1,322 research outputs found

    Reservoir Heterogeneity: Should It Be Modelled as Conformance or Dispersion?

    Get PDF
    Imperial Users onl

    A hierarchy of models for simulating experimental results from a 3D heterogeneous porous medium

    Full text link
    In this work we examine the dispersion of conservative tracers (bromide and fluorescein) in an experimentally-constructed three-dimensional dual-porosity porous medium. The medium is highly heterogeneous (σY2=5.7\sigma_Y^2=5.7), and consists of spherical, low-hydraulic-conductivity inclusions embedded in a high-hydraulic-conductivity matrix. The bi-modal medium was saturated with tracers, and then flushed with tracer-free fluid while the effluent breakthrough curves were measured. The focus for this work is to examine a hierarchy of four models (in the absence of adjustable parameters) with decreasing complexity to assess their ability to accurately represent the measured breakthrough curves. The most information-rich model was (1) a direct numerical simulation of the system in which the geometry, boundary and initial conditions, and medium properties were fully independently characterized experimentally with high fidelity. The reduced models included; (2) a simplified numerical model identical to the fully-resolved direct numerical simulation (DNS) model, but using a domain that was one-tenth the size; (3) an upscaled mobile-immobile model that allowed for a time-dependent mass-transfer coefficient; and, (4) an upscaled mobile-immobile model that assumed a space-time constant mass-transfer coefficient. The results illustrated that all four models provided accurate representations of the experimental breakthrough curves as measured by global RMS error. The primary component of error induced in the upscaled models appeared to arise from the neglect of convection within the inclusions. Interestingly, these results suggested that the conventional convection-dispersion equation, when applied in a way that resolves the heterogeneities, yields models with high fidelity without requiring the imposition of a more complex non-Fickian model.Comment: 27 pages, 9 Figure

    Physical Pictures of Transport in Heterogeneous Media: Advection-Dispersion, Random Walk and Fractional Derivative Formulations

    Full text link
    The basic conceptual picture and theoretical basis for development of transport equations in porous media are examined. The general form of the governing equations is derived for conservative chemical transport in heterogeneous geological formations, for single realizations and for ensemble averages of the domain. The application of these transport equations is focused on accounting for the appearance of non-Fickian (anomalous) transport behavior. The general ensemble-averaged transport equation is shown to be equivalent to a continuous time random walk (CTRW) and reduces to the conventional forms of the advection-dispersion equation (ADE) under highly restrictive conditions. Fractional derivative formulations of the transport equations, both temporal and spatial, emerge as special cases of the CTRW. In particular, the use in this context of L{\'e}vy flights is critically examined. In order to determine chemical transport in field-scale situations, the CTRW approach is generalized to non-stationary systems. We outline a practical numerical scheme, similar to those used with extended geological models, to account for the often important effects of unresolved heterogeneities.Comment: 14 pages, REVTeX4, accepted to Wat. Res. Res; reference adde

    Influence of the disorder on tracer dispersion in a flow channel

    Get PDF
    Tracer dispersion is studied experimentally in periodic or disordered arrays of beads in a capillary tube. Dispersion is measured from light absorption variations near the outlet following a steplike injection of dye at the inlet. Visualizations using dye and pure glycerol are also performed in similar geometries. Taylor dispersion is dominant both in an empty tube and for a periodic array of beads: the dispersivity l_dl\_d increases with the P\'eclet number PePe respectively as PePe and Pe0.82Pe^{0.82} and is larger by a factor of 8 in the second case. In a disordered packing of smaller beads (1/3 of the tube diameter) geometrical dispersion associated to the disorder of the flow field is dominant with a constant value of l_dl\_d reached at high P\'eclet numbers. The minimum dispersivity is slightly higher than in homogeneous nonconsolidated packings of small grains, likely due heterogeneities resulting from wall effects. In a disordered packing with the same beads as in the periodic configuration, l_dl\_d is up to 20 times lower than in the latter and varies as PeαPe^\alpha with α=0.5\alpha = 0.5 or =0.69= 0.69 (depending on the fluid viscosity). A simple model accounting for this latter result is suggested.Comment: available online at http://www.edpsciences.org/journal/index.cfm?edpsname=epjap&niv1=contents&niv2=archive

    Upscaling of the acidizing process in heterogeneous porous media

    Get PDF
    Coupled fluid flow, reaction and transport in porous media has been the topic of research in various disciplines for the past few decades. Conventional approach assumes a homogeneous and isotropic porous media, and simplifies the nature of coupling between fluid and rock interactions. However, including the reality of the process, i.e. assuming heterogeneous and anisotropic porous media with fully coupled rock fluid interaction, can lead to more advanced understanding of the fundamental physics behind the problem and developing efficient industrial applications. In the oil and gas industry optimization of different well stimulation techniques such as matrix acidizing in order to enhance oil recovery requires an advanced understanding of fluid flow and also reaction in heterogeneous formations. This thesis is a contribution to development of more general governing equations describing the reactive flow and transport in heterogeneous formations.;The heterogeneity of the porous medium is introduced in the formulation through random permeability field that possess the characteristics of stationary stochastic process. The heterogeneity in permeability field affects the reservoir dynamics over a range of length and time scales by making pressure, concentration, diffusion and reaction coefficients stochastic random fields. Stochastic nature of these parameters helps us to be able to upscale the process while keeping the local information associated with heterogeneous nature of the porous media.;Conventional approaches to deal with this problem are homogenization and smoothing the heterogeneous properties of the formation using averaging based techniques such as up-gridding. However, these techniques do not carry the fundamental physics governing the process and cannot mimic the experimental observations such as acid front movement and instability of the reaction process. The local variations in rock and fluid properties are also ignored in these techniques which might lead to significant impacts in field scale application of acidizing as one of the major stimulation techniques.;In order to upscale the isothermal reaction process in a heterogeneous porous medium, according to the nature of the process, spectral-based small perturbation theory (Gelhar, 1993; Gelhar and Axness, 1983) is used among the various numerical and analytical upscaling techniques. The reaction is a nonlinear dissolution of an injected acid in a homogeneous liquid with constant density in a stationary mineral with constant porosity. In order to follow the acid front a moving coordinate is introduced. The upscaled governing equations are obtained with explicit macro-scale expressions for the coefficients and solved using time adaptive implicit finite difference technique. The results are compared with homogeneous models and sensitivity analysis of the upscaled equations is performed. Finally conclusions and results are discussed showing the importance of applying upscaling techniques to capture the impacts of heterogeneity on fluid dynamics
    corecore