80,530 research outputs found

    Non-Gaussian Component Analysis using Entropy Methods

    Full text link
    Non-Gaussian component analysis (NGCA) is a problem in multidimensional data analysis which, since its formulation in 2006, has attracted considerable attention in statistics and machine learning. In this problem, we have a random variable XX in nn-dimensional Euclidean space. There is an unknown subspace Γ\Gamma of the nn-dimensional Euclidean space such that the orthogonal projection of XX onto Γ\Gamma is standard multidimensional Gaussian and the orthogonal projection of XX onto Γ⊥\Gamma^{\perp}, the orthogonal complement of Γ\Gamma, is non-Gaussian, in the sense that all its one-dimensional marginals are different from the Gaussian in a certain metric defined in terms of moments. The NGCA problem is to approximate the non-Gaussian subspace Γ⊥\Gamma^{\perp} given samples of XX. Vectors in Γ⊥\Gamma^{\perp} correspond to `interesting' directions, whereas vectors in Γ\Gamma correspond to the directions where data is very noisy. The most interesting applications of the NGCA model is for the case when the magnitude of the noise is comparable to that of the true signal, a setting in which traditional noise reduction techniques such as PCA don't apply directly. NGCA is also related to dimension reduction and to other data analysis problems such as ICA. NGCA-like problems have been studied in statistics for a long time using techniques such as projection pursuit. We give an algorithm that takes polynomial time in the dimension nn and has an inverse polynomial dependence on the error parameter measuring the angle distance between the non-Gaussian subspace and the subspace output by the algorithm. Our algorithm is based on relative entropy as the contrast function and fits under the projection pursuit framework. The techniques we develop for analyzing our algorithm maybe of use for other related problems

    Polarimetric Incoherent Target Decomposition by Means of Independent Component Analysis

    No full text
    International audienceThis paper presents an alternative approach for polarimetric incoherent target decomposition dedicated to the analysis of very-high resolution POLSAR images. Given the non-Gaussian nature of the heterogeneous POLSAR clutter due to the increase of spatial resolution, the conventional methods based on the eigenvector target decomposition can ensure uncorrelation of the derived backscattering components at most. By introducing the Independent Component Analysis (ICA) in lieu of the eigenvector decomposition, our method is rather deriving statistically independent components. The adopted algorithm - FastICA, uses the non-Gaussianity of the components as the criterion for their independence. Considering the eigenvector decomposition as being analogues to the Principal Component Analysis (PCA), we propose the generalization of the ICTD methods to the level of the Blind Source Separation (BSS) techniques (comprising both PCA and ICA). The proposed method preserves the invariance properties of the conventional ones, appearing to be robust both with respect to the rotation around the line of sight and to the change of the polarization basis. The efficiency of the method is demonstrated comparatively, using POLSAR Ramses X-band and ALOS L-band data sets. The main differences with respect to the conventional methods are mostly found in the behaviour of the second most dominant component, which is not necessarily orthogonal to the first one. The potential of retrieving non-orthogonal mechanisms is moreover demonstrated using synthetic data. On expense of a negligible entropy increase, the proposed method is capable of retrieving the edge diffraction of an elementary trihedral by recognizing dipole as the second component

    Effect of component separation on the temperature distribution of the CMB

    Full text link
    We present a study of the effect of component separation on the recovered cosmic microwave background (CMB) temperature distribution, considering Gaussian and non-Gaussian input CMB maps. First, we extract the CMB component from simulated Planck data (in small patches of the sky) using the maximum entropy method (MEM), Wiener filter (WF) and a method based on the subtraction of foreground templates plus a linear combination of frequency channels (LCFC). We then apply a wavelet-based method to study the Gaussianity of the recovered CMB and compare it with the same analysis for the input map. When the original CMB map is Gaussian (and assuming that point sources have been removed), we find that none of the methods introduce non-Gaussianity (NG) in the CMB reconstruction. On the contrary, if the input CMB map is non-Gaussian, all the studied methods produce a reconstructed CMB with lower detections of NG than the original map. This effect is mainly due to the presence of instrumental noise. In this case, MEM tends to produce slightly higher non-Gaussian detections in the reconstructed map than WF whereas the detections are lower for the LCFC. We have also studied the effect of point sources in the MEM reconstruction. If no attempt to remove point sources is performed, they clearly contaminate the CMB reconstruction, introducing spurious NG. When the brightest point sources are removed from the data using the Mexican Hat Wavelet, the Gaussian character of the CMB is preserved. However, when analysing larger regions of the sky, the variance of our estimators will be appreciably reduced and, in this case, we expect the point source residuals to introduce spurious NG in the CMB. Thus, a careful subtraction (or masking) of point source emission is crucial when studying the Gaussianity of the CMB.Comment: 23 pages, 19 figures. Some new results added, including a new section about the role of foregrounds and instrumental noise. Accepted for publication in MNRA

    Non-linear Causal Inference using Gaussianity Measures

    Full text link
    We provide theoretical and empirical evidence for a type of asymmetry between causes and effects that is present when these are related via linear models contaminated with additive non-Gaussian noise. Assuming that the causes and the effects have the same distribution, we show that the distribution of the residuals of a linear fit in the anti-causal direction is closer to a Gaussian than the distribution of the residuals in the causal direction. This Gaussianization effect is characterized by reduction of the magnitude of the high-order cumulants and by an increment of the differential entropy of the residuals. The problem of non-linear causal inference is addressed by performing an embedding in an expanded feature space, in which the relation between causes and effects can be assumed to be linear. The effectiveness of a method to discriminate between causes and effects based on this type of asymmetry is illustrated in a variety of experiments using different measures of Gaussianity. The proposed method is shown to be competitive with state-of-the-art techniques for causal inference.Comment: 35 pages, 9 figure

    Sunyaev-Zel'dovich clusters reconstruction in multiband bolometer camera surveys

    Full text link
    We present a new method for the reconstruction of Sunyaev-Zel'dovich (SZ) galaxy clusters in future SZ-survey experiments using multiband bolometer cameras such as Olimpo, APEX, or Planck. Our goal is to optimise SZ-Cluster extraction from our observed noisy maps. We wish to emphasize that none of the algorithms used in the detection chain is tuned on prior knowledge on the SZ -Cluster signal, or other astrophysical sources (Optical Spectrum, Noise Covariance Matrix, or covariance of SZ Cluster wavelet coefficients). First, a blind separation of the different astrophysical components which contribute to the observations is conducted using an Independent Component Analysis (ICA) method. Then, a recent non linear filtering technique in the wavelet domain, based on multiscale entropy and the False Discovery Rate (FDR) method, is used to detect and reconstruct the galaxy clusters. Finally, we use the Source Extractor software to identify the detected clusters. The proposed method was applied on realistic simulations of observations. As for global detection efficiency, this new method is impressive as it provides comparable results to Pierpaoli et al. method being however a blind algorithm. Preprint with full resolution figures is available at the URL: w10-dapnia.saclay.cea.fr/Phocea/Vie_des_labos/Ast/ast_visu.php?id_ast=728Comment: Submitted to A&A. 32 Pages, text onl

    The Missing Link between Morphemic Assemblies and Behavioral Responses:a Bayesian Information-Theoretical model of lexical processing

    Get PDF
    We present the Bayesian Information-Theoretical (BIT) model of lexical processing: A mathematical model illustrating a novel approach to the modelling of language processes. The model shows how a neurophysiological theory of lexical processing relying on Hebbian association and neural assemblies can directly account for a variety of effects previously observed in behavioural experiments. We develop two information-theoretical measures of the distribution of usages of a morpheme or word, and use them to predict responses in three visual lexical decision datasets investigating inflectional morphology and polysemy. Our model offers a neurophysiological basis for the effects of morpho-semantic neighbourhoods. These results demonstrate how distributed patterns of activation naturally result in the arisal of symbolic structures. We conclude by arguing that the modelling framework exemplified here, is a powerful tool for integrating behavioural and neurophysiological results

    Wavelet Domain Image Separation

    Full text link
    In this paper, we consider the problem of blind signal and image separation using a sparse representation of the images in the wavelet domain. We consider the problem in a Bayesian estimation framework using the fact that the distribution of the wavelet coefficients of real world images can naturally be modeled by an exponential power probability density function. The Bayesian approach which has been used with success in blind source separation gives also the possibility of including any prior information we may have on the mixing matrix elements as well as on the hyperparameters (parameters of the prior laws of the noise and the sources). We consider two cases: first the case where the wavelet coefficients are assumed to be i.i.d. and second the case where we model the correlation between the coefficients of two adjacent scales by a first order Markov chain. This paper only reports on the first case, the second case results will be reported in a near future. The estimation computations are done via a Monte Carlo Markov Chain (MCMC) procedure. Some simulations show the performances of the proposed method. Keywords: Blind source separation, wavelets, Bayesian estimation, MCMC Hasting-Metropolis algorithm.Comment: Presented at MaxEnt2002, the 22nd International Workshop on Bayesian and Maximum Entropy methods (Aug. 3-9, 2002, Moscow, Idaho, USA). To appear in Proceedings of American Institute of Physic
    • …
    corecore