389 research outputs found

    Non-Exploitable Protocols for Repeated Cake Cutting

    Get PDF
    We introduce the notion of exploitability in cut-and-choose protocols for repeated cake cutting. If a cut-and-choose protocol is repeated, the cutter can possibly gain information about the chooser from her previous actions, and exploit this information for her own gain, at the expense of the chooser. We define a generalization of cut-and-choose protocols - forced-cut protocols - in which some cuts are made exogenously while others are made by the cutter, and show that there exist non-exploitable forced-cut protocols that use a small number of cuts per day: When the cake has at least as many dimensions as days, we show a protocol that uses a single cut per day. When the cake is 1-dimensional, we show an adaptive non-exploitable protocol that uses 3 cuts per day, and a non-adaptive protocol that uses n cuts per day (where n is the number of days). In contrast, we show that no non-adaptive non-exploitable forced-cut protocol can use a constant number of cuts per day. Finally, we show that if the cake is at least 2-dimensional, there is a non-adaptive non-exploitable protocol that uses 3 cuts per day

    Non-Exploitable Protocols for Repeated Cake Cutting

    Get PDF
    We introduce the notion of exploitability in cut-and-choose protocols for repeated cake cutting. If a cut-and-choose protocol is repeated, the cutter can possibly gain information about the chooser from her previous actions, and exploit this information for her own gain, at the expense of the chooser. We define a generalization of cut-and-choose protocols - forced-cut protocols - in which some cuts are made exogenously while others are made by the cutter, and show that there exist non-exploitable forced-cut protocols that use a small number of cuts per day: When the cake has at least as many dimensions as days, we show a protocol that uses a single cut per day. When the cake is 1-dimensional, we show an adaptive non-exploitable protocol that uses 3 cuts per day, and a non-adaptive protocol that uses n cuts per day (where n is the number of days). In contrast, we show that no non-adaptive non-exploitable forced-cut protocol can use a constant number of cuts per day. Finally, we show that if the cake is at least 2-dimensional, there is a non-adaptive non-exploitable protocol that uses 3 cuts per day

    Fair Cake-Cutting in Practice

    Get PDF
    Using a lab experiment, we investigate the real-life performance of envy-free and proportional cake-cutting procedures with respect to fairness and preference manipulation. We find that envy-free procedures, in particular Selfridge-Conway, are fairer and also are perceived as fairer than their proportional counterparts, despite the fact that agents very often manipulate them. Our results support the practical use of the celebrated Selfridge-Conway procedure, and more generally, of envy-free cake-cutting mechanisms. We also find that subjects learn their opponents' preferences after repeated interaction and use this knowledge to improve their allocated share of the cake. Learning reduces truth-telling behavior, but also reduces envy

    Deep Learning -Powered Computational Intelligence for Cyber-Attacks Detection and Mitigation in 5G-Enabled Electric Vehicle Charging Station

    Get PDF
    An electric vehicle charging station (EVCS) infrastructure is the backbone of transportation electrification. However, the EVCS has various cyber-attack vulnerabilities in software, hardware, supply chain, and incumbent legacy technologies such as network, communication, and control. Therefore, proactively monitoring, detecting, and defending against these attacks is very important. The state-of-the-art approaches are not agile and intelligent enough to detect, mitigate, and defend against various cyber-physical attacks in the EVCS system. To overcome these limitations, this dissertation primarily designs, develops, implements, and tests the data-driven deep learning-powered computational intelligence to detect and mitigate cyber-physical attacks at the network and physical layers of 5G-enabled EVCS infrastructure. Also, the 5G slicing application to ensure the security and service level agreement (SLA) in the EVCS ecosystem has been studied. Various cyber-attacks such as distributed denial of services (DDoS), False data injection (FDI), advanced persistent threats (APT), and ransomware attacks on the network in a standalone 5G-enabled EVCS environment have been considered. Mathematical models for the mentioned cyber-attacks have been developed. The impact of cyber-attacks on the EVCS operation has been analyzed. Various deep learning-powered intrusion detection systems have been proposed to detect attacks using local electrical and network fingerprints. Furthermore, a novel detection framework has been designed and developed to deal with ransomware threats in high-speed, high-dimensional, multimodal data and assets from eccentric stakeholders of the connected automated vehicle (CAV) ecosystem. To mitigate the adverse effects of cyber-attacks on EVCS controllers, novel data-driven digital clones based on Twin Delayed Deep Deterministic Policy Gradient (TD3) Deep Reinforcement Learning (DRL) has been developed. Also, various Bruteforce, Controller clones-based methods have been devised and tested to aid the defense and mitigation of the impact of the attacks of the EVCS operation. The performance of the proposed mitigation method has been compared with that of a benchmark Deep Deterministic Policy Gradient (DDPG)-based digital clones approach. Simulation results obtained from the Python, Matlab/Simulink, and NetSim software demonstrate that the cyber-attacks are disruptive and detrimental to the operation of EVCS. The proposed detection and mitigation methods are effective and perform better than the conventional and benchmark techniques for the 5G-enabled EVCS

    Valorization of Material Wastes for Environmental, Energetic and Biomedical Applications

    Get PDF
    The development of materials from industrial wastes has attracted the attention of the research community for years. A material's physico-chemical characteristics have specific impacts its properties and their application in environmental, energetic, and biomedical areas, such as in pollutant removal; CO2 capture; energy storage; catalytic oxidation and reduction processes; the conversion of biomass to biofuels; and drug delivery. Examples of such materials are activated carbons, clays, and zeolites, among others. The aim of this Special Issue is to collect the recent advances and progresses developed in this field considering valorised materials from industrial wastes and their applications in environmental, energetic, and biomedical areas

    Negotiating with a logical-linguistic protocol in a dialogical framework

    Get PDF
    This book is the result of years of reflection. Some time ago, while working in commodities, the author felt how difficult it was to decide the order in which to use arguments during a negotiation process. What would happen if we translated the arguments into cards and played them according to the rules of the Bridge game? The results were impressive. There was potential for improvement in the negotiation process. The investigation went deeper, exploring players, cards, deals and the information concealed in the players´ announcements, in the cards and in the deals. This new angle brought the research to NeuroLinguistic Patterns and cryptic languages, such as Russian Cards. In the following pages, the author shares her discovery of a new application for Logical Dialogues: Negotiations, tackled from basic linguistic structures placed under a dialogue form as a cognitive system which ‘understands’ natural language, with the aim to solve conflicts and even to serve peace

    Final FLaReNet deliverable: Language Resources for the Future - The Future of Language Resources

    Get PDF
    Language Technologies (LT), together with their backbone, Language Resources (LR), provide an essential support to the challenge of Multilingualism and ICT of the future. The main task of language technologies is to bridge language barriers and to help creating a new environment where information flows smoothly across frontiers and languages, no matter the country, and the language, of origin. To achieve this goal, all players involved need to act as a community able to join forces on a set of shared priorities. However, until now the field of Language Resources and Technology has long suffered from an excess of individuality and fragmentation, with a lack of coherence concerning the priorities for the field, the direction to move, not to mention a common timeframe. The context encountered by the FLaReNet project was thus represented by an active field needing a coherence that can only be given by sharing common priorities and endeavours. FLaReNet has contributed to the creation of this coherence by gathering a wide community of experts and making them participate in the definition of an exhaustive set of recommendations
    • …
    corecore