420 research outputs found

    Dynamic Resource Allocation in Cognitive Radio Networks: A Convex Optimization Perspective

    Full text link
    This article provides an overview of the state-of-art results on communication resource allocation over space, time, and frequency for emerging cognitive radio (CR) wireless networks. Focusing on the interference-power/interference-temperature (IT) constraint approach for CRs to protect primary radio transmissions, many new and challenging problems regarding the design of CR systems are formulated, and some of the corresponding solutions are shown to be obtainable by restructuring some classic results known for traditional (non-CR) wireless networks. It is demonstrated that convex optimization plays an essential role in solving these problems, in a both rigorous and efficient way. Promising research directions on interference management for CR and other related multiuser communication systems are discussed.Comment: to appear in IEEE Signal Processing Magazine, special issue on convex optimization for signal processin

    Secure Beamforming For MIMO Broadcasting With Wireless Information And Power Transfer

    Full text link
    This paper considers a basic MIMO information-energy (I-E) broadcast system, where a multi-antenna transmitter transmits information and energy simultaneously to a multi-antenna information receiver and a dual-functional multi-antenna energy receiver which is also capable of decoding information. Due to the open nature of wireless medium and the dual purpose of information and energy transmission, secure information transmission while ensuring efficient energy harvesting is a critical issue for such a broadcast system. Assuming that physical layer security techniques are applied to the system to ensure secure transmission from the transmitter to the information receiver, we study beamforming design to maximize the achievable secrecy rate subject to a total power constraint and an energy harvesting constraint. First, based on semidefinite relaxation, we propose global optimal solutions to the secrecy rate maximization (SRM) problem in the single-stream case and a specific full-stream case where the difference of Gram matrices of the channel matrices is positive semidefinite. Then, we propose a simple iterative algorithm named inexact block coordinate descent (IBCD) algorithm to tackle the SRM problem of general case with arbitrary number of streams. We proves that the IBCD algorithm can monotonically converge to a Karush-Kuhn-Tucker (KKT) solution to the SRM problem. Furthermore, we extend the IBCD algorithm to the joint beamforming and artificial noise design problem. Finally, simulations are performed to validate the performance of the proposed beamforming algorithms.Comment: Submitted to journal for possible publication. First submission to arXiv Mar. 14 201

    A Rate-Splitting Approach To Robust Multiuser MISO Transmission

    Full text link
    For multiuser MISO systems with bounded uncertainties in the Channel State Information (CSI), we consider two classical robust design problems: maximizing the minimum rate subject to a transmit power constraint, and power minimization under a rate constraint. Contrary to conventional strategies, we propose a Rate-Splitting (RS) strategy where each message is divided into two parts, a common part and a private part. All common parts are packed into one super common message encoded using a shared codebook and decoded by all users, while private parts are independently encoded and retrieved by their corresponding users. We prove that RS-based designs achieve higher max-min Degrees of Freedom (DoF) compared to conventional designs (NoRS) for uncertainty regions that scale with SNR. For the special case of non-scaling uncertainty regions, RS contrasts with NoRS and achieves a non-saturating max-min rate. In the power minimization problem, RS is shown to combat the feasibility problem arising from multiuser interference in NoRS. A robust design of precoders for RS is proposed, and performance gains over NoRS are demonstrated through simulations.Comment: To appear in ICASSP 201
    corecore