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with multi-cell uplink-downlink throughput
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Abstract

The weighted sum-rate maximization (WSRMax) problem is important for the radio resource allocation in wireless
networks. In this paper, we focus on solving the WSRMax optimization problem in a Home eNodeB (HeNB) wireless
network for the multiple input single output (MISO) downlink transmission. Based on an ameliorated max-min
multi-cell uplink-downlink throughput duality, we design a distributed algorithm which contains Loop1 and Loop2
associating with the max-min procedure, respectively. Especially, in Loop2 procedure, we propose a new distributed
iteration scheme with the complete proof. During the implementation of the proposed algorithm, randomly deployed
HeNBs only need to share information with their neighboring nodes. Simulation results show that the two processes
can converge to a stable state, and the network capacity is dramatically improved with the coordination among HeNBs.
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1 Introduction
Since macro networks show poor indoor coverage capa-
bility, Home eNodeB (HeNB) network has been advocated
to remedy this defect. Benefiting from the close proxim-
ity of transmitters and receivers, the HeNB network can
provide high link quality for users. On the other hand,
the deployment of HeNBs is flexible in accordance with
consumers’ requirements. However, it is difficult to man-
age such a flexible network in a centralized manner. Thus,
radio resource allocation with distributed coordinations
among HeNBs is expected. Furthermore, as a promis-
ing technology, multi-antenna can improve the network
throughput dramatically, while resulting in a more com-
plex interference management problem [1-3]. Therefore,
it is a challenging task to optimize the resource allocation
in HeNB networks equipped with multiple antennas. It is
worth noting that the radio resource allocation problem
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is generally formulated as a weighted sum-rate maximiza-
tion (WSRMax) problem, which has attracted a lot of
attentions recently.
Literature review. Several approaches to optimize

the WSRMax problem in multi-antenna systems have
been proposed. Some of them are centralized meth-
ods which include the monotonic optimization method
[4,5], uplink-downlink signal-to-interference-plus-noise-
ratio (SINR) duality [6-8], and branch-and-bound tech-
nique [9]. Nowadays, a great interest has been sparked in
developing distributed methods. In [10-12], the problem
is solved in distributed ways based on the pricing mech-
anism. However, the method in [10] splits the channel
allocation process with beamforming and power opti-
mization, and both methods in [11,12] are restricted to
single user per cell scenario. In [13], the method iterative
coordinated beamforming (ICBF) makes use of the neces-
sary optimality condition for the WSRMax to design dis-
tributed solutions without completed theoretical proofs,
and its results elucidate that the coordination can provide
considerable gains. With the block coordinate descent
(BCD) method proposed in [14,15], a single base station
is optimized while others are fixed at each iteration. In
[16], a distributed algorithm relying on weighted mini-
mummean square error (WMMSE) problem is proposed.
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In order to execute the WMMSE algorithm, each termi-
nal needs to estimate the signal covariance and feed back
certain prices to the base station. Authors in [17] incorpo-
rate primal decomposition subgradient method with the
second-order cone programming (SOCP) and propose a
distributed approach. In this algorithm, each base station
has to complete the complexity SOCP programming in
certain procedure. These previous works show that the
coordinated beamforming is beneficial for system perfor-
mance. Recently, the multi-cell uplink-downlink through-
put duality theory is proposed as a novel tool to solve
the WSRMax problem in [18] for the first time. With
such duality, the downlink beamforming can be optimized
with low complexity according to the virtual uplink struc-
ture [19,20]. However, as far as we know, a distributed
approach for solving theWSRMax problem with the dual-
ity is still vacant.
In this paper, by utilizing the novel duality theory, we

optimize themulti-antennaHeNB network’s capacity with
a coordinated beamforming strategy. To avoid too much
information exchange during coordinations, HeNBs are
constrained to only share information with their neigh-
bors. The detailed contributions of this paper are stated as
follows.

1) We ameliorate multi-cell uplink-downlink
throughput duality into the multi-cell multi-user
multi-channel network with an undirected graph.

2) The non-deterministic polynomial time (NP)-hard
property of WSRMax problem [1] impedes the use of
convex methods as well as the virtual uplink
structure. Therefore, we use the successive convex
approximation technique and the ameliorated virtual

uplink structure to circumvent the non-convexity.
With the max-min dual structure, we design a
distributed algorithm with two loops. In Loop1, the
distributed algorithm based on Lagrangian
primal-dual subgradient (DLPDS) algorithm [21] is
utilized to maximize the virtual uplink power
problem. In Loop2, we propose a new distributed
iteration scheme to solve the virtual uplink noise
programming which posses a separable structure.
With the above two process, we not only optimize
the beamforming vector with low complexity
Rayleigh-Ritz quotient criterion but also find a
feasible virtual uplink SINR. With the virtual uplink
SINR, the real feasible downlink SINR can be
accessed for the strong duality between them.

The remainder of this paper is organized as follows.
Section 2 is devoted to the system model and problem
formulation. In Section 3, the distributed algorithm is pro-
posed and analyzed in detail. Numerical results confirm
the convergence of the proposed algorithm in Section 4.
Section 5 concludes this article.

2 Systemmodel and problem formulation
In Figure 1, a HeNB network is depicted as an undirected
graph G (υ, ε), where the set of HeNBs is denoted as υ =
{1, 2, . . . ,N} and ε ⊂ υ×υ is the set of edges.With a given
interference threshold, each HeNB maintains neighbor-
ing relationships with other nodes, i.e, if the interference
between two HeNBs exceeds the threshold, their neighbor
relationships will be established. In this bipartite network,
an edge eil = eli ∈ ε denotes HeNB i and HeNB l
are neighbors, where i, l ∈ υ. Neighboring HeNBs can

Figure 1 Systemmodel of randomly deployed HeNB networks.
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exchange information with each other on this edge. For
simplicity, the neighbor set of HeNB i (including itself )
is defined as subset Ni, and the corresponding cardinal-
ity is Ni = |Ni|. Each HeNB is assumed to be equipped
with Nt transmit antennas, while each home user equip-
ment (HUE) has a single receiving antenna. Both HeNBs
and HUEs are randomly deployed, and the whole network
works in time division duplex (TDD) mode. For HeNB
i, there are Ki connected HUEs. Thus, the total number
of HUEs can be expressed as K = ∑N

i=1 Ki. Each HeNB
manages Q downlink channels, and the channel state
information (CSI) is assumed to be perfectly known by
HUEs. All HUEs can reuse the same frequency resource,
and the received signal yi,j(q) at the jth HUE served by the
ith HeNB on qth channel is given by:

yi,j (q) =
√
pi,j (q)hHi,i,j (q)wi,j (q) si,j (q) + zi,j (q)

+
∑Ki

l �=j

√
pi,l (q)hHi,i,j (q)wi,l (q) si,l (q)

+
Ni∑
m �=i

Km∑
n

√
pm,n (q)hHm,i,j (q)wm,n (q) sm,n (q) ,

(1)

where q is the channel index, pi,j (q) is the transmit power
sent from the ith HeNB to the jth HUE on the qth channel,
wi,j (q) ∈ C

Nt×1 represents the corresponding beamform-
ing vector, hm,i,j (q) ∈ C

Nt×1 is the associated channel
between the mth HeNB and the jth HUE served by the
ith HeNB, and zi,j (q) is the additive white Gaussian noise
with the variance E

{∣∣zi,j∣∣2} = σ 2
n .

The downlinkWSRMax problemwith power constrains
is generally defined as:

max
p,w

∑N

i

∑Q

q

∑Ki

j
log

[
1 + γDL

i,j (q)
]

s.t
∑Q

q

∑Ki

j
pi,j (q) ≤ Pmax, ∀i = 1, . . . ,N ;

tr
(
wH
i,jwi,j

)
= 1, pi,j (q) ≥ 0,

∀i = 1, . . . ,N ; ∀j = 1, . . . ,K ; ∀q = 1, . . . ,Q,

(2)

where the downlink SINR γDL
i,j (q) is:

γDL
i,j (q) =

pi,j (q)
∣∣∣hHi,i,j (q)wi,j (q)

∣∣∣2
σ 2
n + ∑Ni

m=1
∑Km

(m,n)�=(i,j) pm,n (q)
∣∣∣hHm,i,j (q)wm,n (q)

∣∣∣2 ,

and Pmax is the upper bound of the total transmit power.
Problem (2) is proved to be an NP-hard problem, so it is
very difficult to solve the beamforming vector directly.

3 Distributed algorithm derivation
Due to the NP-hard feature of the WSRMax problem
shown in (2), the global optimal cannot be guaran-
teed [1]. We sequentially try to solve problem (2) with
a lower bound approximation. Nevertheless, the lower
bound approximation is still non-convex for the coupled
beamforming vectors in the individual HeNB objective
function. Furthermore, we transform the approximation
into a virtual uplink structure with the uplink-downlink
throughput duality. Because virtual uplink problem can
be transformed into log-sum-exp (LSE) convex problem,
it can be solved more efficiently. Moreover, the downlink
beamforming vector can be updated with a low complex-
ity Rayleigh-Ritz quotient criterion. Based on the max-
min virtual uplink problem, we first apply DLPDS into
Loop1 and propose a new distributed iteration scheme in
Loop2 with the complete proof. After that, each HeNB
not only obtains the downlink beamforming vectors for
its HUEs but also calculates the feasible optimal downlink
SINR as a result of the strong duality. With the feasi-
ble downlink SINR, each HeNB can assign the downlink
transmit power easily. For the clarity of the exposition, the
proposed algorithm is denoted as distributed joint power,
channel, and beamforming optimization (DJPCBO), and
the structure is shown in Figure 2.

Figure 2 Block diagram of the proposed algorithm.
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3.1 SCALE approximation of virtual dual uplink problem
As shown in [22], a lower bound approximation of log(1+
z) is presented as follows:

log(1+z) ≥ α log(z)+β ,

⎧⎨
⎩

α = z0
1 + z0

,

β = log(1 + z0) − α log(z0).
(3)

Note that the inequality is tight at z0 = z. When the
optimal value z∗ of the lower bound is found, parameters
α, β can be updated according to z0 = z∗. Based on (3),
the network sum-rate can be relaxed as:

max
p,w

∑N

i

∑Q

q

∑Ki

j

{
αi,j (q) log2

[
γDL
i,j (q)

]
+ βi,j (q)

}
s.tC1 :

∑Q

q

∑Ki

j
pi,j (q) ≤ Pmax, ∀i, i = 1, . . .N ;

C2 : pi,j (q) ≥ 0
∀i, i = 1, . . .N ; ∀q, q = 1, . . .Q; ∀j, j = 1, . . .K .

(4)

Lemma 1. The Lagrangian dual problem of multi-cell
multi-user downlink beamforming problem can be defined
as:

min
λ̄2

max
λ̄1 ,w

∑N

i

∑Q

q

∑Ki

j

{
αi,j (q) log2

[
γUL
i,j (q)

]
+ βi,j (q)

}
s.tC1 : λ̄1,i,j (q) ≥ 0∀i, i = 1, . . .N ; ∀q, q = 1, . . .Q; ∀j, j = 1, . . .K
C2 : λ̄2,i ≥ 0∀i, i = 1, . . .N

C3 :
∑N

i

∑Q

q

∑Ki

j
λ̄1,i,j (q) ≤

∑N

i
Pmax

C4 :
∑N

i
λ̄2,iPmax ≤ σ 2

n
∑N

i
Pmax,

(5)

with the virtual uplink SINR γUL
i,j (q)

γUL
i,j (q) =

λ̄1,i,j (q)
∣∣∣wH

i,j (q)hi,i,j (q)
∣∣∣2

λ̄2,i + ∑Ni
m=1

∑Km
(m,n)�=(i,j) λ̄1,m,n (q)

∣∣∣wH
i,j (q)hi,m,n (q)

∣∣∣2 ,

where λ̄1 ∈ R
K×Q is a matrix of dual variables associated

with the constraint C3, and λ̄2 ∈ R
N×1 is a vector of dual

variables associated with power constraint C4. Therefore,
the dual problem can be interpreted as a virtual uplink
problem where λ̄1 is the virtual uplink transmit power, and
λ̄2 is the virtual uplink thermal noise. The strong duality is
held between (4) and (5); consequently, the downlink and
dual uplink problem can achieve the same optimal point.

The proof of Lemma 1 is presented in Appendix A.
Since the HeNB network is assumed to work in TDD
mode where the uplink and downlink channels are recip-
rocal, the downlink channel information can be estimated
via uplink measurement. When the optimal variables

{
λ̄

∗
1,i,j(q)

}
,
{
w∗
i,j(q)

} {
λ̄

∗
2,i

}
of (5) are obtained, it is easy

to calculate the optimal uplink SINR γUL∗
i,j (q). Due to the

strong duality, the optimal downlink SINR γDL∗
i,j (q) can be

achieved via:

z0 = γDL∗
i,j (q) = γUL∗

i,j (q). (6)

The equality γDL∗
i,j (q) = γUL∗

i,j (q) is hidden in the proof of
Lemma 1.
In the following subsections, we will implement Loop1

algorithm to the maximization process and design Loop2
algorithm to figure out the minimization procedure.

3.2 Loop1 design: uplink power and beamforming
optimization

In Loop1, the maximization problem about the virtual
uplink power λ̄1 and the beamforming vector w under the
fixed virtual noise λ̄2 can be interpreted as:

max
λ̄1,w

∑N

i

∑Q

q

∑Ki

j

{
αi,j (q) log2

[
γUL
i,j (q)

∣∣∣λ̄2
]

+ βi,j (q)
}

s.tC1 : λ̄1,i,j (q) ≥ 0∀i, i = 1, . . .N ;∀j, j = 1, . . .K

C3 :
∑N

i

∑Q

q

∑Ki

j
λ̄1,i,j (q) ≤

∑N

i
Pmax.

(7)

For fixed
{
wij

}
(i=1,...N ,j=1,...Ki)

, (7) is still a non-concave
function. Nevertheless, it can be transformed into a LSE
problem, which is known as geometric programming [23],
by substituting λ̄1,i,j (q) = exi,j(q).

min
x

∑N

i

∑Q

q

∑Ki

j

{
−αi,j · log2

(
γUL
i,j (q)

∣∣∣λ̄2,w
)

− βi,j
}

s.tC3 :
∑N

i

∑Q

q

∑Ki

j
exi,j(q) ≤

∑N

i
Pmax.

(8)

The constraint C3 can be deemed as the global con-
straint which is copied across HeNBs according to DLPDS
algorithm. Furthermore, it can be observed that x ∈ C

K×Q

is a global variable coupling among different objective
functions and the constraint C3 in (8). The Lagrangian
function of (8) can be expressed as:

L (x, y) =
∑N

i
Li (x, y), (9)

with the individual Lagrangian function of HeNB i

Li (x, y)

=
Q∑
q

Ki∑
j

{
−αi,j (q) log2

[
γUL
i,j (q)

∣∣∣λ̄2,w
]
− βi,j (q)

}

+ y

⎡
⎣ N∑

i

Q∑
q

Ki∑
j
exi,j(q) − Pmax

⎤
⎦ ,
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where y is the Lagrange multiplier associated with the
global constraint C3 in (8). With the above discussion, the
DLPDS can be applied into (9) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

vix(k) =
∑Ni

j=1
aijxj (k),

viy(k) =
∑Ni

j=1
aijyj (k),

xi (k + 1) = PX
[
vix(k) − φ (k)∇xLi

(
vix (k) , viy (k)

)]
,

yi (k + 1) = PY
[
viy (k) + φ (k)∇yLi

(
vix (k) , viy (k)

)]
,

(10)

where xj (k) denotes the matrix from the jth HeNB associ-
ating with the Lagrangian multiplier yj (k) at the kth itera-
tion. φ (k) is the diminishing step size with the increasing
iteration k. A fast linear non-negative weight aij (satisfying
1Ta = 1T, 1a = 1, 1 ∈ C

N×1) is adopted to approach the
average (1/N )

∑N
j=1 xj (k) such that HeNBs only commu-

nicate with their neighbors. PX and PY denote Euclidean
projection onto set X = {x|xi,j(q) ≤ log(NPmax), i =
1, . . . ,N ; j = 1, . . . ,Ki; q = 1, . . . ,Q} and Y = {y|y ≥ 0},
respectively. ∇xLi (·, y) can be expressed explicitly as:

• ifm == i

∂Li
∂xm,j (q)

= −αi,j (q)
ln 2

+
Ki∑
t �=j

αi,t (q) exi,j(q)
∣∣wH

i,t (q)hi,i,j (q)
∣∣2log2e

λ̄2,i+
Ni∑

m=1

Km∑
(m,n) �=(i,t)

exm,n(q)
∣∣wH

i,t (q)hi,m,n (q)
∣∣2

+ yexi,j(q),

• ifm �= i,m∈Ni

∂Li
∂xm,n (q)

=
Ki∑
j

αi,j (q) exm,n(q)
∣∣∣wH

i,j (q)hi,m,n (q)
∣∣∣2log2e

λ̄2,i +
Ni∑

m=1

Km∑
(m,n)�=(i,j)

exm,n(q)
∣∣∣wH

i,j (q)hi,m,n (q)
∣∣∣2

+ yexi,j(q),

• ifm /∈ Ni

∂Li
∂xm,n (q)

= 0.

Specifically, the subgradient ∇yLi (x, ·) can be denoted
as:

∇yLi =
∑N

i

∑Q

q

∑Ki

j
exi,j(q) −

∑N

i
Pmax. (11)

DLPDS algorithm can converge to the global optimal state
such that each HeNB i can obtain the optimal matrix x via
the consensus process. After obtaining the optimal uplink
power, the optimal beamforming vector can be achieved

according to quasiconcave Rayleigh-Ritz quotient pro-
gramming regardless of strong duality [18-20]:

w∗
i,j (q)∝

vmax

⎡
⎣
⎛
⎝ Ni∑

m

Km∑
(m,n) �=(i,j)

λ̄∗
1,m,n (q)hi,m,n (q)hHi,m,n (q)

+ λ̄2,iINt×Nt

⎞
⎠

−1

hi,i,j (q)hHi,i,j (q)

⎤
⎥⎦ ,

(12)

where vmax(·) is the dominant eigenvector that corre-
sponds to the maximum eigenvalue of the inner matrix.
With the relevant channel information, beamforming vec-
tor can be updated with the low complexity linear oper-
ation according to (12). The convergence between x and
w in Loop1 can be interpreted by the block coordinate
descent theory (P271 [24]). As shown in (10), HeNB i only
needs to share matrix xi and Lagrange multiplier y within
its subset.

3.3 Loop2 design: uplink noise optimization
The aim of Loop2 algorithm is to optimize the virtual
noise λ̄2 under fixed λ̄∗

1 and w∗ which are outputted from
Loop1 by solving the underlying minimization problem
with the closed subset χi = {

λ̄2,i
∣∣0 ≤ λ̄2,i ≤ Nσ 2

n
}
,∀i =

1, . . . ,N .

min{λ̄2,i∈χi}
∑N

i
fi
(
λ̄2,i

)
s.tC4 :

∑N

i
λ̄2,iPmax ≤ σ 2

n
∑N

i
Pmax,

(13)

where fi
(
λ̄2,i

)
represents a local objective function of

HeNB i and is given by:

fi
(
λ̄2,i

) =
∑Q

q

∑Ki

j

{
αi,j (q) log2

(
γUL
i,j (q)

∣∣∣λ̄∗
1,w∗

)
+ βi,j (q)

}
.

The convexity of fi
(
λ̄2,i

)
can be proved by checking

its positive Hessian matrix, and the pointwise sum of a
convex function is still convex. The coupling constraint
C4 and separable structure of (13) prompt us to apply
distributed alternating direction method of multipliers
(ADMM) algorithm [25] into its dual problem. The dual
problem of (13) can be explicitly expressed as:

max
y

∑N

i=1
gi(y)

s.ty ≥ 0,
(14)
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where gi(y) = min
λ̄2,i∈χi

[
fi
(
λ̄2,i

) + yci
(
λ̄2,i

)]
is the dual prob-

lem of (13) with Lagrange multiplier y, and ci
(
λ̄2,i

) =
λ̄2,iPmax − σ 2

n Pmax is the individual constraint. The
artificial parameter {zi} is introduced into (14) as a copy of
y. Then, the following equivalent form is derived.

max
y

∑N

i=1
gi (zi)

s.t zi = zl, (i, l) ∈ ε,
∀i, l = 1, . . . ,N .

(15)

We aim to design a distributed algorithm to solve the
separable convex programming given by (13). To facilitate
the derivation of the proposed algorithm, the neighbors
of HeNB i are partitioned into two sets, which are called
predecessors and successors. The set of predecessors of
HeNB i includes the neighbors whose indexes are smaller
than i, i.e., P(i) = {l|eli ∈ ε, l < i}, and the cardinality
is |P(i)| = Pi. The set of successors of HeNB i con-
sists of the neighbors with the indexes which are larger
than i, i.e., S(i) = {l|eil ∈ ε, i < l} with the cardinality
|S(i)| = Si. Then, we apply the distributed ADMM to the
dual function shown in (15), and we obtain (16).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zk+1
i = argmax

zi≥0

⎧⎨
⎩gi (zi) −

∑
l∈S(i)

[
λkil

(
zi − zkl

)
+ ρ

2

∥∥∥zi − zkl
∥∥∥2]

−
∑
l∈P(i)

[
λkli

(
zk+1
l − zi

)
+ ρ

2

∥∥∥zk+1
l − zi

∥∥∥2]
⎫⎬
⎭ ,

(16a)

λk+1
li = λkli + ρ

(
zk+1
l − zk+1

i

)
for any l ∈ Pi. (16b)

In the distributed ADMM algorithm, the dual vari-
able λil with the constraint zi = zl on edge is defined.
Each HeNB i only own the dual variable λmi for m < i
and updates the dual variable. Nevertheless, the optimal
{λ̄2,i}{i=1,...,N} are the objectives that we concern about,
and the next lemma reveals the connection between λ̄2,i
and zi.

Lemma 2. Let (16a) be satisfied, then λ̄k+1
2,i can be

uniquely attained by solving the following convex problem:

λ̄k+1
2,i = argmin

λ̄2,i∈χi

{
fi
(
λ̄2,i

) + 1
2ρ (Pi + Si)

× {
max

[
0, ci

(
λ̄2,i

) + Ai + Bi
]}2} .

(17)

Moreover, the zk+1
i can be obtained from λ̄k+1

2,i :

zk+1
i = max

{
0,

1
ρ (Si + Pi)

[
ci
(
λ̄k+1
2,i

)
+ Ai + Bi

]}
,

(18)

where Ai and Bi are defined as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ai =

∑
l∈S(i)

(
ρzkl − λkil

)
,

Bi =
∑
l∈P(i)

(
ρzk+1

l + λkli

)
.

The proof is given in Appendix B. Lemma 2 indicates
that each HeNB can update its own λ̄2,i by executing the
ameliorated distributed ADMM algorithm. In order to
gain further insight of the new algorithm, we summarized
the proposed algorithm as follows.

Algorithm 1Distributed ADMMwith coupling constraint
1: Initialization: each HeNB chooses an arbitrary z0i for

i = 1, . . . ,N .
2: For k ≥ 0,

a Each HeNB i executes the iteration in a
sequential order and gathers information
from neighbors according to Ai and Bi.

b HeNB i updates λ̄k2,i and zki with

λ̄k+1
2,i = argmin

λ̄2,i≥0

{
fi
(
λ̄2,i

) + 1
2ρ (Pi + Si)

× {
max

[
0, ci

(
λ̄2,i

) + Ai + Bi
]}2} ,

zk+1
i = max

{
0,

1
ρ (Si + Pi)

[
ci
(
λ̄k+1
2,i

)
+ Ai + Bi

]}

c Each HeNB i updates its own λkli, for all
l ∈ P(i)

λk+1
li = λkli + ρ

(
zk+1
l − zk+1

i

)

As shown in Algorithm 1, HeNBs execute the update
process in a sequential way, i.e., at iteration k, HeNB i
updates before HeNB l if l ∈ S(i). In order to calculate Ai
and Bi, HeNB i has to receive the information zkl , λ

k
il from

l ∈ S(i), and gather zk+1
l from l ∈ P(i), respectively. In fact,

the analysis in this proposed algorithm can be extended to
the case where fi(·) and ci(·) are multi-dimensional func-
tions. Meanwhile, the coupling constraint ci(·) is convex
(not necessarily linear).
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3.4 Power allocation strategy
Of particular interest is the fact that eachHeNB can calcu-
late its own uplink SINR γUL*

i,j (q) by acknowledging λ̄∗
1, λ̄∗

2
and w∗. Due to the strong duality, the underlying equality
is established:

p∗
i,j (q)

∣∣∣hHi,i,j (q)w∗
i,j (q)

∣∣∣2
γi,j (q)

−
Ni∑

m=1

Km∑
(m,n)�=(i,j)

p∗
m,n (q)

∣∣∣hHm,i,j (q)w∗
m,n (q)

∣∣∣2 = σ 2
n .

(19)

In order to acquire the power, we define the underlying
vectors:

⎧⎪⎨
⎪⎩
p∗
i (q) = [

p∗
i,1 (q) , p∗

i,2 (q) , · · · , p∗
i,Ki (q)

]T ,
p∗ (q) =

[(
p∗
1 (q)

)T , (p∗
2 (q)

)T , · · · , (p∗
N (q)

)T]T .
(20)

Based on (19) and (20), the downlink power can be
obtained by taking the inverse of the following matrix
F (q).

p∗ (q) = F−1 (q) 1σ 2
n , (21)

where 1 ∈ C
K×1 is all-ones vector and F (q) ∈ C

K×K is:

F (q) =

⎡
⎢⎢⎢⎣

F11 (q) F12 (q) · · · F1N (q)
F21 (q) F22 (q) · · · F2N (q)

...
...

. . .
...

FN1 (q) FN2 (q) · · · FNN (q)

⎤
⎥⎥⎥⎦ , (22)

where the
(
j, n

)
th entry of sub-matrix Fim (q) ∈ C

Ki×Km is
defined as:

Fimjn (q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣hHi,i,j (q)w∗
i,j (q)

∣∣∣2
γUL*
i,j (q)

,m = i and n = j

−
∣∣∣hHi,i,j (q)w∗

i,n (q)
∣∣∣2,m = i and n �= j

−
∣∣∣hHm,i,j (q)w∗

m,n (q)
∣∣∣2 ,m �= i but m ∈ Ni

0, others.
(23)

3.5 Distributed algorithm
As discussed above, the proposed DJPCBO algorithm is
summarized in Algorithm 2. The outer circle is the succes-
sive convex approximation process. Loop1 and Loop2 are
executed to find the optimal γUL∗

i,j of each approximated
problem. With the optimal virtual uplink SINR γUL∗

i,j of
each approximate problem, parameters α and β can be
updated according to (3) and (6).

Algorithm 2 DJPCBO algorithm
1: Initialization:

(a) HUEs measure downlink signal channel and interference channel from other HeNBs in their subsets and
send measure reports to their serving HeNBs. HeNBs initialize the downlink transmit power and
beamforming vector.

(b) HeNBs calculate virtual uplink SINR for target HUEs and initialize SCALE parameters α and β according to
zij0 (q) = γDL

i,j (q).

2: for kouter = 1, . . . , SCAmax do � SCAmax: SCALE iteration num
3: for kinner = 0, . . . , Altmax do � Altmax: Loop1 and Loop2 alternative num
4: if kinner == 0 then
5: HeNB i initializes

{
λ̄2,i

}
and implements Loop1 algorithm.

6: else
7: HeNB i loads

{
λ̄∗
2,i
}
from Loop2 and implements Loop1 algorithm.

8: end if
9: HeNB i loads

{
λ̄∗
1
}
, {w∗} from Loop1 and executes Loop2 algorithm.

10: end for
11: Power allocation and SCALE parameters update according to zij0 (q) = γUL∗

i,j (q).
12: end for
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It is noted that this proposed algorithm successfully
updates λ̄1, w, and λ̄2 by using the alternating opti-
mization (AO) principle. Through checking the positive
Hessian matrix, for any fixed λ̄1, w, f

(
λ̄2|λ̄1,w

)
is convex.

Therefore, according to the pointwise maximum prop-
erty [26], f (λ̄2) = maxλ1,w f (λ̄2, λ̄1,w) is still convex,
which is also adopted in the convergence proof of [19] (its
Appendix B). By developing AO, we can search the saddle
point by optimizing λ̄2 while keeping the rest unchanged
and vice versa.

4 Numerical results
Extensive simulations are conducted to evaluate the per-
formance of the proposed algorithm in this section, and
the detailed configurations of involved system parameters
are presented in Table 1.
The alternative optimization process of the virtual

uplink transmitting power and beamforming in Loop1
is presented in Figure 3. Apparently, the convergence of
the optimization process is fast and stable as shown in
Figure 3a. In Figure 3b, the detailed convergence process
for the first ten iterations is shown more clearly, which
demonstrates that the objective function in Loop1 can be
promoted effectively by optimizing virtual uplink power
(purple block) and beamforming vector (blue block) in
turn. Therefore, it could be deduced that a large number of
alternative updating processes are not necessary. Specifi-
cally, it is enough to set the alternative num as 1 or 2, and
the reason will be interpreted later.

Table 1 Parameter configuration

Parameters Values

Number of HeNB 9

Average number of neighbors 6∼7

Number of HUEs per cell 2

Number of channel 2

HeNB antennas 2

HUE antennas 1

Channel bandwidth 0.18 (MHz)

Maximum power 20 (dBm)

Path loss model [28] (dB)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

30 log10 D + 37,indoor

30 log10 D + 5n + 37,outdoor

D − distance

n − number of walls

MISO channel [23]

⎧⎨
⎩ hij = PL · cij

cij ∼ CN (0, I)

Step size of Loop1 φk = 7
(k + 1)0.7

SCAmax 5

Altmax 1

As shown in Figure 4, each HeNB can converge to its
own optimal state by executing the Loop2 of the proposed
algorithm with local individual action. In other words,
with the application of the distributed ADMM to the dual
problem (15), each HeNB can find its own optimal λ̄2,i
by using Lemma 2. In Figure 5a, it proves that the con-
vex problem (13) can converge to the optimal state by a
few iterations. Furthermore, the inequality constraint gap
measured by

∑N
i ci(λ̄2,i)

σ 2
n
∑N

i Pmax
will converge to zero as shown in

Figure 5b. This can be interpreted that fi(λ̄2,i) is a decreas-
ing function for each λ̄2,i, and each HeNB aims to find
its own λ̄2,i as large as possible, while not violating the
coupling constraint

∑N
i ci

(
λ̄2,i

) ≤ 0.
From Figure 6a, it demonstrates that the average spec-

tral efficiency of each cell converges rapidly with the
alternative iteration process of Loop1 and Loop2. And
the detail of the first 20 alternative iterations is shown
in Figure 6b. We can see that the Loop1 represented by
blue block has successfully maximize problem (8), and
the Loop2 indicated by purple block has accomplished
the minimization procedure of (13). Through alternatively
manipulating the two loops, the lower bound of network
capacity can converge to a saddle point which is equal
to the optimal point of (4). Because the accuracy of the
solution of approximated problem (5) is irrelevant with
the original problem, it is more beneficial to refine the
successive approximation often, rather than solving the
approximated problem (5) to a high accuracy. As a result,
it is not necessary to alternatively execute the Loop1 and
Loop2 for many times.
From Figure 7, it is obvious that the average spectral effi-

ciency can be improved remarkably and converge to a sta-
ble state with the increase of the SCALE iteration number.
Furthermore, a larger number of cooperating neighbors
will improve the DJPCBO performance. Because a larger
cooperating set means that each HeNB with stronger
measurement capability can monitor more interference
sources, and the more precise SINR term can be obtained.
However, the cooperating overhead will increase with the
number of cooperating neighbors in each set. In addition,
the average network spectral efficiency under the pro-
posedDJPCBO algorithm is compared with that under the
following two non-cooperating beamforming techniques
in Figure 8.

1) Channel-matched (CM) beamforming: the
beamforming vectors matched to the users’ channel
are selected without considering intra-cell and
inter-cell interference, i.e.,

wi,j (q) =
√
Pmax
KiQ

hi,i,j (q)∥∥hi,i,j (q)∥∥
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Figure 3 Alternative update of virtual uplink power and beamforming. (a) First 200 iterations. (b) First 10 iterations.

2) Intra-cell zero-forcing (ICZF) beamforming: the set
of beams is designed so as to eliminate intra-cell
interference, i.e.,

wi,j (q) = δi,j (q)

√
Pmax
KiQ

⎛
⎝ Ki∑

l
hi,i,l (q)hHi,i,l (q)

⎞
⎠

−1

hi,i,j (q)

As shown in Figure 8, the CM strategy is not a good choice
in multi-cell multi-antenna scenario, for the poor average
network capacity resulted from ignoring the co-channel
interference. Comparatively, ICZF scheme is better than
the CM strategy by utilizing orthogonal beamforming vec-
tors in single cell. However, its capability is still limited.
Due to that the proposed DJPCBO takes the inter-cell
interference into account, much gain can be achieved
from the coordination among HeNBs. Thus, it validates
that the proposed DJPCBO algorithm outperforms the

two existing benchmark techniques a lot. Moreover, we
also compare the DJPCBO algorithmwith the cooperating
strategy ICBF [13], under the same initial beamforming
state, and we have found DJPCBO is better than ICBF
algorithm. It is worth noting that the initial beamform-
ing state will affect the algorithm performance due to the
nature of SCALE approximation [22], i.e., a good initial
state presents an excellent gain. We consequently choose
the ICZF strategy as the initial state in the simulation.
Furthermore, Figure 9 presents the spectral efficiency

of cells served by different HeNBs respectively. When
compared to the CM and ICZF schemes, most cells’
performances are promoted through using the proposed
DJPCBO algorithm. Moveover, from this figure, each
HeNB’s spectral efficiency is slightly better than the ICBF
which does not take the cooperation graph into consid-
eration. However, a few of them are even worse. That is
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Figure 4 Convergence of {λ̄2,i} in Loop2.

Figure 5 Convergence of network capacity in Loop2 (a) and convergence of constraint gap in Loop2 (b).
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Figure 6 Convergence of Loop1 and Loop2 with alternatively updating. (a) First 200 iterations. (b) First 20 iterations.

because the quality of service (QoS) has not been taken
into account. In our future works, the QoS guarantee will
be considered as an additional constraint.

5 Conclusions
In this paper, the NP-hard WSRMax problem in multi-
ple input single output (MISO) HeNB network is studied.
With an ameliorated max-min multi-cell uplink-downlink
throughput duality, a distributed algorithm based on two
loops is proposed to solve this problem. In Loop1, we
apply DLPDS algorithm to solve the virtual uplink pro-
gramming. Furthermore, we propose a new iteration
scheme to optimize the virtual noise problem with sepa-
rable structure in Loop2. Numerical results show the two
loops can converge to a stable state, and the network per-
formance is dramatically improved with the coordinations
among HeNBs. Thus, it can be seen that multi-cell uplink-
downlink throughput duality is a powerful tool to solve

WSRMax problem. In the future, we will apply this tool
into multi-input multi-output scenarios and take the QoS
into consideration.

Appendix A: proof of Lemma 1
The proof of Lemma 1 is similar with the proof in [18], and
we provide it here for completeness reason. The primal
problem (1) can be reformulated into an equivalent form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
p,w

∑N

i

∑Q

q

∑Ki

j

{
αi,j (q) log2

[
γi,j (q)

] + βi,j (q)
}

s.t C1 : γi,j (q) ≤
pi,j (q)

∣∣∣hHi,i,j (q)wi,j (q)
∣∣∣2

σ 2
n + ∑Ni

m=1
∑Km

(m,n) �=(i,j) pm,n (q)
∣∣∣hHm,i,j (q)wm,n (q)

∣∣∣2
C2 :

∑Q

q

∑Ki

j
pi,j (q) ≤ Pmax

C3 : pi,j (q) ≥ 0 ∀i, i = 1, . . .N ;∀q, q = 1, . . .Q;∀j, j = 1, . . .K ,

(24)
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Figure 7 System performance with the increasing SCALE iteration.

Figure 8 Comparison of average spectral efficiency between different strategies.
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Figure 9 Spectral efficiency performance for HeNBs 1 to 9.

where γi,j (q) is the lower bound of downlink SINR. By
rearranging the C1 constraint in (24), the Lagrangian
function is given by:

L (γ ,p,w, λ1, λ2, λ3)

=
∑N

i

∑Q

q

∑Ki

j

{
αi,j (q) log2

[
γi,j (q)

] + βi,j (q)
}

−
∑N

i

∑Q

q

∑Ki

j
λ1,i,j (q)

⎛
⎜⎝∑Ki

l �=j
pi,l (q)

∣∣∣hHi,i,j (q)wi,l (q)
∣∣∣2

+
Ni∑
m �=i

Km∑
n

pm,n (q)
∣∣∣hHm,i,j (q)wm,n (q)

∣∣∣2

−
pi,j (q)

∣∣∣hHi,i,j (q)wi,j (q)
∣∣∣2

γi,j (q)
+ σ 2

n

⎞
⎟⎠

−
∑N

i
λ2,i

(∑Q

q

∑Ki

j
pi,j (q) − Pmax

)

+
∑N

i

∑Q

q

∑Ki

j
λ3,i,j (q) pi,j (q),

(25)

where {λ1} , {λ2} , {λ3} are the Lagrangian multipliers
associating with constraint C1,C2,C3, respectively. The
following equality can be obtained by rearranging (25):

L (γ ,p,w, λ1, λ2, λ3)

=
N∑
i

Q∑
q

Ki∑
j

{
αi,j (q) log2

[
γi,j (q)

] + βi,j (q)
}

−
N∑
i

Q∑
q

Ki∑
j

λ1,i,j (q)σ 2
n +

∑N

i
λ2,iPmax

+
∑N

i

∑Q

q

∑Ki

j
pi,j (q)

{
λ1,i,j (q)

∣∣∣wH
i,j (q)hi,i,j (q)

∣∣∣2

−
∑Ni

m

∑Km

n
λ1,m,n (q)

∣∣∣wH
i,j (q)hi,m,n (q)

∣∣∣2

+
λ1,i,j (q)

∣∣∣wH
i,j (q)hi,i,j (q)

∣∣∣2
γi,j (q)

−λ2,i + λ3,i,j (q)
}
.

(26)

The corresponding dual objective problem can be
expressed as:

g (λ1, λ2, λ3) = max
γ ,p,{w} L (γ ,p,w, λ1, λ2, λ3) .

(27)
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According to the KKT condition, ∂L
∂pi,j(q) = 0 at optimum

and the fact λ3,i,j (q) ≥ 0, the underlying inequality is hold:

γi,j (q)

≥
pi,j (q)

∣∣∣hHi,i,j (q)wi,j (q)
∣∣∣2

λ2,i +
Ni∑
m

Km∑
n

λ1,m,n (q)
∣∣∣wH

i,j (q)hi,m,n (q)
∣∣∣2 − λ1,i,j (q)

∣∣∣wH
i,j (q)hi,i,j (q)

∣∣∣2

=
λ1,i,j (q)

∣∣∣wH
i,j (q)hi,i,j (q)

∣∣∣2
λ2,i + ∑Ni

m=1
∑Km

(m,n) �=(i,j) λ1,m,n (q)
∣∣∣wH

i,j (q)hi,m,n (q)
∣∣∣2 .

(28)

With (27) and (28), the dual problem can be explicitly
expressed as:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
λ1 ,λ2

max
w,γ

∑N

i

∑Q

q

∑Ki

j

{
αi,j (q) log2

[
γi,j (q)

] + βi,j (q)
}

−
∑N

i

∑Q

q

∑Ki

j
λ1,i,j (q)σ 2

n +
∑N

i
λ2,iPmax

s.tC1 : γi,j (q) ≥
λ1,i,j (q)

∣∣∣wH
i,j (q)hi,i,j (q)

∣∣∣2
λ2,i +

Ni∑
m=1

Km∑
(m,n)�=(i,j)

λ1,m,n (q)
∣∣∣wH

i,j (q)hi,m,n (q)
∣∣∣2

C2 : λ1,i,j (q) ≥ 0 ∀i, i = 1, . . .N ;∀q, j = 1, . . .Q;∀j, j = 1, . . .K

C3 : λ2,i ≥ 0 ∀i, i = 1, . . .N .
(29)

The term
∑N

i
∑Q

q
∑Ki

j λ1,i,j (q)σ 2
n of the objective func-

tion in (29) can be moved into the constraint set by
introducing a Lagrange multiplier χ , and the equivalent
problem is:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
χ

min
λ1 ,λ2

max
w,γ

N∑
i

Q∑
q

Ki∑
j

{
αi,j (q) log2

[
γi,j (q)

]+βi,j (q)
}+∑N

i
λ2,iPmax−χ

s.t C1 : γi,j (q) ≥
λ1,i,j (q)

∣∣∣wH
i,j (q)hi,i,j (q)

∣∣∣2
λ2,i + ∑Ni

m=1
∑Km

(m,n)�=(i,j) λ1,m,n (q)
∣∣∣wH

i,j (q)hi,m,n (q)
∣∣∣2

C2 : λ1,i,j (q) ≥ 0 ∀i, i = 1, . . .N ; ∀q, j = 1, . . .Q; ∀j, j = 1, . . .K

C3 : λ2,i ≥ 0 ∀i, i = 1, . . .N

C4 :
∑N

i

∑Q

q

∑Ki

j
λ1,i,j (q)σ 2

n ≤ χ .

(30)

A further transformation rule with χ ′, λ̄1,i,j (q), and λ̄2,i
is presented as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

χ = χ ′σ 2
n
∑N

i=1
Pmax,

λ1,i,j (q) = χ ′λ̄1,i,j (q) ,

λ2,i = χ ′λ̄2,i,

(31)

and the equivalent dual problem can be stated as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
χ ′ min

λ̄1 ,λ̄2
max
w,γ

N∑
i

Q∑
q

Ki∑
j

{
αi,j (q) log2

[
γi,j (q)

] + βi,j (q)
}

+ χ ′
{ N∑

i
λ̄2,iPmax − σ 2

n

N∑
i
Pmax

}

s.t C1 : γi,j (q) ≥
λ̄1,i,j (q)

∣∣∣wH
i,j (q)hi,i,j (q)

∣∣∣2
λ̄2,i + ∑Ni

m=1
∑Km

(m,n)�=(i,j) λ̄1,m,n (q)
∣∣∣wH

i,j (q)hi,m,n (q)
∣∣∣2

C2 : λ̄1,i,j (q) ≥ 0 ∀i, i = 1, . . .N ;∀q, j = 1, . . .Q;∀j, j = 1, . . .K
C3 : λ̄2,i ≥ 0∀i, i = 1, . . .N

C4 :
∑N

i

∑Q

q

∑Ki

j
λ̄1,i,j (q) ≤

∑N

i
Pmax.

(32)

χ ′ can be considered as a dual multiplier of the constraint
N∑
i
λ̄2,iPmax−σ 2

n
N∑
i
Pmax ≤ 0, and for other fixed variables,

optimization over λ̄2,i is a convex problem that guarantees
strong duality. By changing (32) as primal problem over
λ̄2,i with a constraint, the corresponding equivalent dual
problem is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
λ̄1 ,λ̄2

max
w,γ

∑N

i

∑Q

q

∑Ki

j

{
αi,j (q) log2

[
γi,j (q)

] + βi,j (q)
}

s.t C1 : γi,j (q) ≥
λ̄1,i,j (q)

∣∣∣wH
i,j (q)hi,i,j (q)

∣∣∣2
λ̄2,i + ∑Ni

m=1
∑Km

(m,n)�=(i,j) λ̄1,m,n (q)
∣∣∣wH

i,j (q)hi,m,n (q)
∣∣∣2

C2 : λ̄1,i,j (q) ≥ 0 ∀i, i = 1, . . .N ;∀q, q = 1, . . .Q;∀j, j = 1, . . .K
C3 : λ̄2,i ≥ 0∀i, i = 1, . . .N

C4 :
∑N

i

∑Q

q

∑Ki

j
λ̄1,i,j (q) ≤

∑N

i
Pmax

C5 :
∑N

i
λ̄2,iPmax ≤ σ 2

n
∑N

i
Pmax.

(33)

Since the optimization is met with equality for fixed
γi,j (q) , λ̄2,i,wi,j (q), reversal of the SINR constraint and the
reversal of the C1 minimization as a maximization over
λ̄1,i,j (q) do not change the optimization problem. Thus,
the modified dual problem can be stated as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
λ̄2

max
λ̄1 ,w,γ

∑N

i

∑Q

q

∑Ki

j

{
αi,j (q) log2

[
γi,j (q)

] + βi,j (q)
}

s.t C1 : γi,j (q) ≥
λ̄1,i,j (q)

∣∣∣wH
i,j (q)hi,i,j (q)

∣∣∣2
λ̄2,i + ∑Ni

m=1
∑Km

(m,n)�=(i,j) λ̄1,m,n (q)
∣∣∣wH

i,j (q)hi,m,n (q)
∣∣∣2

C2 : λ̄1,i,j (q) ≥ 0 ∀i, i = 1, . . .N ;∀j, j = 1, . . .K
C3 : λ̄2,i ≥ 0 ∀i, i = 1, . . .N

C4 :
∑N

i

∑Q

q

∑Ki

j
λ̄1,i,j (q) ≤

∑N

i
Pmax

C5 :
∑N

i
λ̄2,iPmax ≤ σ 2

n
∑N

i
Pmax.

(34)

Replacing γi,j (q) with the right term of the inequality
constraint in (34) completes the proof.
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Moreover, as the virtual uplink sum power {λ1,i,j} is
upper bounded by real downlink power Pmax, and accord-
ing to the duality theory [26], the optimal value of the
dual objective function is lower bounded by themaximum
value of the primal maximization problem (4). The strong
duality is analyzed in [18] and is further applied in [19]
successfully.

Appendix B: proof of Lemma 2
We substitute gi(·) into (16a) with zi = y and obtain:

zk+1
i = argmax

zi≥0
inf

λ̄2,i∈χi

{
K
(
λ̄2,i, zi

)}
, (35)

where K
(
λ̄2,i, zi

)
: R × R → R is defined as:

K
(
λ̄2,i, zi

)
= fi

(
λ̄2,i

) + zici
(
λ̄2,i

) −
∑
l∈S(i)

[
λkil

(
zi − zkl

)
+ ρ

2

∥∥∥zi − zkl
∥∥∥2]

−
∑
l∈P(i)

[
λkli

(
zk+1
l − zi

)
+ ρ

2

∥∥∥zk+1
l − zi

∥∥∥2] for λ̄2,i ∈ χi, zi ≥ 0.

(36)

If the solution set is non-empty and bounded, then the
function fi(·), ci(·) and the set χi have no direction of
recession in the sense of ([27], p. 61 and p. 69). It can be
deduced that the convex function K(·, zi) has no direc-
tion of recession of for any zi ≥ 0, while the convex func-
tion −K

(
λ̄2,i, ·

)
has no direction of recession for any

λ̄2,i ∈ χi. According to the theorems 37.3 and 37.6 in [27],
the saddle point (λ̄2,i, zi) ∈ χi × {zi|zi ≥ 0} exists:

sup
zi≥0

inf
λ̄2,i∈χi

[
K
(
λ̄2,i, zi

)] = inf
λ̄2,i∈χi

sup
zi≥0

[
K
(
λ̄2,i, zi

)]
. (37)

Moreover, since the value of the saddle point will not
change by adding constant terms, we could obtain:

max
zi≥0

min
λ̄2,i∈χi

⎧⎨
⎩K

(
λ̄2,i, zi

) −
∑
l∈S(i)

[
λkilz

k
l − ρ

2

(
zkl
)2]

+
∑
l∈P(i)

[
λkliz

k+1
l + ρ

2

(
zk+1
l

)2]⎫⎬
⎭

= min
λ̄2,i∈χi

max
zi≥0

⎧⎨
⎩K

(
λ̄2,i, zi

) −
∑
l∈S(i)

[
λkilz

k
l − ρ

2

(
zkl
)2]

+
∑
l∈P(i)

[
λkliz

k+1
l + ρ

2

(
zk+1
l

)2]⎫⎬
⎭ .

(38)

Consequently, for fixed any λ̄2,i, the maximum on the
right side of (41) is uniquely attained by:

zi = max
{
0,

1
ρ (Si + Pi)

[
ci
(
λ̄2,i

) + Ai + Bi
]}

. (39)

We substitute (39) into the right side of (38) to eliminate
zi. Due to (39) is a piecewise function, two cases need to
be considered respectively:
Case 1: if zi = 0, we obtain:

λ̄k+1
2,i = argmin

λ̄2,i∈χi

fi
(
λ̄2,i

)
. (40)

Case 2: if zi = [
ci
(
λ̄2,i

) + Ai + Bi
]
/ [ρ (Si + Pi)], we

obtain:

K
(
λ̄2,i, zi

) −
∑
l∈S(i)

[
λkilz

k
l − ρ

2

(
zkl
)2] +

∑
l∈P(i)

[
λkliz

k+1
l + ρ

2

(
zk+1
l

)2]

= fi
(
λ̄2,i

) +
⎧⎨
⎩
∑
l∈S(i)

[
1

Pi + Si
zici

(
λ̄2,i

) − λkilzi −
ρ

2

(
zi − zkl

)2 + ρ

2

(
zkl
)2]⎫⎬

⎭
1

+
⎧⎨
⎩
∑
l∈P(i)

[
1

Pi + Si
zici

(
λ̄2,i

) + λklizi −
ρ

2

(
zk+1
l − zi

)2 + ρ

2

(
zk+1
l

)2]⎫⎬
⎭

2

.

(41)

Next, we give the first priority to {·}1:

{·}1
= −

∑
l∈S(i)

{
ρ

2
z2i + zi

[
λkil − ρzkl − ci

(
λ̄2,i

)
Pi + Si

]}

= 1
2ρ(Pi + Si)2

{
Si
[
ci
(
λ̄2,i

)]2 + 2 (Pi + Si)Aici
(
λ̄2,i

)
+ 2 (Pi+Si) (Ai+Bi)Ai−Si(Ai+Bi)

2
}
.

(42)

Similar to {·}1, {·}2 can be represented as:

{·}2
=

∑
l∈P(i)

{
−ρ

2
z2i + zi

[
λkli + ρzk+1

l + ci
(
λ̄2,i

)
Pi + Si

]}

= 1
2ρ(Pi + Si)2

{
Pi
[
ci
(
λ̄2,i

)]2+ 2 (Pi + Si)Bici
(
λ̄2,i

)
+ 2 (Pi + Si) (Ai + Bi)Bi−Pi(Ai+Bi)

2
}
.

(43)

We substitute (42) (43) into (38) and obtain:

λ̄k+1
2,i = argmin

λ̄2,i≥0

{
fi
(
λ̄2,i

) + 1
2ρ (Pi + Si)

[
ci
(
λ̄2,i

) + Ai + Bi
]2} .

(44)

We complete the proof by taking (40) and (44) into con-
sideration jointly.
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