2 research outputs found

    Image Compression Techniques: A Survey in Lossless and Lossy algorithms

    Get PDF
    The bandwidth of the communication networks has been increased continuously as results of technological advances. However, the introduction of new services and the expansion of the existing ones have resulted in even higher demand for the bandwidth. This explains the many efforts currently being invested in the area of data compression. The primary goal of these works is to develop techniques of coding information sources such as speech, image and video to reduce the number of bits required to represent a source without significantly degrading its quality. With the large increase in the generation of digital image data, there has been a correspondingly large increase in research activity in the field of image compression. The goal is to represent an image in the fewest number of bits without losing the essential information content within. Images carry three main type of information: redundant, irrelevant, and useful. Redundant information is the deterministic part of the information, which can be reproduced without loss from other information contained in the image. Irrelevant information is the part of information that has enormous details, which are beyond the limit of perceptual significance (i.e., psychovisual redundancy). Useful information, on the other hand, is the part of information, which is neither redundant nor irrelevant. Human usually observes decompressed images. Therefore, their fidelities are subject to the capabilities and limitations of the Human Visual System. This paper provides a survey on various image compression techniques, their limitations, compression rates and highlights current research in medical image compression

    A survey on video compression fast block matching algorithms

    Get PDF
    Video compression is the process of reducing the amount of data required to represent digital video while preserving an acceptable video quality. Recent studies on video compression have focused on multimedia transmission, videophones, teleconferencing, high definition television, CD-ROM storage, etc. The idea of compression techniques is to remove the redundant information that exists in the video sequences. Motion compensation predictive coding is the main coding tool for removing temporal redundancy of video sequences and it typically accounts for 50–80% of video encoding complexity. This technique has been adopted by all of the existing International Video Coding Standards. It assumes that the current frame can be locally modelled as a translation of the reference frames. The practical and widely method used to carry out motion compensated prediction is block matching algorithm. In this method, video frames are divided into a set of non-overlapped macroblocks and compared with the search area in the reference frame in order to find the best matching macroblock. This will carry out displacement vectors that stipulate the movement of the macroblocks from one location to another in the reference frame. Checking all these locations is called Full Search, which provides the best result. However, this algorithm suffers from long computational time, which necessitates improvement. Several methods of Fast Block Matching algorithm are developed to reduce the computation complexity. This paper focuses on a survey for two video compression techniques: the first is called the lossless block matching algorithm process, in which the computational time required to determine the matching macroblock of the Full Search is decreased while the resolution of the predicted frames is the same as for the Full Search. The second is called lossy block matching algorithm process, which reduces the computational complexity effectively but the search result's quality is not the same as for the Full Search
    corecore