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Abstract 

Upscaling of the acidizing process in heterogeneous porous media 

Vahidreza Bitarafhaghighi 

 

Coupled fluid flow, reaction and transport in porous media has been the topic 

of research in various disciplines for the past few decades. Conventional approach 

assumes a homogeneous and isotropic porous media, and simplifies the nature of 

coupling between fluid and rock interactions. However, including the reality of the 

process, i.e. assuming heterogeneous and anisotropic porous media with fully coupled 

rock fluid interaction, can lead to more advanced understanding of the fundamental 

physics behind the problem and developing efficient industrial applications. In the oil 

and gas industry optimization of different well stimulation techniques such as matrix 

acidizing in order to enhance oil recovery requires an advanced understanding of fluid 

flow and also reaction in heterogeneous formations.  This thesis is a contribution to 

development of more general governing equations describing the reactive flow and 

transport in heterogeneous formations.  

The heterogeneity of the porous medium is introduced in the formulation 

through random permeability field that possess the characteristics of stationary 

stochastic process. The heterogeneity in permeability field affects the reservoir 

dynamics over a range of length and time scales by making pressure, concentration, 

diffusion and reaction coefficients stochastic random fields. Stochastic nature of these 

parameters helps us to be able to upscale the process while keeping the local 

information associated with heterogeneous nature of the porous media.  

Conventional approaches to deal with this problem are homogenization and 

smoothing the heterogeneous properties of the formation using averaging based 

techniques such as up-gridding. However, these techniques do not carry the 

fundamental physics governing the process and cannot mimic the experimental 

observations such as acid front movement and instability of the reaction process. The 

local variations in rock and fluid properties are also ignored in these techniques which 

might lead to significant impacts in field scale application of acidizing as one of the 

major stimulation techniques.  

In order to upscale the isothermal reaction process in a heterogeneous porous 

medium, according to the nature of the process, spectral-based small perturbation 

theory (Gelhar, 1993; Gelhar and Axness, 1983) is used among the various numerical 

and analytical upscaling techniques. The reaction is a nonlinear dissolution of an 

injected acid in a homogeneous liquid with constant density in a stationary mineral 

with constant porosity. In order to follow the acid front a moving coordinate is 

introduced. The upscaled governing equations are obtained with explicit macro-scale 

expressions for the coefficients and solved using time adaptive implicit finite 

difference technique. The results are compared with homogeneous models and 

sensitivity analysis of the upscaled equations is performed. Finally conclusions and 

results are discussed showing the importance of applying upscaling techniques to 

capture the impacts of heterogeneity on fluid dynamics. 
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Chapter 1 

Introduction 
 

The study of porous media has been around over a century. Henry Darcy was 

the first person who discovered the relationship between the flow rate and pressure 

(Darcy 1856). Performing some filtration experiments with a packed sand column, he 

empirically formulated that the flow rate is proportional to the balance of static and 

dynamic forces. This observation, known as Darcy’s law, became vital in petroleum 

engineering and groundwater hydrology due to its significant applications such as in 

modeling the fluid flow in porous media in order to increase production and modify 

the treatment methods. It has been greatly used since its discovery. After a number of 

years, some theoretical studies were developed to justify Darcy’s law to be applicable 

to the phenomena that happen in reality more commonly. The assumptions in Darcy’s 

law such as homogeneous medium would limit this empirical equation to less 

practical cases. Stephen Whitaker made an enormous advancement by introducing the 

conception of finding equivalent descriptions for highly heterogeneous phenomena 

(Whitaker 1999). He analyzed the flow by averaging the pore scale description over a 

representative pore volume. His method has no prescribed rule on choosing a proper 

representative elementary volume, and it gained the attention of other scientists over 

time and encouraged them to find new techniques to obtain equivalent descriptions for 

the media characteristics in various contexts. Various numerical and analytical 
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methods were developed to assess the effects of medium heterogeneity on fluid flow 

models. 

In order to model the flow of fluid in the porous media, one will need to 

account for the spatial variability in the key parameters that affect the fluid flow, 

transport, storage, and reaction at a given scale. However, even if adequate 

computational resources are available, the amount of available data to determine the 

spatial distribution of the parameters with high certainty is not adequate to study the 

dynamics of fluid in heterogeneous formations. The challenge is how to incorporate 

the heterogeneous nature of porous media in governing equations describing the 

dynamics of fluid flow, storage, and reaction. 

 Heterogeneity affects the reservoir characteristic over a range of time and 

length scales. Depending on the nature of the problem, heterogeneity can impact 

convection, diffusion, and reaction in different time and length scales. Based on the 

length of the system, there are two major approaches to incorporate the heterogeneous 

rate-limited mass transfer into mathematical models for salute transport. One focuses 

on grain scale heterogeneity and the processes that operate at the microscopic scale, 

while the other one stresses the behavior of solute transport on the field scale and 

assesses the macroscopic variability of the medium. 

This study upscales the process of fluid flow, transport and reaction in a 

porous media where the local heterogeneity in permeability field is considered. The 

analytically upscaled governing equations are then solved numerically to investigate 

the impact of permeability variations on transport and reaction parameters and 

quantify the acid front propagation in heterogeneous formation.  
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1.1 Well Stimulation 

 

Reservoir stimulation is a general term assigned to different techniques 

applied to increase the well productivity. A stimulation attempt first requires accurate 

identification of parameters that characterize the physical, chemical, and biological 

properties of natural porous media. These parameters control the well productivity. 

 Among the variables that affect the well productivity, permeability and skin 

effect are of particular interest to the stimulation engineer as they render post 

treatment analysis and job evaluations possible. Both of these variables can be 

obtained from a pressure transient well test. However, the lab scale values cannot be 

used throughout the whole reservoir and should be populated in a logistic way. This 

concept will be discussed thoroughly later in this study.  

Formation damage is basically referred to as any unintended resistance to the 

fluid flow into or out of a wellbore. It restricts the flow by reducing permeability in 

the near wellbore region due to invasion of fluids used during drilling, completion, 

and workover operations (i.e. mud and etc.), into the reservoir rock. A low value of 

the permeability or high value of the skin factor would result in low well productivity.  

A hydraulic fracture is a structure on a reservoir which remains undistributed 

out of the fracture. Having increased the contact surface between the well and the 

reservoir the well productivity is consequently improved. The hydraulic fracture 

improves the permeability of the damaged zone. The effective wellbore radius is 

defined to relate the productivity of well to the skin factor. It is defined as the radius 
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that produces equivalent results to those obtained using a skin factor of zero. 

Acidizing method reduces the skin factor, therefor increases the effective wellbore 

radius.  

 

 1.2 Transport in Heterogeneous media 

 

Homogeneity and heterogeneity are concepts relating to the uniformity in a 

substance. A material that is heterogeneous is non-uniform in composition or 

properties. Reservoirs are essentially heterogeneous assemblages of depositional 

rocks, each with different textures, types, bedding architectures, and characteristics. 

Heterogeneities can occur across all length scales within reservoir media.  

According to their size or scale, geological heterogeneities have been 

classified in different categories as wellbore, inter-well, and field-wide scales of 

heterogeneity. Heterogeneities at the wellbore scale affect matrix permeability, 

distribution of residual oil, directional flow of fluids, potential fluid-rock interactions, 

and formation damage. Heterogeneities at the inter-well scale affect fluid 

flow patterns, drainage efficiency of the reservoir, and vertical and lateral sweep 

efficiency of secondary and tertiary recovery projects. Heterogeneities at the field-

wide scale determine the in-place hydrocarbon volume, areal distribution, and trends 

of hydrocarbon production. In a heterogeneous porous structure the macroscopic 

lumping of parameters is not sufficient to represent the heterogeneous systems where 

the flow is affected by local variations. 
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The heterogeneities are more pronounced when dealing with subsurface 

processes, such as movement of ground water (Gelhar 1993; Gelhar and Axness 

1983), transport of contaminants in groundwater, in-situ recovery of oil and natural 

gas (Miralles-Wilhelm, Gelhar and Kapoor 1997). The fact results from highly 

complex diagenesis processes of the sediments. 

It is hard to get the adequate spatial and temporal data for mass and 

momentum parameters. It is mainly because heterogeneity always exists in the 

medium and no one knows how the variables change spatially. As a result, 

probabilistic framework gained the scientist attraction in the field of fluid flow in 

porous media. They characterize the pore structure with random quantities (for 

example the permeability, porosity, mineral concentration, internal specific surface 

area etc.). Permeability, in particular, is very important in fluid flow therefore is often 

used to describe the medium heterogeneity. Gelhar and Axeness studied the 

macroscopic dispersion coefficient through local spatial fluctuations in permeability 

(Gelhar and Axness 1983). They quantified the effect of the fluctuations on the 

transport and flow for a system that is statistically homogeneous. Others used their 

approach in different processes like contaminant plume degradation or variable 

density and viscosity fluids in aquifers. 

This study similarly focuses on a wellbore scale of medium heterogeneity that 

affects the fluids behavior. It attempts to quantitatively describe the flow in porous 

media in a scale larger than an average pore size. In other words, the purpose is to 

find appropriate average parameters, which can be applied to flow, transport and 

reaction in the scale of interest. At the same time, being able to incorporate the 
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influence of intrinsic porous medium heterogeneity on the modeling and predictions is 

often desired during an investigation. 

 

1.3 Introduction to Upscaling 

 

A geological model, to be used as an input for reservoir fluid flow simulation, 

contains millions of grid blocks. It would be ideal to integrate geological and 

petrophysical data at a scale that they are acquired. However, the restrictions in 

computing time, cost, and available resources make it nearly impossible without 

upscaling application. Upscaling is basically the process of clustering data into 

smaller sets of characteristics that represent the most significant aspects of a reservoir. 

Any upscaling will result in loss of data and cause error (Sablok and Aziz 2008). The 

models are based on the geological data that are usually in the fine scale. Then the 

fine scale models are upscaled to a coarse scaled model that will, to some extent, 

result in approximating geological complexities of the reservoir.  

Reservoir simulation models are built by combining these coarse geological 

models with rock and fluid properties and other engineering data. Ideally, upscaling 

preserves the pressure profile from the fine scale model under the applicable flow 

process. The key steps in reservoir simulation are upscaling of the rock properties, 

primarily permeability, porosity and relative permeability, to reduce the number of 

grid blocks, and upscaling of the comprehensive compositional description of the 

reservoir fluid (Sablok and Aziz 2008). 
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There are two main categories of upscaling methods: analytical, such as a 

wide range of averaging methods, streamlines, etc. and numerical, such as single and 

two phase flow simulations.  

 

1.4 Analytical Methods for upscaling 

 

The nonuniformity of the fluid flow and reaction controlling parameters in 

porous medium increase the fluctuations in velocity of the liquid front over a range of 

scales. Under the effect of these fluctuations, anomalous flow and transport happens, 

along with irregular deformation of the matrix itself. Various theoretical approaches 

have been developed in fields such as geological, biological and porous media to 

accurately predict transport and reaction process on a variety of natural scales. There 

are many techniques to investigate and upscale the effects of heterogeneous 

environments on fluid flow and reaction in porous media. Despite the difference 

among the various upscaling methods, the procedure of upscaling transport 

parameters include the three common operations: (1) characterization of the 

subsurface system at multiple scales; (2) estimation and evaluation of transport 

parameters at measurement scale; (3) upscaling transport parameters at a modeling 

scale. 

  In continuation, the most commonly used approaches are discussed. 

 

1.4.1 Integral Transform Methods    
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Nonlocal theories, which are generally associated with evolving heterogeneity, 

are based on an integral transform or higher order gradient expansion. Evolving 

heterogeneity has two sources. One is the macroscale boundaries, which usually lead 

to nonlocal Darcy’s law, and the other one is continuously evolving heterogeneity, 

such as encountered with fractal media.  

One of the new powerful numerical methods used for general purposes is the 

finite integral transform technique. In this technique, which is mainly used to get the 

exact solution of linear problems, the nonlinear PDEs are transferred to a coupled 

nonlinear system of ODEs that could be solved by easier numerical methods such as: 

finite differences, finite elements, boundary elements, and spectral methods. The 

generalized integral transform method was able to solve several linear and non-linear 

models recently using truncated Eigen functions expansions. 

 

1.4.2 Moment Methods 

 

Method of moments is a statistical method to estimate the population 

of parameters. First the population moments (unknown) should be formulated by the 

parameters of interest. For instance, derive an equation that relates the expected 

values of powers of the random variable under consideration to the parameters of 

interest. Then a sample, from which the population moments are estimated, is drawn 

and replaced by the population moments in the equations. The equations are then 

solved for the parameters of interest to get estimates of those parameters. 
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The stochastic moment equations for solute transport in natural porous media 

are so complicated and impossible to solve analytically because of the complexities in 

hydraulic conditions. The existence of finite hydraulic boundaries and the statistical 

nonstationarity of hydraulic conductivity that is caused from distinct geological 

layers, zones, or facies are all examples of these complexities. The analytical 

solutions for the spatial moments of the mean concentration are acquired in the 

traditional stochastic theories due to their assumptions that greatly simplify the 

calculations (e.g. Dagan, 1982, 1984; Gelhar and Axness, 1983). Zhang et al. (2000) 

applied a Lagrangian perturbation method to develop a theory for solute flux in 

nonstationary flow fields. The predicted results are the mean mass flux and variance 

about the mean. The analytical moment equations are then solved numerically through 

a finite difference method. 

 

1.4.3 Central limit or Martingale methods 

 

CLT/Martingale methods are probabilistically based approaches to upscaling. The 

periodicity employed here is deterministic, not stochastic. The outline is laid down by 

(Bhattacharya and Gupta 1990) and focuses on a conservative solute in a saturated 

porous medium. The diffusion equation is assumed to be valid at the microscale so 

that the diffusion coefficient is the effective pore scale diffusion coefficient because 

the microscale is between the pore and Darcy scales. CLT is to be valid at each scale 

so the approach is good. Deterministic spatial periodicity or quasi-periodicity are the 

basics used to prove the validation at each scale.  
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1.4.5 Mathematical homogenization 

 

The conception of finding equivalent descriptions for highly heterogeneous 

phenomena gained attention of the scientific community and since then there has been 

a wave of new techniques to obtain these equivalent description in various contexts. 

In the mechanics literature, these techniques are universally nomenclatured as 

“upscaling techniques”. The method of asymptotic expansions of (Bensoussan, Lions 

and Papanicolaou 1978) and the method of moments of (Brenner 1980) and (Aris 

1956) qualify has some of those upscaling techniques. In mathematics literature, these 

techniques are referred to as “Homogenization”. 

Homogenization is an asymptotic method for upscaling parameters of periodic 

media (Ene, 1990). The basic idea for homogenization is as follows. Consider a 

porous medium with microscopic structure characterized by period l and a 

macroscopic structure with the characteristic length of L. A spatial scale parameter 

can be defined as ε = l / L. Instead of working on one function u, a family of functions 

u
ε 
is considered to find the limit of u

ε
 when ε → 0. The limit is considered as the result 

of upscaling procedure for homogenization, which consists of finding differential 

equations that the limit satisfies. The asymptotic process ε → 0 stands for the 

transition from microscopic to macroscopic scale. Hence, the upscaling process of 

homogenization is completed by making the microscopic scale approximate to zero 

(Hornung, 1997). 

The study of dispersion in porous medium saw some new directions in the 

70’s and 80’s. Remarkable contributions being the method of asymptotic analysis 

applied in the case of no net macroscopic convection  (Bensoussan, Lions and 
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Papanicolaou 1978) and the method of moments (borrowed from  (Aris 1956)) 

applied to the case of spatially periodic porous medium  (Berner 1980). The crucial 

idea in the cited references being the consideration of convection-diffusion 

phenomena at the pore scale and averaging them over the entire porous medium, via 

asymptotic expansions in  (Bensoussan, Lions and Papanicolaou 1978), and via the 

method of moments in  (Brenner 1980). This viewpoint of starting with pore scale 

phenomena followed by an averaging technique had appeared in (S. Whitaker 1967) 

in the context of volume averaging techniques. 

In case there are not any restrictions on the structure of the heterogeneities, i.e. 

they are not periodic; there are more general approaches than periodic averaging 

(homogenization): Γ-convergence; H-convergence; G-convergence (De Giorgi 1984). 

The notion of H-convergence was introduced by (Tartar 1977) (Murat 1977) to study 

a wide class of homogenization problems for possibly non-symmetric elliptic 

equations. In case of probabilistic and stochastic heterogeneities there have been 

proposed approaches to upscaling (Kozlov S. 1978), (Bensoussan, Lions and 

Papanicolaou 1978). The theory of periodic homogenization gets interesting as 

explicit expressions for the effective coefficients are obtained in terms of the 

microscale parameters. 

1.4.6 Mixture and hybrid mixture theory 

 

Hybrid mixture theory (HMT) involves using the mathematical filtering 

theorems to average the microscale field equations to obtain equations at higher 

scales. At macroscale, the constitutive equations are formulated by exploiting the 

entropy inequality in the sense of (Coleman and Noll 1963). During upscaling 
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(averaging), some microscale information is lost. However, the effect of microscale 

transport mechanisms and thermomechanical processes on macroscale behavior is 

incorporated. One significant advantage of upscaling first and then formulating the 

constitutive theory is that the material coefficients in derived relations appear at the 

macroscale. The macroscale material coefficients are easier to measure via 

experiments or obtain from other experimental studies using conventional methods. 

Upscaled equations are solved in macro and mesoscale representative elementary 

volumes (REV), which saves the computational time significantly in comparison to 

time needed for solving the microscale equations. 

HMT was initially used to explain the thermomechanical behavior of swelling 

and shrinking porous media like clays (Achanta, Cushman and Okos 

1994)(Bennethum and Cushman 1996)(Hassanizadeh and Gray 1979). 

 

1.4.7 Renormalization group techniques 

 

Wilson first developed the renormalization group to study critical phenomena 

in phase transition (Wilson 1971) . It  is also called renormalization approach wherein 

the heterogeneity at a particular scale controls an overall behavior for a unit cell of a 

fractured porous. This scale is considered step 0 of the renormalization procedure. At 

step n the effective properties are resulted from renormalization of a set of calculated 

properties. Then step-by-step transformation gives those properties to a probability 

distribution function of f(n) for the property (for example, permeability). In this 

method the effective parameters are evaluated by recurrent applications of 

renormalization group transformation from the basic cell to the entire domain of 



13 

 

interest. This method is used to upscale permeability in fractured porous media (King 

1989) (Gavrilenko and Guéguen 1998). Quantitative analysis of the anomalous (non-

Fickian) diffusion laws arising when disorder is ‘relevant’ is best handled by 

renormalization group methods.  

 

1.4.9 Continuous time random walks  

 

Montroll and Weiss introduced this method as a generalization of physical 

diffusion process to effectively describe anomalous diffusion, i.e., the super- and sub-

diffusive cases (Montroll and Weiss 1965). Continuous-time random walk (CTRW) is 

a generalization of a stochastic jump process with arbitrary distributions of jump 

lengths and waiting times. It begins with a finite volume discretization of a fractured 

porous medium for small scale diffusion equation (Noetinger and Estebenet 2000). A 

particle is then released jumping from one grid block to the next one. The transition 

probability is proportional to the transmissivity. The particle movement path can be 

defined by its coordinates on the computational grid and by a random function of time 

τ (t), when starts its random walk in the domain. The correlation function of τ (t) can 

be calculated by Monte Carlo simulations. In the end an integration of the correlation 

function with respect to t is taken and the upscaled mass transfer coefficient is found.  

Berkowitz, et al applied this approach to the transport of substances in 

groundwater and were able to provide a good description of the anomalous transport 

behavior that occurs because of medium heterogeneities (Berkowitz, et al. 2006). Non-

Fickian (or anomalous) transport of contaminants has been observed at field and 
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laboratory scales in a wide variety of porous and fractured geological formations. 

Over many years a basic challenge to the hydrology community has been to develop a 

theoretical framework that quantitatively accounts for this widespread phenomenon. 

CTRW formulations have been demonstrated to provide general and effective means 

to quantify non-Fickian transport 

 

1.5 Stochastic-convective approaches 

 

 The spectral integral approach has been applied in atmosphere 

turbulence for many decades (Lumley and Panofsky 1964). Gelhar and his colleagues 

introduced this method into hydrogeology at the end of 1970s and in the early 1980s 

(Bakr et al. 1978; Gelhar and Axeness 1983). Its basic idea is to decompose a 

stationary random variable into its ensemble mean and random fluctuation with a zero 

mean. Subsequently, using the relationship between power spectral density and the 

fluctuation to construct the correlation function of the random variable, upscaling 

process can be done within the Eulerian or Lagrangian framework (Rajaram 1997). 

The spectral integral approach is limited to upscaling parameters for unbounded 

porous media. 

 Media heterogeneity causes stochastic fluctuations in flow velocity and 

the Fick’s law of diffusion fails to describe hydrodynamic dispersion at field scale. As 

a result, the conventional convection dispersion equation cannot describe the mass 

transport in a natural hydrogeologic system properly [Gelhar et al., 1979; Smith and 

Schwartz, 1980; Matheron and DeMarsily, 1980; Dagan and Bresler, 1979]. However, 

in a laboratory scale column tracer experiment the convection-dispersion equation is 
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deterministic in representing the experiment [Hashimoto et al., 1964; Rose and 

Passioura, 1971; Fried and Combarnous, 1971; Fried, 1975; Gupta and Greenkorn, 

1974; Cameron and Klute, 1977; Yule and Gardner, 1978].  

 Researchers have been trying to find a solution for this disparity in the 

applicability of deterministic and stochastic dispersion representations for different 

length scales. They used stochastic transport methods to analyze the transport of 

dissolved pollutants in saturated aquifers based on the flow velocity mean and spatial 

covariance function. (Neuman 1979) reviewed different mathematical approaches for 

these methods. (Gelhar et al. 1979) used spectral methods to relate dispersion to the 

variability of hydraulic conductivity in a stratified porous medium, and a couple of 

years later (Gelhar and Axness 1981) studied macrodispersion in heterogeneous 

aquifers. Using a first order approximation of a stochastic convection-dispersion 

equation, they found that dispersion exhibited non-Fickian behavior early in the 

displacement process and for large time asymptotically approached a Fickian diffusion 

process. The dispersivity associated with the Fickian process was related to the 

statistical properties of the medium. Those authors derived expressions that relate an 

effective macrodispersion coefficient to the covariance function of the random 

velocity. A similar stochastic-convective transport approach based on a general flow 

ensemble concept was developed independently by (Simmons 1981). This latter work 

suggested that dispersion observed at any length scale can be represented as 

stochastic-convective transport by applying a probability density function for the 

macroscopic velocity variation. (Dagan and Bresler 1979) specifically emphasized 

calculation of the velocity probability density function for a lognormal distribution of 

hydraulic conductivity and steady infiltration conditions, under the condition that 
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velocity correlation between layers vanishes and no transverse diffusion occurs. 

(Smith and Schwartz 1980) directly investigated the macroscopic dispersion caused by 

spatially heterogeneous hydraulic conductivity. They defined an array of varying 

conductivity blocks with spatial correlations and simulated the solute particle transport 

in it. A range of transport behavior between Fickian and non-Fickian dispersion was 

produced in realizations of the random flow system. 

 Non-Fickian behavior is a consequence of long range correlation in the 

velocity, which is imposed by spatial structure of the porous medium. Whereas the 

fickian transport results when velocity correlations are relatively short-range 

compared with the solute travel distance and there is sufficient mixing between 

random velocities. We want to formulate dispersive transport in porous media as a 

stochastic-convective process applied in any scale and will not necessarily depend on 

a Fickian diffusion representation. 

 When the solute travel distance increases the measured dispersion 

coefficients is also increased. This is a well-known consequence of different scales of 

heterogeneity in porous media (Fried and Combarnous, 1971), ( Pickens et al., 1978), ( 

Pickens and Grisak, 1981), (Gelhar et al., 1979), (Smith and Schwartz, 1980), ( 

Matheron De Marsily, 1980). The field scale dispersivity is bigger than the lab scale. 

The lab scale dispersivity coefficient is not reliable for making transport predictions in 

the field. Lab measurements of dispersivity are typically performed on homogeneous 

media. It is shown that dispersivity measurement is more representative of both the 

particular medium and flow geometry. The term dispersion could be used to define 

any deviation of solute concentration from that determined by purely convective flow 

with a mean velocity. 
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Chapter 2 

Matrix Acidizing 
 

2.1 Introduction 

 

Acidizing is primarily used to either stimulate a well to improve flow or to 

remove damage that is caused by invasion of the fluids that are used in completion or 

workover to the formation. Basically two types of acid treatments exist based on the 

injection rates and pressures. First is Matrix acidizing which uses the injection rates 

resulting in pressures below fracture pressure and the second is Fracture acidizing. 

Fracture acidizing is also known as Acid Fracturing wherein the hydraulic fluid or 

acid is pumped at a pressure higher than the formation breakdown pressure to fracture 

the formation.  

In carbonate and sandstone reservoirs, matrix acidizing is generally applied to 

reduce a large skin resulting from permeability damage during completion. There are 

various materials that cause plugging; the migrating particles in the porous medium or 
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precipitates that are produced by chemical or physical changes in the reservoir initial 

state. Also the liquid or gas that changes the relative permeability of the formation 

rock can cause the plugging action. The correct remedial action can be taken once the 

damage and its origin have been characterized. The operations on the well like 

drilling, completion, and work-over are all potential source of damage. As a result, 

various types of damage can coexist. The primary use of matrix acidizing is to remove 

this plugging and increase the well productivity. A matrix treatment process could 

have close to 50% improvement in natural production if there is no damage in the 

rock. 

In matrix acidizing the acids dissolve the sediments and mud solids within the 

pores that are decreasing the permeability of the rock. This process makes the pores of 

the reservoir bigger so the hydrocarbons can flow easier. There are some practical 

limits in volumes and types of acid and procedures to perform an effective acidizing 

to get an optimum removal of the formation damage around the wellbore. A 5-28% 

HCL is usually used for matrix acidizing. The flow of aqueous HCL through the 

carbonate and sandstone does not have a uniform acid front. The flow and dissolution 

create some flow channels called wormholes. In sandstone acidizing the reaction 

between acid and the solid takes place relatively uniformly along the reaction front. 

This results from the fact that the reaction is slower and the reactant is not 

continuously consumed in the matrix behind the reaction front. However, in carbonate 

acidizing, the mechanism has a very selective pattern that makes some high 

permeable channels while others can remain untouched. As a result, this process has 

not been understood as for the fundamental processes controlling flow, reaction, and 

dissolution in the media. 



19 

 

A thorough understanding of the fluid flow is required to predict the outcome 

of acidizing treatment; to determine the acid penetration distance, dissolution, and its 

profile distribution. A homogeneous porous medium is assumed in most current 

models to describe the matrix acidizing in sandstone. In some models the formation is 

divided into layers wherein the properties such as minerals, permeability, and etc. in 

each layer are constant. However, the prediction by these homogeneous models 

differs from the effects of injected acid in reality. Sandstones always have small 

heterogeneities in flow and minerals properties. Matrix acidizing in this case is 

assumed to be influenced by small-scale variations in the permeability field. 

 

2.2Mathematical Model for Matrix Acidizing 
 

2.2.1Chemical Reaction Model 

 

There are many basic chemical factors that control the reaction mechanism at the 

molecular level. The interest point in many hydrological problems is the chemical 

reactions in aqueous solutions. The chemical and physical behavior of such solutions 

characterizes the aqueous solute concentration continuum. 

Chemical reactions that usually happen in groundwater are dissolution of 

minerals, adsorption solute and microbial reactions. A set of equation describing a 

space domain in which there are chemical species and minerals as a function of time 

can mathematically define the reactive transport phenomena. Reactive transport 
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modeling has become an essential tool for the researchers in subsurface hydrology 

(Steefel, DePaolo and Lichtner 2005).  

Mass balance equations on acid, minerals, and overall mass balance, and Darcy’s 

law, was used to develop a three-dimensional analytical model to describe the 

process. The assumptions for the flow and transport equations on the fine scale are as 

follows: 

1-Flow is assumed to be only liquid on a solid phase. 

2- Fluid and rock are both incompressible 

3-Gravity has no effect 

4-Sorptions are neglected 

5-Local Coefficient of bulk dispersion Dij is constant 

6-‘small’ random perturbation distribution about the mean occur in liquid 

velocity, tracer and mineral concentrations, and reaction rate ω.  

 In this study the fluid flows and transports the solute in porous media while there 

is an interaction between solute and solid. A first-order heterogeneous reaction takes 

place between the injected liquid solution and a stationary solid residing on the grain 

surfaces of the inert porous matrix. The system is an isothermal reactive flow system. 

The overall reaction is considered to be: 

[Mineral] + ~ [Tracer]    p~ [Product]aq. 
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Since the process involves a heterogeneous reaction, a tracer-mineral reaction 

wave develops spontaneously and propagates at a velocity less than that of the 

injected fluid (Durlofsky, Jones and Milliken 1997). It is within this moving 

boundary, where the mineral dissolution occurs at relatively high rates. Outside the 

reaction wave, the problem is mainly controlled by convective mass transport, initial 

and boundary conditions. The porous medium is described with fixed permeability 

heterogeneity. 

 

2.2.2Governing Equations for Acid Solution 

 

The governing equations, mass balance of the tracer, for a planar reaction wave 

propagating in a homogeneous porous medium is: 
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Where Y is the tracer concentration, Dij is the tracer dispersion coefficient 

tensor in liquid phase which includes all dispersion effects due to fluctuations on 

microscopic scales, i  linear velocity,  represents the mass-weighted stoichiometric 

coefficient for the tracer defined in terms of the stoichiometric coefficient ~  as 

follows 
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Here, Mt and Mm are molecular weights of the tracer and mineral respectively. 

Finally, the local flow is represented by 
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Where Kij is the absolute permeability and μ is the concentration-independent 

liquid viscosity. Total liquid mass balance is 
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ρm is the dissolvable mineral mass per total volume and describes the quantity 

of reactive mineral ρ is the density of the carrier liquid, independent of tracer and 

aqueous product concentrations. Because the acid is usually consumed during the 

reaction, the rate of the appearance of acid in the solution is negative. The mineral 

mass balance is: 

,W
t





          (5) 

Here the depth of mineral conversion is represented by o

mm  / , and W the 

mineral dissolution rate. Hence,   corresponds to a normalized solid mass that is 
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available for reaction at a particular time and location. Using the law of mass action, 

the dissolution rate will be taken as follows: 

321

0

nnn

s YakW  ,         (6) 

Reaction rate is basically defined as the appearance rate of species in the solution in a 

particular time period. In the equation above, exponents ni represent the dependences 

on mineral surface area as and the concentrations of the reactants and k0 is the 

coefficient of reaction.  

The reaction rate expression is further simplified by taking the exponents ni=1, 

and generating a new reaction rate coefficient: 

sak0           (7) 

Hence, the reaction rate is now given as YrW  ~ . In addition, we introduce 

a dimensionless parameter  0/)(  o

m  representing the tracer reactant capacity. The 

new governing equations for the reactive flow would be: 
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The first term on the left hand side of the equation 8a is a transient term that 

represents mass of acid by its concentration in the liquid, Y. The second term on the 

left side represents the transport of acid by convection, defined as Darcy flow. The 

first term on the right side represents the transport of acid by dispersion, defined as 

Fickian diffusion. Some previous studies neglected the effect of dispersion compared 

to the spread of acid front by chemical reactions. For mass balance of acid in this 

work the reaction is the source term, the second term on the right side of equation. 

Two main parameters affect the overall rate of acid consumption or mineral 

dissolution. One is reaction rate and the second is the rate of transport of acid to the 

mineral surface. 

 

2.2.3 Species behavior in the Matrix- Homogeneous Case 

 

The homogeneous governing equations are numerically solved using finite 

difference method. For this matter, the terms of the equations are first turned into non-

dimension ones by changing the characteristic parameters to the following terms, 

       

The governing flow equations of the injecting fluid are read in a dimensionless 

in the forms below: 
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Initially the concentration of acid in the media is zero, =0, and the entire reactive 

mineral (which is 10% of the volume of the formation rock, 1 mol/cc solid) is 

available for the reaction with acid, 1. Assuming no acid flows out of the 

medium, Neumann zero boundary conditions 0
*




 


LxY

  is selected for y at infinity 

(in the flow outlet where =1). The acid entering the media has a constant 

concentration of 0.05 (mol/cc pore) in the inlet. As a result, we choose a Dirichlet 

zero boundary condition for acid in the inlet . Constant pressure, or no flow 

boundary, is the most straightforward boundary condition. As far as the mineral 

distribution concerns, assuming the stationary mineral in the pore space, we choose 

Neumann zero boundary condition for  at the point of the flow entrance and exit, 

0
*

0 


 



 x ,  respectively. Although the coarse properties obtained in the results may 

be associated to certain levels of ambiguities, this boundary condition is widely used 

in practice because of its analogy to one-dimensional core flood experiments  (Warren 

and Price 1961)where the pressure drop is imposed between the inlet and outlet of a 

core to determine macroscopic properties such as porosity and permeability. 

 

Figure 1. Schematic of constant pressure no flow boundary condition 
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In continuation, using the values given in Table.1 a numerical analysis is performed 

and the acid and mineral concentration for different times and locations illustrated. 

  

Figure 2. Early time effect of injection times on Acid concentration profiles 
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Figure 3. Early time effect of injection times on Mineral concentration profiles 

In figure 1 the acid concentration profile is going toward higher values as the injection 

time has passed. Figure 2 approves the fact that as the injection time increases more 

mineral is consumed and the mineral concentration distribution tends to approach 

towards lower values and eventually at time infinity all the mineral is reacted and 

washed away from the medium. The figure below is shown to describe the process for 

longer injection times.  
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As figure 5 suggests, the recovery of the minerals in the outlet of the medium reaches 

above 95%. It is also found in figure 6 that due to non-existence of mineral in the 

medium the acid concentration barely drops from its initial value. 

 

Figure 4.  Demonstration of acid concentration distribution in long injection times 
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Figure 5. acidizing effect on the mineral concentration in long times 
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Figure 6. Effect of injection fluid acid concentration on Acid profile after 3h 
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Figure 7. Effect of injection fluid acid concentration on mineral profile after 3h 

In figure 5 and figure 6 one could interpret that the higher acid concentration 

of the injecting fluid the more mineral consumed. This arises from the fact that in 

chemical reactions higher concentration of the reactants provides a higher rate to the 

reaction.  
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Figure 8. Effect of diffusivity on acid distribution 
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Figure 9.  Effect of diffusivity on mineral distribution 

 

Figures 9 shows that the higher the diffusivity coefficient the more fraction of the 

mineral reacted, and accordingly the less amount of acid involved in the reaction. This 

difference is pronounced where the process is far from the boundaries. In figure 8 the 

effects of the diffusion will apply after the fluid is past the convective-driven 

concentration region. 
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Figure 10 . Impact of porosity on acid distribution 
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Figure 11. Impact of porosity on mineral distribution 

Figure 10 and 11 also show that higher porosities render the process of acidizing to 

some extent. Having higher amount of surface area, that is bigger porosity values, 

results in faster reaction. The two figures confirm the latter physical behavior. 
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Figure 12. Acid distribution and different injecting acid linear velocities 
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Figure 13. Mineral distribution and different injecting acid linear velocities 
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Table 1. Parameters of Advection-Reaction Problem in Homogeneous Porous Media 

 

Parameter 

 

Value 

Ø 0.25 

ν (cm/sec) 0.001 

α 2.0 

  0.01 

Dij(cm
2
/sec) 0.002 

L(cm) 10 

Time(sec) 10800 
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Chapter 3 

Methodology 
 

3.1 Random Fields 

 

The heterogeneity is introduced to the porous medium through a time-independent, 

spatially variable random permeability field. This field is defined with a mean value 

f  and its small perturbation f  : 

;)( 'ffxf i    ;][ ffE   .0][ ' fE      (9) 

The spatial variations are quantified by a three dimensional statistically 

homogeneous anisotropic exponential covariance with the following spectral density 

function: 
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Where i  and ik  are components of correlation length and wave number, 

respectively (Gelhar and Axness 1983). During the flow, the liquid velocity, tracer 

and mineral concentrations and ω are influenced by the medium heterogeneity and 

hence are represented in terms of their means and perturbations accordingly: 
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A partial linear correlation with intercept a and slope b is assumed for the 

reaction rate coefficient ω with  ixf , or permeability, in space as followed: 

;)( min   ffba   );( minffba    .''   fb  (12) 

a is equal to max ,corresponding to its minimum counterpart in the 

permeability field, when a negative correlation is selected (b<0). The correlation 

residual δ is assumed to be statistically homogeneous random field described by a 

three-dimensional anisotropic exponential auto-covariance function, with a spectrum 

given in Appendix B. 

 

3.2 Spectral Analysis 

 

The coordinate system xi is chosen such that x1 is the direction of the mean flow, 

hence, we take: 
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The perturbations in velocity '
2  and '

3 are not zero. Approximately the local 

dispersion tensor is  






ji
TLijTijD )(        (14) 

αL and αT are the local longitudinal and transverse dispersivity values and δij 

the Kronecker delta function. Then for the reaction term we use Taylor series 

expansion centered on the mean concentrations is used as a function of the mean and 

perturbed quantities: 
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Note that the functions described in (16) are independent of ω since the 

reaction rate is considered linear in ω. Next, the perturbed quantities are substituted 

into the tracer and mineral mass balances given in (10): 
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Taking expectations of the equations in (17) and retaining up to the second 

order perturbations, the mean transport equations are obtained as follows: 
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Here, we define the reaction rate ),(  Y : 

).(),( ''2'2'''''   YrrYrrYrrY YYYY      (18c) 
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By subtracting the mean transport equations (18a) and (18b) from the original 

equations given in (17a) and (17b), respectively, and adopting the small perturbation 

approach, the following first order perturbation equations are obtained: 
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Next, a coordinate system moving with the reaction wave is introduced using 

the mean propagation speed V of the reaction wave: 

;11 tVx   ;22 x   ;33 x       (20) 

An expression for the wave propagation speed is determined in terms of the 

fluid velocity  in the main flow direction in Appendix A and found that the reaction 

wave speed differs from the fluid flow velocity in the main direction: 

)1( 




V         (21) 

(Hinch and Bhatt 1990) recognized 1/α as the reactant capacity number for the 

tracer. The latter is defined as the ratio of inlet tracer concentration to the required 

concentration in a pore space to transform all the minerals in the corresponding solid. 

The capacity number is usually less than 1.0 and, therefore, the reaction wave is 
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expected to propagate slower than the fluid. In the moving coordinate system the 

mean equations are 
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and the first-order perturbation equations are 
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The cross-correlation term ''Yi in (22a) includes the field-scale heterogeneity 

effects on the mean tracer transport and represents macroscopic dispersive flux due to 

random variations in the fluid velocity i and tracer concentration Y. Estimation of 

this and the other five reaction-related cross-correlation terms given in equation (18c) 

involves solving the stochastic transport equations using spectral approach described 

in References (Gelhar, 1993; Gelhar and Axness 1983). The perturbation quantities 

are assumed locally stationary in space and their spectral representation is given as the 

following: 
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Then, the perturbation equations (23a) and (23b) in the spectral domain read 

as: 
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Where the mean concentration gradient in (25a) is defined as ./ ii YG  Since 

tracer and mineral undergo a reaction process, however, the concentration 

perturbations change in time and therefore the transient terms as well as the mean 

concentration gradients cannot be neglected. The approach employed here introduces 

a frame of reference that follows the reaction zone not only in space but also in time, 

(Miralles-Wilhelm, Gelhar and Kapoor 1997). This frame of reference consists of a 

transformation of the time coordinate, in which, the time variations of the 

concentration perturbations become negligible at large times. Equations (25) can be 

solved by considering reaction to be the only cause of concentration perturbation 

variations in time. This is achieved by solving the following simplified set of 

equations as an intermediate step: 
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Hence, effective reaction coefficients Y  and   are introduced for the species 

concentrations, which allow for the fact that ω at which concentration perturbations 

attenuate at the field scale may be different from the mean reaction coefficient   due 

to medium heterogeneity. The solution of this system of equations provides the 

following time-scaling expressions: 
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Physically we can interpret the time-scaling as traveling along with the tracer 

amplitude as it is decreased by reaction. The result of the scaling introduces the 

spatial amplitudes for conservative quantities 
Y

dZ ˆ  and ̂dZ . Following this, the 

equations are substituted into the perturbation equations in spectral domain. At large 

times, 
Y

dZ ˆ  and ̂dZ  can be neglected. This produces two linear algebraic equations 

expressed in the original time coordinate for the spectral amplitudes YdZ  and dZ : 
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The local dispersion has previously been found to have negligible influence 

during the evaluation of integrals of the form encountered here; therefore, it is 

neglected (Gelhar and Axness 1983). The expression for YdZ  and dZ are then found 

as: 

    dZrVkidZrkViGdZ
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with a Δ defined as 
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Next, the cross correlations appearing in the mean equations need to be 

determined using the spectral representation theorem 
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where a and b are arbitrary random fields and ‘*’ correspond to complex 

conjugate of quantity b. These definitions yield the cross correlations appear in our 

reactive flow problem as follows: 
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During the derivation of cross-correlations given in (31), the higher order non-

linear terms involving the product Gi Gj is neglected. Ii terms are integrals described in 

Appendix B. 
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Chapter 4 

Results and Discussion  
 

4.1 Field Scale Coefficients and Upscaled Reactive Flow 

System Dynamics 

 

Now that the cross correlation terms are found, equations (31), the upscaled reaction, 

fluid flow, and tracer velocity coefficients can be obtained explicitly from the mean 

equations (22). In the mean equations now there are zero-order derivatives of the 

reactant concentrations that are the fluctuation-induced reactive terms, first-order 

derivatives of the mean tracer concentration that are convective terms and second-

order derivatives of the mean tracer concentration that are dispersive terms. The 

following expression for the effective reaction coefficient is found by grouping terms 

consisting of zeroth-order derivatives of the species concentrations in the mean 

equations. 
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Where β and 2
  are introduced as 
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Setting e  =  , equation 32 simplifies to a cubic equation of the form below: 
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One of the roots of the cubic equation above satisfies the physics of the reaction in this 

problem. This root has been selected using a stability analysis and the results are shown 

below. 
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Figure 14. Effective reaction rate (we) 

 

Stability Analysis: 

The investigation starts with the effective reaction rate coefficient, which is also 

necessary to evaluate the other field-scale coefficients. For a fixed value of the 

variance and taking the model equation below, 
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It can be seen that all three roots converge to an integer. 

 

Figure 15. Stability analysis of  

where e   indicates deviation from the mean value of the reaction rate 

coefficient due to the presence of heterogeneities. 

These parameters play important role on the reactive flow dynamics. 

Similarly, the effective fluid flow velocity is determined by simply recognizing that 

all the advective terms (first order derivatives) in right hand side of the mean equation 

minus those in the left hand side is equal to )( Ve   . This produces the following 

equation for effective velocity: 
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Where 2
1

2'
11 / fA  corresponds to the longitudinal dispersivity in the absence of 

reaction.   is the flow factor defined in Appendix B and taken to be equal 

to )6/exp( 2

f  . The graph below shows the result for equation (33). Considering 

the average linear velocity considered for the homogeneous case, 10E-3, it could be 

concluded that the heterogeneity has a damping effect on linear velocity of the acid 

slightly after the injection point.  

 

Figure 16. Effect of time on the Effective linear velocity (ve) 
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The figures below show the effect of permeability variance and correlation 

length on effective linear velocity 

 

Figure 17. Effect of permeability correlation length on the Effective linear velocity (ve) 
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Figure 18. Effect of permeability variance on the Effective linear velocity (ve) 
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 Finally, the longitudinal dispersion coefficient 11A could easily be obtained 

by grouping together the dispersive terms in the mean tracer mass balance into 

the   1111 //   YA form. Hence, the longitudinal effective dispersivity is obtained: 





















2

'

1111

)1( V
AA        (34) 

The following graph is depicts the results of the longitudinal effective 

dispersivity in equation (34) for three different time steps. 
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Figure 19. Effect of time on the longitudinal effective dispersivity (A11) 

 

Next, the effect of permeability variance and correlation length on the 

effective longitudinal macrodispersivity is shown. 
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Figure 20. Effect of permeability correlation length on effective dispersivity (A11) 
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Figure 21.  Effect of permeability variance on the effective dispersivity (A11) 

 

Having the new upscaled parameters substituted in the governing equation of 

the flow, the field-scale partial differential equations for the tracer and mineral mass 

are written as below:  

...)1(
1

11

11
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60 

 

 

Here, it is important to note that 11A product represents the upscaled dispersive mixing 

due to non-uniform advection only, since the local dispersion has been neglected 

during the application of spectral theory. The representative elementary values are set 

for the parameters of the upscaled governing equations and the coupled equations are 

solved using an implicit finite difference method in MATLAB. The results below 

show that the heterogeneity has significant effect on the mineral concentration at the 

injection point and the acid concentration at the point far downstream. 

 

Figure 22. Acid and mineral concentration in both Homogeneous and Heterogeneous cases 
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Chapter 5 

Concluding Remarks 

 

In this study an analytical approach based on small perturbation theory is used to 

upscale the heterogeneity effect of porous medium permeability on fluid flow, 

transport and dissolution reaction. The upscaled governing equations (eqns. 32-35) 

show rich nonlinear interplay between the existing mechanisms and includes the local 

characteristics of formation heterogeneity in permeability, i.e., variance and 

correlation length of the permeability. Increasing the correlation length of the 

permeability leads to higher upscaled velocity and reaction rates that resembles 

possibility of non-uniform reaction wave propagation in the heterogeneous medium, 

i.e., fluid fingering phenomena. Increasing the variance of permeability however leads 

to more macro dispersion effect. The upscaled governing equations can be used as a 

proxy to significantly decrease the simulation time associated with field application of 

acidizing while keeping the complexity of the problem.  

Upscaling of the governing equations was performed based on the assumption of 

an ideal liquid solution where the mineral dissolution does not impact the fluid 
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properties such as viscosity and density. This needs to be further investigated 

including the viscosity and density of the fluid as stochastic random parameter.  
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Appendix A – Estimation of the Reaction Wave Propagation Velocity 

 

Now that we know the reaction is steadily moving we need to find a solution using the 

reaction wave approach. Propagation speed of the reaction front is V as the injecting 

fluid flows along the 1 direction at a speed . The solution is as followed: 

);(

);(
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10

Vt

VtYY








         (A.1) 

The transient effects and local diffusion are neglected and the the governing 

equations become  

111
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 Vr

YY
V     (A.2) 

At the injecting point the acid is being injected with a constant rate and the 

concentration equals to inlet concentration, the mineral is completely untouched and 

stationary; whereas far downstream, all of the acid is spent and no mineral is reacted: 

 ;0Y   ;1   1     (A.3) 

 ;1Y   ;0   1     (A.4) 

Integrating equation (B.2) once and using the upstream condition, we obtain 



67 

 

   VYV )1()1(        (A.5) 

Applying downstream condition, we find 

)1(   VV         (A.6) 

which finally gives the reaction front velocity as 

)1( 




V         (A.7) 
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Appendix B – Cross- correlation Integrals, 

 

To find the cross correlations terms we first need to evaluate the integrals I0 to I6, 

which are solved by the stratified medium approximation brought in (Gelhar and 

Axness 1983). The expression for I0 is: 
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The complex conjugate of Δ is found and multiplied to the integral argument  

  























 kd

V

E
k

S

VV
kd

S
ffI

ffff


2

2

1

*

*

0

1
),(


    (B.2) 

where  
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The integration of the imaginary terms in the nominator are zero because the 

denominator of the integral in (B2) is an even function of k1. Multiplying both 

numerator and denominator with 1 we obtain 
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Introducing variables iii ku   i=1,2,3 and defining VE /1   
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The integral in this form can be evaluated in spherical coordinates to produce 

the following result 
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The integrals I1 to I6 are also evaluated using the same approach. The results 

are below 
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For the stratified medium approximation, the spectra for cross-correlations can 

be related to the spectrum of random permeability filed: 
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Here, partial correlation residuals i , i = 1, 2, 3 are assumed to be statistically 

homogeneous random fields and described by three dimensional anisotropic 

autocovariance with the following spectrum 
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Table 2. Parameters of Advection-Reaction Problem in Heterogeneous Porous Media 

 

Parameter 

 

Value 

Ø 0.25 

ν 0.001 

α 2.0 

  0.01 

λ1 0.8 

b ±8.0 

σf 0.4 

σλ 0.01 
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