, the wall load and the vibration acceleration increased as well, leading variations in wall vibration signals. This paper conduct extensive experiments by using straight pipes to compare the results from simulation and from normal fluid-conveying pipelines, under the same working conditions. By such comparison, we estimate the accuracy of the simulation model

    Pattern Recognition Approach Of Stress Wave Propagation In Carbon Steel Tubes For Defect Detection

    Get PDF
    The conventional stress wave signal interpretation in heat exchanger tube inspection is human dependent. The difficulties associated with accurate defect interpretations are skills and experiences of the inspector. Hence, in present study,alternative pattern recognition approach was proposed to interpret the presence of defect in carbon steel heat exchanger tubes SA179. Several high frequency stress wave signals propagated in the tubes due to impact are captured using Acoustic Emission method. In particular, one reference tube and two defective tubes were adopted. The signals were then clustered using the feature extraction algorithms. This paper tested two feature extraction algorithms namely Principal Component Analysis (PCA) and Auto-Regressive (AR). The pattern recognition results showed that the AR algorithm is more effective in defect identification. Good comparisons with the commonly global statistical analysis demonstrate the effective application of the present approach for defect detection

    On-line monitoring of deposits formation and removal on solid surfaces using vibration techniques

    Get PDF
    Tese de doutoramento. Engenharia QuĂ­mica e BiolĂłgica. Faculdade de Engenharia. Universidade do Porto. 200

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    Non-destructive evaluation of railway trackbed ballast

    Get PDF
    The “green agenda” combined with highway congestion has accelerated the demand for increased freight and passenger travel on the world’s railways. These increases have driven demand for more efficient and rapid investigation of trackbed ballast. Network Rail and other rail infrastructure operators spend significant financial sums on inspecting, tamping, adjusting, cleaning, and replacing trackbed ballast. Such maintenance is often to the detriment of normal network operation. Industry requires a method of ballast evaluation that is non-intrusive, cheap, can appraise long stretches of track in a short period of time, and give a fingerprinting result from which time-to-maintenance can be calculated and planned. Thus, the aim was to develop evaluation methods using non-destructive testing techniques. A 10-year old full-scale trackbed composed of variously fouled ballast was re-visited and used for experimentation. The condition of the ballast was calculated using the Ionescu Fouling Index. Earlier research at the University of Edinburgh enabled researchers worldwide to characterise ballast using ground penetrating radar (GPR). This research was repeated, validated and taken forward in a series of GPR experiments on the trackbed using a range of antennas from 500MHz to 2.6GHz. New "scatter" metrics were developed to determine ballast condition from the GPR waveforms. These metrics were then used to predict the Ionescu Fouling Index with a correlation coefficient greater than 0.9. One of the current approaches to evaluating the stiffness of railway ballast is to use a Falling Weight Deflectometer (FWD). The viability of using a Prima 100 mini-FWD on railways to measure stiffness was determined and deemed to be ineffective on ballast. The applicability of the impulse response technique on railways was determined. An instrumented hammer was used to excite the ballast, with a geophone measuring the response. The Frequency Response Function of this was successfully correlated with the Ionescu Fouling Index with a correlation coefficient also greater than 0.9. Finally, using GPR data and measured stiffness data collected by Banverket, Sweden, a numerical model to successfully relate radar responses to stiffness was developed
    • …
    corecore