

Hussain, A and Ahmed, Z

 A survey on video compression fast block matching algorithms

http://researchonline.ljmu.ac.uk/id/eprint/10885/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Hussain, A and Ahmed, Z (2018) A survey on video compression fast block
matching algorithms. Neurocomputing, 335. pp. 215-237. ISSN 0925-2312

LJMU Research Online

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LJMU Research Online

https://core.ac.uk/display/211245635?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

*Corresponding author Tel.: +44(0)1512312458, Fax: +44(0)1512074594
Email: a.hussain@ljmu.ac.uk

A Survey on Video Compression Fast Block Matching
Algorithms

A. J. Hussaina,*, Zaynab Ahmedb

aApplied Computing Research Group,

Department of Computer Science, Liverpool John Moores University, Byrom Street,
Liverpool, L3 3AF, UK
bUniversity of Baghdad

College of Science for Women
University of Baghdad

ABSTRACT

Video compression is the process of reducing the amount of data required to

represent digital video while preserving an acceptable video quality. Recent studies

on video compression have focused on multimedia transmission, videophones,

teleconferencing, high definition television, CD-ROM storage, etc. The idea of

compression techniques is to remove the redundant information that exists in the

video sequences.

Motion compensation predictive coding is the main coding tool for removing temporal

redundancy of video sequences and it typically accounts for 50-80% of video

encoding complexity. This technique has been adopted by all of the existing

International Video Coding Standards. It assumes that the current frame can be

locally modelled as a translation of the reference frames. The practical and widely

method used to carry out motion compensated prediction is block matching

algorithm. In this method, video frames are divided into a set of non-overlapped

macroblocks and compared with the search area in the reference frame in order to

find the best matching macroblock. This will carry out displacement vectors that

stipulate the movement of the macroblocks from one location to another in the

reference frame. Checking all these locations is called full Search, which provides

the best result. However, this algorithm suffers from long computational time, which

necessitates improvement. Several methods of Fast Block Matching algorithm are

developed to reduce the computation complexity.

This paper focuses on a survey for two video compression techniques: the first is

called the lossless block matching algorithm process, in which the computational

time required to determine the matching macroblock of the full search is decreased

while the resolution of the predicted frames is the same as for the full search. The

second is called lossy block matching algorithm process, which reduces the

computational complexity effectively but the search result’s quality is not the same as

for the full search.

1. INTRODUCTION

Digital video is a series of orthogonal bitmap digital images called frames displayed

in a rapid succession at a constant rate to give the illusion of a motion picture. The

applications of digital video have extended to a wide range of industrial applications,

especially in the area of entertainment, communications, and broadcasting. As

results of technological advances, several commercial products are becoming

integral part of modern life, such as High Definition Television (HDTV), digital

cinema, smart phones, and mobile devices. Huge revenue from these products and

services are gained since the number of end users increases continuously. In 2013,

more than one billion unique users visit YouTube each month, and video chat

reaches tens of thousands of users online at any time during a day [1]. In addition,

the digital video industry invests a lot in the research and development of video

technology around £1.5 billion in 2013 in the UK alone [2] to ensure continuous

growth in the long term. The major challenge for efficient digital video storage and

transmission lies in the huge amount of data needed to display digital video, and

hence large memory space is required to store video images, and equally large

bandwidth for their transmission. To reduce this amount of data while preserving an

acceptable video quality, various video compression techniques have been actively

proposed and developed by researchers and companies since the 1980s [3-4]. The

idea of these techniques is to provide efficient solutions to represent video data in a

more compact and robust way so that the information can be stored or transmitted

faster in videoconferencing and videophone, digital broadcasting, interactive games

http://en.wikipedia.org/wiki/Digital_image

(internet), etc. Well-known international video coding standards include the former

MPEG series and H.26x series [5-11].

The main idea of compression techniques is to remove the redundant information

that exists in video sequences. Digital video carries four types of redundancy: colour

space redundancy, spatial redundancy, temporal redundancy and statistical

redundancy [12-16], [32]. These redundancies are processed separately because of

the differences in their characteristics. Video compression contains two systems:

video encoders and video decoders. A video encoder compresses the original video

for storage and transmission, after which the encoded video is decompressed by a

video decoder back to the displayable video before playback and editing. A video

encoder consists of three main functional units to remove redundant information:

colour subsampling, a temporal model (inter-frame encoder) or a spatial model

(intra-frame encoder) and an entropy encoder. Video compression efficiency is

achieved by inter-frame encoder which reduces or eliminates temporal redundancy.

An inter-frame encoder exploits the high correlation that exists between successive

frames in video sequences especially if the frame rate is high. This correlation leads

to temporal redundancy. The goal of inter-frame encoding is to reduce this

redundancy. Video coding standards share a number of common features for inter-

frame encoding. Each standard assumes that after colour subsampling there are four

stages of inter-frame encoding to produce the compressed bitstream, which are:

temporal prediction, transform, quantisation and entropy coding [23-25].

Temporal prediction is the main tool that reduces temporal redundancy by predicting

some frames from others to reduce the transmission rate of the sequence of the

video images and obtain high compression. This means that the current frame could

be locally modelled as a translation of the reference frames. Reference frames have

to be encoded first, while a residual (difference) between current and reference

frames which contain less energy will be encoded later instead of encoding the

current frame [12]. To decrease this residual, the prediction can be improved by

estimating the motion of the moving objects between the current and the reference

frames, which is called Motion Estimation (ME) technique [110]. That is, the motion

estimation used to calculate the Motion Vectors (MVs) by comparing the current

frame and the reference frame. The technique that uses MVs to predict a new frame

from a reference frame is called Motion Compensation (MC). The predicted frame is

known as the Motion Compensated Prediction (MCP) [13]. The first output of this

process will be the difference between the current frame and the MCP, which is

called the Residual Prediction Error (RPE) (or Displaced Frame Difference (DFD));

the second output will be the motion vectors. The MVs are encoded using entropy

coding and RPE between the current frame and the MCP is encoded using transform

coding, quantisation and entropy coding. At the decoder, the received MVs will be

utilised to form an MCP from the reconstructed reference frame, and then the current

frame will be reconstructed by adding the reconstructed RPE to the MCP [9], [83],

[13], [110], [92], [4].

ME technique has the highest complexity among all other stages; it typically

accounts for 50-80% of the total video encoder complexity. This technique has been

adopted by all existing international video coding standards such as the MPEG

series and the H.26x series including its latest H.265 code [5], [6], [8], [9], [10], [11].

Therefore, ME is the main challenge for implementing real-time video encoding.

It is possible to estimate the displacement for every one or two pixel positions

between successive video frames. However, this is not a practical method since the

calculation of these motion vectors is very computationally intensive. Moreover, the

number of motion vectors is equal to or half the number of pixels [35-37]. These

vectors will be sent to the decoder in order to form an MCP. As a result, a large

amount of data should be transmitted [88-90]. Therefore, the most practical and

widely used method is to use a group of pixels, called MacroBlock (MB) to estimate

the motion of the current frame. This method is called Block Matching Algorithm

(BMA) or Block Matching Motion Estimation (BMME) [121], [60], [58], [13].

BMA is the most popular technique used for motion estimation in which video frames

are divided into a set of non-overlapped MBs of size N×M. Each target MB in the

current frame is compared with a number of candidate macroblocks within the

search area in the reference frame in order to find the best matching macroblock.

The spatial difference between the two matching macroblocks will determine a set of

displacement vectors that stipulate the movement of the macroblocks from one

location to another in the reference frame [26], [55]. There are a number of Block

Distortion Measures (BDMs) that can be used to calculate the difference between

two macroblocks, namely Mean Absolute Difference (MAD), Sum of Absolute

Differences (SAD) and Mean Square Error (MSE) [110]. If a maximum displacement

of p pixels/frame is allowed, then (2𝑝 + 1)2 locations have to be searched in order to

find the best match of the current macroblock. Checking all search area locations is

referred to as the Full Search (FS) algorithm. It produces the best possible match

and the highest resolution MCP. However, this algorithm suffers from long

computational time, which necessitates improvement. Various methods of fast block

matching algorithms have been developed to decrease and improve the

computational complexity [98], [60], [34].

In this paper, we investigate two classifications of fast block matching algorithm.

Lossless block matching algorithm process, in which the computational time required

to determine the matching macroblock of the full search is decreased while the

resolution of the predicted frames is the same as the full search. Lossy block

matching algorithm process reduces the computational complexity effectively but the

search result’s quality is not the same as that of the full search.

2. INTRODUCTION TO VIDEO COMPRESSION

2.1 Fundamentals of Video Compression

Video compression, or video coding, has become an essential part of multimedia

systems. A huge amount of information is needed in order to display a digital video,

therefore a large memory space will be required to store digital video images and it

will need an equally large bandwidth for transmission. Video compression is the

process of reducing the amount of data required to represent digital video images

while preserving an acceptable video quality. This technique provides efficient

solutions to representing video data in a more compact and robust way so that the

information can be stored or transmitted faster in videoconferencing and videophone,

digital broadcasting, interactive games (internet), and etc [124], [56]. The balance

between video quality (dependent upon frame size, frame rate and bit depth and file

size) should be considered [125].

2.2 Video Coding International Standard

The existing standard of video compression techniques are developed by two public

international organisations: the International Telecommunication Union–

Telecommunication Standardization Sector (ITU-T), known as the Visual Coding

Experts Group (VCEG), and the International Organization for

Standardization/International Electrotechnical Commission (ISO/IEC).

The standards approved by the ISO/IEC are called the MPEG family, whose

applications range from consumer video on CD-ROM (MPEG-1 1991) to

broadcast/storage standard or high definition TV (MPEG-2 1994) and object-based

representation (MPEG-4 Visual or part 2 1998). On the other hand, H.26x series of

video standards published by the ITU-T focuses on improving the coding efficiency

for bandwidth-restricted telecommunication applications as the number of video

services increases. The ITU-T published its first video coding standard H.261 in

1990, and in 1995, it evolved H.263 video coding standards (and later

enhancements of H.263 known as H.263+ and H.263++) with higher compression

ratios [5], [6], [84]. The various applications for transmitting videos over the network

have created great demand for efficient video coding.

VCEG and MPEG formed the Joint Video Team (JVT) in December 2001 to

complete the draft of the video coding standard as H.264/AVC (MPEG-4 Part 10) in

May 2003. The video coding standard H.264/AVC is reported to achieve gains in

compression efficiency of up to 50% compared with its predecessor MPEG-2.

However, the increasing popularity of high definition TV, video delivery on mobile

devices and other multimedia applications create new demands for video coding

standards. In January 2010, the Joint Collaborative Team on Video Coding (JCT-VC)

was created as a group composed of VCEG and MPEG to develop a new-generation

video coding international standard. In February 2012, JCT-VC introduced the

committee draft video compression standard called High Efficiency Video Coding

(HEVC), which is also known as H.265 and MPEG-H Part 2. The final draft

international standard appeared in January 2013 [11]. HEVC code (without reduction

in visual quality) has improved the video compression ratio by at least 50%,

compared with H.264, across various applications such as videoconferencing, digital

http://en.wikipedia.org/wiki/International_Telecommunication_Union
http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/International_Electrotechnical_Commission
http://en.wikipedia.org/wiki/Video_compression

storage media, television broadcasting, internet streaming and communication [128],

[84], [99], [33].

2.3 Redundant Information

For all the standard video compression techniques, video coding can be obtained by

taking advantage of the redundant information in any video [74], [4], [93], [5], [110],

[44]. These include the following:

1. Colour Space Redundancy

Human Visual System (HVS) is more sensitive to luminance components than to

chrominance components. Therefore, colour subsampling can reduce the resolution

required to represent chrominance components. The first of several steps in

compression is to transfer the information in the picture into the frequency domain.

2. Spatial Redundancy

This redundancy comes from the spatial correlation in an image, where a block of an

image can be predicted from its neighbouring pixels, which is called intra-frame

compression, as shown in Figure 1. There are several spatial compression

algorithms that are proposed for this purpose; the most common uses are predictive

coding, transform coding such as Discrete Cosine Transform (DCT), quantisation

and entropy coding.

3. Temporal Redundancy

Adjacent frames are highly correlated; that is, most of the time, the image frame

looks similar to the frame before it. This redundant information can be removed using

inter-frame compression.

There are several inter-frame compression methods of varying degrees of

complexity, such as subsampling coding, difference coding, block-based difference

coding and motion compensation [5], [93].

Figure 1: Spatial and temporal correlation in video sequence [12]

4. Statistical Redundancy

For any data, there is a minimum number of bits required to represent it without

losing any information. Bit redundancy could be removed to improve intra-frame and

inter-frame compression. This can be performed by entropy coding such as Run

Length Coding (RLC), Huffman Coding and Arithmetic Coding [57].

3. LOSSLESS AND LOSSY COMPRESSION

In general, video coding contains two systems: video encoders and video decoders,

as shown in Figure 2. A video encoder consists of three main functional units: colour

subsampling, a temporal model (inter-frame encoder) or a spatial model (intra-frame

encoder) and an entropy encoder. The target of the encoder is to condense the huge

amount of information needed to display a video frame in order to achieve a high

compression ratio as shown in Equation (1):

 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑉𝑖𝑑𝑒𝑜 𝑆𝑖𝑧𝑒 (𝐵𝑦𝑡𝑒𝑠)

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑉𝑖𝑑𝑒𝑜 𝑆𝑖𝑧𝑒 (𝐵𝑦𝑡𝑒𝑠)
 (1)

Figure 2. Encoder/ Decoder System.

The encoder can be classified into two approaches: lossless and lossy approaches.

Lossless technique (which is also known as bitpreserving or the reversible method)

is used to compress the statistical redundancy. This method has a low compression

ratio of about 3:1 or 4:1 in the best case, but the reconstructed data is identical to the

original data. Lossy technique usually achieves a high compression ratio from 50:1

to 200:1 or more, but the reconstructed data is not identical to the original data; that

is, there is loss of information [13],[126].

3.1 Quality Measure in Video Coding

In video compression, lossy approach is the main method used to achieve a high

compression ratio; however, this approach leads to lost information (it is called

distortion) after reconstruction of the compressed video. In order to assess the

quality of the reconstructed video, several methods have been developed. One of

the simplest and most popular methods is to use Mean Square Error (MSE) for each

frame separately and take their arithmetic mean. MSE is the average of the squared

error measure determined according to the following equation:

 𝑀𝑆𝐸 =
1

𝑀 × 𝑁
∑ ∑(𝑓(𝑖, 𝑗) − 𝑓(𝑖, 𝑗))

2
𝑁

𝑗=1

𝑀

𝑖=1

 (2)

where M and N are the horizontal and vertical dimensions of the frame, respectively,

and 𝑓(𝑖, 𝑗) and 𝑓(𝑖, 𝑗) are the pixel values at location (𝑖, 𝑗) of the original and

reconstructed frames, respectively.

A more common form of the MSE measure is the Peak Signal-to-Noise Ratio

(PSNR), which is defined as:

 𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 (
(𝑓𝑚𝑎𝑥)2

𝑀𝑆𝐸
) dB (3)

Where 𝑓𝑚𝑎𝑥 is the maximum possible pixel value (for example, 255 for an 8-bit

resolution component). Equation 3 shows that the PSNR measures the strength of

the signal relative to the strength of the error. In application, PSNR between the

original and reconstructed video sequences is measured by computing the PSNR for

each frame separately and taking their arithmetic mean. A high PSNR usually

indicates high quality and low PSNR usually indicates low quality. However, PSNR is

an objective measure, which means that a particular value of PSNR does not

necessarily equate to a subjective video quality perceived by the Human Visual

System (HVS). The easy and quick calculation of PSNR makes it a very popular

quality measure and it is widely used to compare the quality of the decompressed

and the original videos [4], [110].

3.2 Types of Frames

Video frames are compressed using various algorithms depending on the frame

type. Figure 3 shows the three major frame types used in various video coding

algorithms, which consist of I-frame, P-frame and B-frame [27], [95], [13] .

I-frame ‘Intra-coded frame’: this type of frame is coded independently from all other

frames. This frame is compressed as a still image using a still image compression

technique such as transform coding, vector quantisation or entropy coding. This type

of frame is the largest size in encoding but is faster to decompress than the other

frames.

P-frame ‘Predicted frame’: an inter-coded frame, which is forward predicted from the

last I-frame or P-frame, i.e. it is impossible to reconstruct it without the data of the

previous frame (I or P). P-frames are typically a smaller size in encoding than I-

frames.

B-frame ‘Bi-predictive frame’: an inter-coded frame, which is a bi-directionally

predicted frame, coded based on both the previous and next I- or P- frames, but a B-

frame cannot be the reference for other B-frames, i.e. there are two other frames

necessary to reconstruct them. So B-frames are an effective video coding tool to

improve coding efficiency. However, using B-frames for coding requires more

memory in the encoder and decoder, as an extra frame (next reference) needs to be

stored during the decoding process. Furthermore, B-frames introduce extra delay

(next reference send first), which is unacceptable in two-way video coding such as

for a videoconferencing application; in this case, no B-frames are used [110].

3.3 Group of Pictures

Frames between two successive I-frames, including the leading I-frame, are

collectively called a Group of Pictures (GOP), which is the smallest random access

unit in the video sequence, as shown in Figure ‎3. A GOP pattern is defined by the

ratio of P- to B-frames within a GOP. Common frame patterns used for DVD are IBP

and IBBP. All three frame’ types do not have to be used in a pattern. For example,

an IP pattern can be used in two ways for video coding. Longer GOP lengths (the

term long GOP refers to the fact that there are several P- and B-frames used

between I-frame intervals) encode video efficiently by giving a good compression

ratio. Smaller GOP patterns with shorter GOP lengths work better with video that has

quick movements, but they do not compress the data as much. For television

systems, an I-frame is sent typically every half second in order to enable channel

surfing [95].

I-frame is often used to efficiently code frames corresponding to scene changes, i.e.

frames that are different from previous frames and cannot be easily predicted. Since

video sequences have variable scene durations, depending on the content, it is not

possible to use a fixed GOP structure to code the video sequence effectively. This is

because the position of I-frames in the sequence depends on the time that scene

changes happen. For example, video coding standards allow for macroblocks which

are 16×16 pixels in P- and B-frames to be intra-coded if they cannot be predicted

efficiently. This means that, even if all the frames are set to be of types P or B, there

may be many macroblocks in each frame that are intra-coded [122], [59].

Figure 3: Types of coded frames [59]

Coding as P- and B-frames gives a higher compression rate, but it is more

computationally expensive than coding an I-frame. This relates to the fact that coding

P- and B-frames uses motion estimation and motion compensation as will be defined

in Section 4.

3.4 Inter-Frame Compression

Inter-frame compression exploits the high correlation that exists between successive

frames in video sequences, especially if the frame rate is high. This correlation leads

to temporal redundancy [28-30]. The goal of inter-frame coding is to reduce this

redundancy. Video coding standards share a number of common features, as shown

in Figure ‎4. Each standard assumes that after colour subsampling there will be four

stages of inter-frame encoding to produce the compressed bitstream: temporal

prediction, transform, quantisation and entropy coding.

Figure 4: Inter-frame encoder

3.5 Temporal Prediction

The goal of temporal prediction is to reduce temporal redundancy coming from high

correlation between successive frames. This can be done by predicting some frames

from others to reduce the transmission rate of video image sequences and obtain

further compression. Reference frames of type I or P could be used to predict frames

of type P or B. In forward prediction, past frames in the display order are used as

reference frames to the current frame; while, in backward prediction, the reference

frames of the current frame are displayed in the display order in the future frames.

The average of the forward and backward predictions may be used to predict frames

of type B. In any prediction, reference frames have to be encoded first, while a

residual (difference) between current and reference frames which contain less

energy will be encoded later instead of the encoded current frame [12].

To decrease this residual, the prediction is improved by estimating the motion of the

moving objects in-between the current and the reference frames, which is called

Motion Estimation (ME) technique. That is, the motion estimation has been used to

calculate the Motion Vectors (MVs) by comparing the current frame and the

reference frame. The technique that uses the MVs to predict a new frame from a

reference frame is called Motion Compensation (MC). The predicted frame is known

as a Motion Compensated Prediction (MCP). The first output of this process will be

the difference between the current frame and the MCP, which is called the residual

prediction error (RPE) (or displaced frame difference (DFD)); the second output will

be the motion vectors.

Motion vectors are encoded by lossless compression, while RPE is encoded by

lossy compression to get high compression ratio [9], [83], [13], [110], [92], [4].

3.6 Transform Coding (TC)

Transform coding is one of the most important applications of data compression,

which is employed to reduce spatial redundancy. The RPE, which is the difference

between the current frame and the MCP frame, has a high correlation between

neighbouring pixels, as shown in Figure ‎5. Inter-frame compression can be coded

more efficiently by exploiting these similarities and reducing the spatial redundancy.

Transform coding converts the data from a spatial domain of the RPE into a

transform domain to produce a set of coefficients. The energy of the transformed

data (coefficients) is localised and compacted at certain areas. The transform should

be reversible and can transform as much information as possible into a small

number of transform coefficients [100-103].

Over the years, a variety of linear transform methods have been developed. The

most popular transforms can be classified into two types: block-based transform

coding and image-based transform coding [13], [71].

Block-based coding is widely used in image/video coding standards systems. In

block-based transforms, an image is divided into non-overlapping macroblocks and

for each macroblock the 2-D transform coding is applied. Most transform coding

systems employ a macroblock size of 8×8 or 16×16. Note that both sizes are powers

of 2, which reduces the computation complexity of the transform coding and requires

low memory. The block-based transform coding converts the macroblock pixel

information into the frequency domain where pixel correlation information is captured

in a DC coefficient and pixel difference information is captured in AC coefficients.

Figure 5: The similarity between neighbouring pixels of the residual prediction
error

The AC coefficients normally have very small values because of the high correlation

between the pixels in a macroblock. Therefore, the energy is concentrated in the DC

coefficients and a small number of AC coefficients that are close to the DC

coefficient. That is, the macroblock energy is usually concentrated in the low

frequency region. Furthermore, block-based transform allows each macroblock to be

processed according to its content in order to improve the coding performance

significantly, as performed in H.264. The disadvantage of such block-based

transform is that the transform can only exploit the correlations within the macroblock

and hence this technique suffers from artefacts at edge macroblocks using low bit

rates, which affects the coding efficiency. Popular block-based transforms include:

Discrete Cosine Transform (DCT), Karhunen–Loeve Transform (KLT), and Singular

Value Decomposition (SVD) [13], [31], [71], [105].

Image-based transform resolves the problem of artefacts initiated at edge

macroblocks using Discrete Wavelet Transform (DWT) on the entire image or video

frame. An image-based transform would provide better energy compaction, but it

tends to suffer from higher computational complexity and memory requirements in

comparison to block-based transform because the whole image is processed as a

unit. Therefore, block-based transform is better compatible with the residual

prediction error [63-66], [71], [126], [13], [31].

3.7 Quantisation (Q)

Quantisation is a mapping of a large set of possible inputs into a smaller set of

possible outputs. Quantisation forms the heart of lossy compression and it is an

irreversible process. The goal of this scheme is to map the data from a source into

as few bits as possible such that the reconstructed data from these bits is as close to

the original one as possible. There are two types of quantisation, scalar and vector.

Scalar quantisation maps a single value of the input signal to one quantised output

value (level). A scalar quantiser of the same step size is called a uniform quantiser,

while a quantiser of different step size is called a non-uniform quantiser. If the step

size is large (coarse), fewer numbers of bits are required and hence high

compression ratio is achieved while the quality of the reconstructed data is reduced.

However, small step size gives a larger range of quantised values and hence

reduces compression efficiency and improves the reconstructed data. In each video

coding standard, there exists a defined set of quantisation step size parameters that

provide the best balance between decoded video quality and compression ratio for

different applications.

Vector quantisation maps a group of input values (vector) (such as a block of image

samples) to a group of quantised values which is the index from a “codebook”.

Vector quantisation can be used alone as a method of compression and it is

powerful with high computational complexity.

Scalar quantisation techniques are involved in most video coding standards with the

combination of transform coding. After the transformation, the energy in both the

pixel and the transform domains are equal but the transform coefficients are less

correlated than the original data. In transform domain, the majority of energy is

concentrated on the low frequencies while little energy is concentrated on the high

frequencies. Since human eyes are more sensitive to low frequencies compared to

high frequencies, greater compression can be achieved by apply coarser

quantisation step size at higher frequencies to remove insignificant coefficient values

[81], [106], [104], [137], [92], [110], [13].

3.8 Entropy coding (EC)

Entropy coding is the last stage in a video encoding system. It is a lossless

compression scheme used to remove statistical redundancy by determining the

minimum number of bits required to represent the data without losing any

information. EC converts the MVs, the quantised transform coefficients and other

information from the intra-compression process into a compressed bitstream suitable

for transmission or storage. The widely used entropy coding are Variable Length

Coding (VLC) and Arithmetic Coding. Arithmetic coding usually provides better

compression efficiency, with relatively high computational complexity. These codes

are improved by Context-Adaptive VLC (CAVLC) and Universal VLC (UVLC), which

are based on VLC, while Context-Adaptive Binary Arithmetic Coding (CABAC) is

based on arithmetic coding. CABAC provides bit-rate savings of 9-14% compared to

CAVLC but this is at the cost of higher complexity. The low complexity CAVLC

entropy encoding method is utilised by the H.264 standard [128], [13], [137].

3.9 Decoding of Inter-frame compression

The decoder interprets the compressed data stream of the compressed motion

vectors and compressed RPE; the process is reversed to reconstruct the original

frame.

In the decoder side (Figure 6), the reference frame is reconstructed by intra-frame

decoding and is ready to compensate and predict the current frame. To produce

decode of residual prediction error which is denoted by 𝑅𝑃𝐸̂ in Figure ‎6, entropy

decoding is used followed by inverse quantisation (𝑄−1), then inverse transform

coding 𝑇𝐶−1. Note that the irreversible quantisation process means that 𝑅𝑃𝐸̂ is not

identical to RPE. Finally, 𝑅𝑃𝐸̂ is added to the predicted frame to introduce the

reconstructed frame.

Figure 6: Inter frame decoder

4. MOTION COMPENSATION AND MOTION ESTIMATION

4.1 Motion Compensation (MC)

Motion compensation (MC) has been used as a main tool to reduce the temporal

redundancy that comes from the small change in the contents from one image to

another in video sequences. That is, MC is the key to achieve high compression ratio

for the coding system. This technique dates back to the early 1970s and has been

adopted by all of the existing international video coding standards, such as MPEG

series and H.26x series including H.265 [5], [6], [8], [9], [10], [11].

Figure 7: The residual prediction error without ME and the residual prediction
error with ME [13]

Motion Compensated Prediction (MCP) assumes that the current frame can be

locally modelled as a translation of the reference frames. MC uses reference frames

to predict the current frame, and then encodes RPE. Normally, a P-frame is

predicted from one of the previous reference frames. Similarly, a motion

compensated bi-prediction or B-frame is predicted from two previous reference

frames and the next frame. To achieve such a high coding efficiency, H.264/MPEG-4

AVC use Multiple Reference Frames’ ME (MRFME) of up to five reference frames to

predict the current frame. However, this dramatically increases the computational

complexity of the encoders. Moreover, MRFME must be stored in memory until they

are no longer needed for further usage, which requires a large amount of memory

usage [60], [74], [121].

The simplest method of MCP is to use previous frame as the predictor for the current

frame, and encode the difference between them. However, this prediction can be

effective only if the two frames are similar and the residual values are close to zero.

In any video, either the camera is moving or the object is moving with the fixed

camera or scene lighting changes [77-79]. In all cases, the difference between

successive frames will not be close to zero and a lot of energy remains in the

residual frame. This means that there is still a big amount of information to compress

after this stage. To achieve further compression, a better prediction of the current

frame may be formed by compensating for motion between the two frames. In order

to carry out motion compensated prediction, the motion of the moving objects has to

be estimated first; this is known as Motion Estimation (ME). Figure ‎7 shows the

residual prediction error with/without ME [121],[60], [137].

4.2 Motion Estimation (ME)

Motion Estimation is the first step of inter-frame compression and usually the most

computationally intensive part (about 50% for one reference - 80% for five of the

entire system) in a video encoder [121], [60] ,[58], [134], [13], [133]. It is possible to

estimate the displacement for every pixel position between successive video frames,

producing a field of pixel flow vectors known as the optical flow. The field is

subsampling and hence only one vector for every two pixels is shown. However, for

motion compensation, this is not a practical method since the calculation of optical

flow is very computationally intensive and needs computations for each pixel.

Moreover, the number of optical flow vectors is equal to or half the number of pixels.

These vectors will be sent to the decoder in order to form MCP. As a result, a large

amount of data should be transmitted [121], [60], [58], [13]. The practical and widely

method used to estimate the motion of a group of pixels (macroblock) of the current

frame is called Block Matching Algorithm (BMA).

4.3. Block Matching Motion Estimation

Block matching algorithm is the most popular technique used for motion estimation,

in which the current luminance frame is divided into non-overlapped MacroBlocks

(MBs) of size N×M. These macroblocks are then compared with the corresponding

macroblock and their adjacent neighbours in the reference frame. This will carry out

displacement vectors that stipulate the movement of the macroblocks from one

location to another in the reference frame [26]. For any macroblock in the current

frame, the BMA finds the matching macroblock of the same size N×M in the search

area within the reference frame. The position of the matching macroblock gives the

Motion Vector (MV) of the current macroblock, as shown in Figure 8. This motion

vector has two parts, horizontal and vertical, which can be positive or negative. A

positive value means motion to the right or motion down and a negative value means

motion to the left or motion up. These motion vectors will be used to form the MCP to

the current frame from the reference by block motion compensation, as shown in

Figure ‎9. MVs will be encoded using entropy coding and the RPE between the

current frame and the MCP will be encoded using transform coding, quantisation and

entropy coding. At the decoder, the received MVs and RPE will be decoded and

utilised to form MCP from the reconstructed reference frame in which the

reconstructed RPE are used to reconstruct the current frame.

Figure ‎8: Block matching ME

Figure 9: Block motion compensation [74]

The matching measure is usually determined using a Block Distortion Measure

(BDM) like Mean Absolute Difference (MAD), or Sum of Absolute Differences (SAD)

or Mean Square Error (MSE). The macroblock with the least cost is considered to be

the one matching the current macroblock [93].

The search area for a macroblock match is usually constrained up to 𝑝 pixels on all

four sides around the corresponding macroblock in the reference frame, where 𝑝 is

the search parameter. Larger motions require a larger 𝑝 value, which demands more

computational power, as shown in Figure 9.

For the current macroblock C of dimension N×N and the candidate macroblock R in

the reference frame with a displacement of (𝑣𝑥, 𝑣𝑦), SAD, MAD and MSE are defined

as:

 𝑆𝐴𝐷 = ∑ ∑|𝐶(𝑖, 𝑗) − 𝑅(𝑖+𝑣𝑥 , 𝑗 + 𝑣𝑦)|

𝑁

𝑗=1

𝑁

𝑖=1

 (4)

 𝑀𝐴𝐷 =
1

𝑁 × 𝑁
∑ ∑|𝐶(𝑖, 𝑗) − 𝑅(𝑖+𝑣𝑥, 𝑗 + 𝑣𝑦)|

𝑁

𝑗=1

𝑁

𝑖=1

 (5)

 𝑀𝑆𝐸 =
1

𝑁 × 𝑁
∑ ∑(𝐶(𝑖, 𝑗) − 𝑅(𝑖+𝑣𝑥, 𝑗 + 𝑣𝑦))

2
𝑁

𝑗=1

𝑁

𝑖=1

 (6)

where 𝐶(𝑖, 𝑗) is the pixel value of current MB at position (𝑖, 𝑗) and R(𝑖+𝑣𝑥, 𝑗 + 𝑣𝑦) is

the pixel value of the reference frame with the vector (𝑣𝑥 , 𝑣𝑦) within the search range

[−𝑝, 𝑝].

4.4. Block-Size Motion Estimation

Macroblock size is an important parameter of the BMA. In the BMA, increasing the

size of the macroblock means that more computations are required. However, it also

means that there will be fewer macroblocks per frame, so the amount of computation

needed to perform motion estimation will be decreased. There is a high possibility

that the big macroblock will contain different objects moving in different directions. In

other words, using a larger macroblock size reduces the amount of computation;

however, it provides poor prediction; while smaller macroblock size can produce

better motion compensation results and hence reduces residual energy. However,

smaller MB size leads to increased complexity and increase in the number of motion

vectors that need to be transmitted, which may outweigh the benefit of reduced

residual energy. An effective compromise is to adapt the macroblock size to the

picture characteristics, for example choosing a large block size in the homogeneous

and shade regions of a frame and choosing a small block size for areas of high

details, edges, and complex motion, which is called Variable Block-Size Motion

Estimation (VBSME) [92], [13], [110], [109].

The default block size for motion compensation is 16×16 samples for the luminance

component. Fixed Block-Size Motion Estimation (FBSME) of size 16×16 or 8×8 has

been used in the first-generation coding standards; while H.264\AVC utilises

VBSME, which is more complicated. VBSME allows a macroblock of 16×16 samples

of the luminance component to be partitioned into 4 ways, as shown in Figure ‎10:

one 16×16 MB, two 16×8 sub-MBs, two 8×16 sub-MBs or four 8×8 sub-MBs. In

addition, each of the four 8×8 sub-MB partitions within the MB can be further sub-

partitioned into 3 ways: two 8×4 sub-MBs, two 4×8 sub-MBs or four 4×4 sub-MBs.

These partitions and sub-partitions give around 41 MBs in total for each MB. For

each type of sub-MB, a motion vector is required. Each motion vector must be coded

and transmitted with the choice of partition(s). In order to get these MVs for each

MB, the computation of comparison operations was increased. To enhance these

computations, a large partition size is applied for homogeneous areas of the frame

and a sub-partition size may be useful for detailed areas [22], [110], [9], [129],[109].

Figure 10: Macroblock partitions and sub-macroblock partitions

4.5. Full Search (FS)

The simplest algorithm which can be used for motion estimation to find motion

vectors is the Full Search (FS), or Exhaustive Search (ES), which exhaustively

searches for the best matching block within the search area, where the correlation

window is moved to each candidate position within the search area. It can be

described by:

 𝑆𝐴𝐷(𝑚, 𝑛) = ∑ ∑|𝑐(𝑖, 𝑗) − 𝑠(𝑖 + 𝑚, 𝑗 + 𝑛)|

𝑁

𝑗=1

𝑁

𝑖=1

 ; − 𝑝 ≤ 𝑚, 𝑛 ≤ 𝑝 (7)

 𝑀𝑉 = {(𝑢, 𝑣) | 𝑆𝐴𝐷(𝑢, 𝑣) ≤ 𝑆𝐴𝐷(𝑚, 𝑛); − 𝑝 ≤ 𝑚, 𝑛 ≤ 𝑝} (8)

where SAD(m, n) is the distortion of the candidate macroblock at search position (m,

n), {c(x, y) | 1 ≤ x ≤ N , 1 ≤ y ≤ N} means current macroblock data, {s(x, y)| −

p ≤ x ≤ p + N , −p ≤ y ≤ p + N } stands for search area data; the search range

is [−p, p], the block size is N×N.

From the above, (2p + 1)2 of search locations need to be examined by the FS

algorithm. As a result, FS finds the best possible match and gives the highest PSNR

amongst any block matching algorithm; however, a large amount of computational

complexity is involved, especially with VBSME and MRFME.

Various methods of fast block matching algorithms have been developed to

decrease and improve this computational complexity. If the algorithm enhances the

computation and produces the same quality results as FS then it is called lossless

block matching algorithm while if the algorithm could not keep the same quality

results then it is called lossy block matching algorithm [110], [121], [60].

5 FAST BLOCK MATCHING ALGORITHMS

Motion estimation shows computational complexity. Hence, the computational

complexity of video coding can be reduced by efficiently coding ME. A block

matching algorithm is the most common technique used for motion estimation to find

the best matching macroblock for the current macroblock from the reference frame.

FS is the simplest but the most computation-intensive BMA, which exhaustively tests

all the search locations for the best matching macroblock within the search area. As

a result, FS finds the best possible match and gives the highest PSNR. Moreover,

variable block size and multiple reference frames have been involved in later video

coding standards. Therefore, the required computation is highly increased and

motion estimation has become a problem in many video applications, for example

mobile video and real-time video coding.

In the last three decades, various methods of fast BMA have been developed to

reduce such high computational complexity. Some of the fast BMA algorithms have

been adopted in video coding standards [5], [6], [8] . This indicates that this is an

extremely active field of research, and most fast block matching algorithms are

introduced first for FBSME and then extended to VBSME [132]. The performance of

each algorithm can be estimated by benchmarking with FS. The effective one

minimises the RPE and saves the computational time compared with Full Search.

Fast block matching algorithms can be classified into lossy block matching

algorithms and lossless block matching algorithms. Lossy BMAs reduce the

computational complexity; however, the search results quality is not the same as for

FS. That is, the PSNR of the decompressed video with lossy BMA is not as good as

the PSNR of the one with the full search. While lossless BMA preserves the video

quality as well as speeding up the FS [98], [60], [34].

5.1. Lossy Block Matching Algorithms

5.1.1 Fixed Set of Search Patterns

Fixed set of search patterns or what is known as reduction in search positions is the

most popular category in lossy block matching algorithms. These algorithms reduce

search complexity by selecting a subset of the possible search candidate locations

instead of all possible MBs within the search window. Most algorithms in this

category state that the error decreases monotonically as the search location moves

closer to the best-matching location. Therefore, the search starts with the locations

coarsely spread over the search window according to some predefined uniform

pattern. After that, the search is repeated with a smaller spread around the search

location with the minimum BDM (error) obtained from the preceding step. Each

search pattern has a specific shape (rectangle, diamond, hexagonal, cross, etc.) [4,

2002; [60].

The first algorithm initiated in this category is the Two-Dimensional Logarithmic

Search (2D-LOG), which is proposed in 1981 [68]. After that, some well‐known

similar algorithms were proposed, such as: Three Step Search (TSS) [80],

Orthogonal Direction Search (OSA) [107], New Three Step Search (NTSS) [108],

Four Step Search (4SS) [82], Diamond Search (DS) [113], Simple and Efficient

Search (SESTSS) [70], Cross-Diamond Search algorithm (CDS) [46], Novel

Hexagon-based Search (NHS) [39], Efficient Three Step Search (ETSS) [135],

Modified DS (MODS) [131], Multi-pattern-based search (TCon) [14] and many

others.

Much of the research and coding was dependent on the Fixed Set of Search

Patterns due to its high-speed search capabilities in comparison to other lossy BMA

categories. Unfortunately, these algorithms produce significant loss in visual quality

when the actual motion does not match the pattern and hence these algorithms

become trapped in a local minimum. As an example, a centre-biased search pattern

cannot provide optimal motion estimation for videos with large motions [61].

5.1.2 Three Step Search (TSS), New TSS (NTSS), and Simple and Efficient TSS
(SESTSS)

Three step search, new three-step search and simple and efficient three-step search

come under the N-Step Search class. The steps of this class are summarised as

follows: (1) Choose step size (which is usually slightly larger or equal to half of the

search window). (2) Number of search points is selected at a distance of the step

size as well as the centre point. The macroblock with the minimum BDM value

becomes the centre of the next step. (3) Divide step size by two and select new

search points at a distance of the new step size. (4) Repeat step 2 until the step size

becomes one.

TSS uses a maximum of three steps in a coarse to fine search patterns. For a usual

search window of parameter p= 7 the initial step size will be 4=(p+1)/2; TSS utilises

nine search points centred at the search area (eight points on the boundary of the

search square and one centre point) to be compared in the first step search. As

mentioned before, the point with the minimum BDM value becomes the centre of the

next step. Therefore, there are eight search points to be compared in the second and

third step searches, i.e. the total number of search points is (9+8+8=25), as shown in

Figure ‎11.

Figure 11: TSS [80]

Due to its simplicity and reasonable performance, the TSS is widely used for

research purposes [45]. The drawback of the TSS is that it is not efficient with small

motion video, since the search points forming the search pattern in the first step are

positioned at a relatively large distance from the search centre. While 80% of the

MBs in various motion video sequences can be regarded as stationary or quasi-

stationary MBs, which means that 80% of MVs are centre-biased, i.e. they lie within

a region of 5×5 of the central area [46]; therefore TSS is not efficient for most video

sequences.

This problem was solved in 1994 by proposing a new search called NTSS [108].

NTSS provided improvement over the quality results of TSS (refer to Figure 12).

Therefore, this algorithm is considered as one of the first widely accepted fast block

matching algorithms. Moreover, it has been used in earlier standards like MPEG 1

and H.261 [96].

Figure 12: NTSS [108]

NTSS added a smaller search pattern of eight points at the central area to the first

step of the original TSS search pattern. That is, NTSS requires more search points

compared to TSS. For search windows of parameter p= 7, NTSS requires 33 search

points for large motion MBs while TSS always required 25, which means more

computations may be needed.

Another extension illustrated to speed up TSS was done by Simple and Efficient TSS

[70]. SESTSS requires around half of the computation for TSS while keeping the

same regularity and good performance. It exploits the fact that the uniform

distribution search pattern in TSS is not effective since the error decreases

monotonically as the search location moves closer to the best-match location.

Minimum points cannot occur in two directions opposite to each other, which means

that, for the search pattern in TSS, at most half of the total eight points are actually

required to be searched in each step, and, thus, the computational complexity can

be further reduced. Additional computation is needed to determine which directions

are selected. The algorithm still has three steps like TSS but each step has two

phases as follows [70]:

Step 1: first phase: compute MAD of the three locations A, B and C as shown in

Figure 13. Point A refers to the centre location. B and C are located at step size = 4

away from A, towards the right-hand side and bottom. In the second phase, a few

more points are added depending on the following conditions:

𝐼𝑓 𝑀𝐴𝐷(𝐴) ≥ 𝑀𝐴𝐷(𝐵) 𝑎𝑛𝑑 𝑀𝐴𝐷(𝐴) ≥ 𝑀𝐴𝐷(𝐶), 𝑠𝑒𝑙𝑒𝑐𝑡 (𝑏)

𝐼𝑓 𝑀𝐴𝐷(𝐴) ≥ 𝑀𝐴𝐷(𝐵)𝑎𝑛𝑑 𝑀𝐴𝐷(𝐴) < 𝑀𝐴𝐷(𝐶), 𝑠𝑒𝑙𝑒𝑐𝑡 (𝑐)

𝐼𝑓 𝑀𝐴𝐷(𝐴) < 𝑀𝐴𝐷(𝐵)𝑎𝑛𝑑 𝑀𝐴𝐷(𝐴) < 𝑀𝐴𝐷(𝐶), 𝑠𝑒𝑙𝑒𝑐𝑡 (𝑑)

𝐼𝑓 𝑀𝐴𝐷(𝐴) < 𝑀𝐴𝐷(𝐵)𝑎𝑛𝑑 𝑀𝐴𝐷(𝐴) ≥ 𝑀𝐴𝐷(𝐶), 𝑠𝑒𝑙𝑒𝑐𝑡 (𝑒)

(9)

Figure13: Search patterns of SESTSS depending on MAD of A, B and C [70].

Step 2: the point with the minimum MAD value from step 1 becomes the centre of

the current step and the step size will be 2. The pattern of the first phase in this step

is similar to first phase in step 1.

Step 3: repeat step 2 with step size equal to 1.

Figure 14 shows an example for the SESTSS.

Figure 14: Example of the SESTSS search procedure [70]

5.1.3 Diamond Search (DS)

DS is one of the most common and widely used algorithms. DS requires significantly

less computation by reducing the average search points while achieving acceptable

performance in comparison with its prior fixed set of search pattern algorithms.

Therefore, it is adopted by the reference software of MPEG-4 [7], [60].

Similar to NTSS, DS is based on the assumption that most motion vectors of typical

video sequences are centre-biased. Also, it is based on the fact that the MB

displacement of real-world video sequences could be in any direction, but mainly in

horizontal and vertical directions [113].

This technique utilises two search patterns, a large diamond search pattern (LDSP)

of 9 search points and a small diamond search pattern (SDSP) of five search points,

as follows:

The matching MB is searched within the search points of the LDSP which are

{(±2,0), (0, ±2), (0,0), (±1,±1)}, as shown in Figure ‎15. The position of the minimum

BDM for the LDSP becomes the centre of the new search. If the minimum BDM is

already at the centre of the LDSP, then the search pattern is switched from the

LDSP to a SDSP of four points {(±1, 0), (0, ±1)}. Otherwise, the search in the next

step will be performed only for three or five neighbouring points that complete the

LDSP of this new centre, as illustrated in Figure 15. The LDSP is repeatedly used in

the searching procedure until the step in which the minimum BDM point stays at the

centre of the LDSP. The search pattern is then switched to a SDSP. The minimum

BDM point found from the SDSP will be the best matching block [139], [26], [96],

[113].

Figure 15: Diamond Search Algorithm [113]

5.1.4 Predictive Search

Predictive search technique is a lossy block matching algorithm that exploits the

correlation between the current MB and its neighbouring MB. It utilises the motion

information in the spatial and/or temporal neighbouring MB. The predicted MV can

be obtained by selecting one of the previously-coded neighbouring MVs; for

example, the predictors can be the MVs of the MBs on the left, top, and top right, as

shown in Figure 16, or the MV of the collocated MB in the previous frame, as shown

in Figure 17, and in the previous two frames.

Figure 16: Current MB with the predictor MV of top (T), left (L) and top right
(TR) MBs

Figure 17: Current MB and the collocated MB in the previous frame

The Motion Vector Predictor (MVP) is utilised in two ways: the difference between

the current motion vector and the MVP, which is called motion vector difference, is

transmitted instead of the current MV itself. The MVP in this case is the median of

three candidate predictors, which are the motion vectors of the three neighbouring

MBs, as illustrated in Figure ‎17 [4].

The MVP forms an initial estimate of current MV. This type is a fast motion

estimation algorithm that has low computational complexity with acceptable

performance [130]. It can effectively reduce the search points and hence the

computation by exploiting the target macroblock that is likely to belong to the area of

the neighbouring MVs, and the initial search starts directly in this area. The MVP

could be one or more of the previously-coded neighbouring MVs, or their average

MVs as in Figure 17. Additional memory for storing the neighbouring MVs is needed

in this method [13], [55], [39] .

This technique is used in the Adaptive Rood Pattern Search (ARPS) algorithm [98],

Joint Adaptive Block Matching Search (JABMS) algorithm, Unsymmetrical Multi-

Hexagon search (UMHexagonS) [136], and simplified block matching algorithm for

fast motion estimation [22].

5.1.5 Adaptive Rood Pattern Search (ARPS) Algorithm

ARPS algorithm [98] based MPEG-4 Verification Model (VM) [7] showed a speed 2-3

times faster than that of the DS and maintained a fairly similar performance [138].

ARPS uses a predictive search technique to form an initial estimate of finding the

global minimum point. This relates to the fact that, if the MB around the current block

moves in a particular direction, there is a high probability that the current MB will also

have a similar motion vector. Moreover, the step-size search pattern of this algorithm

changes according to the motion vector predicted behaviour. This technique

depends on the DS technique, which uses two different types of fixed patterns, the

Large Search Pattern (LSP) and the Small Search Pattern (SSP), as shown in

Figure ‎18. In addition, the MVP of this algorithm is the coded motion vector of the

immediate left MB, which means one neighbouring MV needs to be recorded. This

MVP is utilised to pre-determine the motion behaviour of the current MB and to

define the most suitable step size to perform efficient ME.

The steps of this algorithm are as follows:

Step 1: determine the step size that refers to the distance between the centre and

any vertex points in the LSP. If 𝑥 and 𝑦 are the horizontal and vertical components of

the MVP, respectively, then the step size will be the maximum absolute value of

these components determined as follows [98]:

 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 = 𝑀𝑎𝑥{|𝑥|, |𝑦|} (10)

For the MB on the left side of the frame, the step size will be fixed as 2 pixels.

Step 2: the matching macroblock is searched first within the search points of LSP

plus the search point indicated by the MVP. The point that has the least MAD

becomes the origin for subsequent search steps. The new search centre directly

moves to an area where there is a high probability of finding the global minimum,

and the new search pattern is changed to a SSP, as shown in Figure 19.

Step 3: the matching MB found in the current step will be re-positioned as the new

search centre of the next search if it is not already at the centre of the search

pattern. This process will be repeated until the matching MB stays at the centre of

the SSP.

A further development of this algorithm is called Adaptive Rood Pattern-Zero Motion

Prejudgment (ARP-ZMP). This can be achieved by checking for zero motion

prejudgment in which, if the SAD between the current MB and the MB at the same

location in the reference frame (i.e., the centre of the current search window) is less

than a predefined threshold, then the search is stopped and the MV will be zero [98].

Figure 18: The sold circle points (●) are the LSP and the squares (■) are the
SSP for ARPS

Figure 19: Adaptive Rood Pattern Search [98]

5.1.6 Hierarchical or Multiresolution Search

Hierarchical search exploits the correlation between different resolution levels that

represent the same image, which is shown in Figures ‎20 and 21 [114]. It uses a

multiresolution structure (also known as a pyramid structure) that has different image

resolutions with smaller image size at the coarser level. The multiresolution structure

is constructed either with simple subsampling or filtering.

Hierarchical search is based on the idea of performing motion estimation at each

level successively. Thus, motion estimation is first applied at the lowest resolution

level to obtain an estimate of motion vector. This MV is then passed to the next

higher resolution level as an initial estimate. Motion estimation at the higher

resolution level is then used to refine this initial estimate. This process is repeated

until the highest resolution level is reached. Typically, a two- or three-level

hierarchical search is adopted. To reduce the complexity of calculating BDMs, small

MBs are used for block matching algorithm at lower resolution levels. Moreover,

smaller search ranges are used at higher-resolution levels, since motion estimation

starts from a good initial estimate. This reduces the number of locations to be

searched. More levels can save the amount of computation required, but it has the

disadvantage of possibly being trapped in a local minimum because, when the

subsampling or filtering is applied to an image, some important details will be lost.

Multiresolution technique has been regarded as one of the most efficient methods in

BMA and it is adopted in applications with very large frames and search areas [114],

[34], [4], [98], [60].

Figure 20: Two-level Hierarchical Search

Figure 21: Hierarchical motion estimation using a mean pyramid of three levels
[114]

5.2 Subsampled Pixels on Matching Error Computation

The previous three groups of BMAs can reduce the computation of ME by limiting

the number of search locations. This category reduces the complexity of the BDM by

decreasing the number of MB pixels in current and candidate MBs to speed up ME.

In homogeneous areas, neighbouring pixels have high correlation and hence

subsampling for these areas can be done without search quality regression.

However, in highly textured areas the subsampling will be less accurate [115-119].

Therefore, this category does not guarantee to find the best match, hence it is lossy

BMA even when checking all search area locations. Koga et al used in their work

[80], a uniform subsampling pattern that performs 2:1 pixel subsampling in both

horizontal and vertical directions. As a result, the total computation can be reduced

by a factor of 4, as shown in Figure 22. Liu and Zaccarin in their work [87] have used

a non-uniform subsampling pattern.

Figure ‎23 shows a block of 8 × 8 pixels with each pixel labelled 𝑎, 𝑏, 𝑐, and 𝑑 in a

regular pattern. If only the pixels of the pattern that consists of all the 𝒂 pixels are

used for block matching, then the computation is reduced by a factor of 4. To reduce

the drawback that ¾ of the pixels do not enter into the matching computation, all four

subsampling patterns are using in a specific alternating manner.

Figure 22: Uniform subsampling pattern 2:1 [80]

Figure 23: Non-uniform subsampling pattern 4:1 [87]

To enhance the quality of a non-uniform subsampling, Yui-Lam and Wan-Chi (Yui-

Lam and Wan-Chi, 1995) changed the number of pixels in the subsampling pattern

according to block details. That is, for shade MBs fewer pixels are used and more

pixels are involved for high-activity MBs. Such a computation reduction method can

be incorporated into other BMAs to achieve higher computational gain.

5.3 Bitwidth Reduction

In a luminance frame, each pixel is represented with 8 bits resolution. This search

technique reduces the original 8 bits resolution to less bits width in order to reduce

the hardware cost and power consumption and then applies normal ME search

strategies. The first algorithm proposed in this category was Bit-Plane Matching

(BPM), which indicates whether a pixel is edge or not [69]. The MB mean is used as

the threshold to satisfy a One–Bit Transformation (1BT), and the bit plane of an

image frame is constructed in the form of:

𝐵(𝑖, 𝑗) = {
1 𝑖𝑓 𝐼(𝑖, 𝑗) ≥ 𝑡𝑏𝑚

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}

(11)

where 𝑡𝑏𝑚 is the threshold value that is set equal to the MB mean, 𝐼(𝑖, 𝑗) shows the

(𝑖, 𝑗)𝑡ℎ pixel of the image frame and 𝐵(𝑖, 𝑗) shows the corresponding bit-plane value.

The other common transformation maps a frame of multi-valued pixels to a frame of

binary-valued pixels by comparing the original frame with their multi-bandpass

filtered versions to construct 1BT representations [96]. Each frame I is filtered with a

17 ×17 kernel K which is given as in Equation 15. The filtered frame 𝐼𝐹 is compared

with the original frame I to create a one-bit frame B, as in Equation 16 [48].

 𝐾(𝑖, 𝑗) = {
1/25 𝑖, 𝑗 ∈ [0,4,8,12,16]

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} (12)

 𝐵(𝑖, 𝑗) = {
1 𝑖𝑓 𝐼(𝑖, 𝑗) ≥ 𝐼𝐹(𝑖, 𝑗)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (13)

where 𝐼𝐹(𝑖, 𝑗) is the filtered form of the image frame 𝐼(𝑖, 𝑗).

To find the best matching MB for the current MB, a full search can be used. The

error between current and candidate MBs will be calculated as the Number of Non-

Matching Points (NNMP), which is measured by the exclusive-or (XOR) operation as

follows [48]:

𝑁𝑁𝑀𝑃(𝑚, 𝑛) =

1

𝑀 × 𝑁
∑ ∑(𝐵𝑡(𝑖, 𝑗) ⨁ 𝐵𝑡−1(𝑖 + 𝑚, 𝑗 + 𝑛))

𝑁

𝑗=1

𝑀

𝑖=1

−𝑠 ≤ 𝑚, 𝑛 ≤ 𝑠 − 1

(14)

where (𝑚, 𝑛) shows the candidate displacement, 𝐵𝑡(𝑖, 𝑗) and 𝐵𝑡−1(𝑖, 𝑗) are the one-bit

planes for the current and reference frame, respectively, 𝑠 determines the search

range, and ⨁ is the XOR operation [94].

In Erturk [48], a Two-Bit Transformation (2BT) was proposed to improve motion

estimation accuracy compared with 1BT. The first bit plane of 2BT is constructed

using the mean value (𝜇 = 𝐸[𝐼𝑡𝑤]) of the threshold window surrounding the current

MB. The second bit plane is constructed using the square root of the variance value

(𝜎2 = 𝐸[𝐼𝑡𝑤
2] − 𝐸2[𝐼𝑡𝑤]) as follows:

 𝐵1(𝑖, 𝑗) = {
1 𝑖𝑓 𝐼(𝑖, 𝑗) ≥ 𝜇

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (15)

𝐵2(𝑖, 𝑗) = {

1 𝑖𝑓 𝐼(𝑖, 𝑗) ≥ 𝜇 + 𝜎 𝑜𝑟 𝐼(𝑖, 𝑗) ≤ 𝜇 − 𝜎

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}

where 𝐵1(𝑖, 𝑗) and 𝐵2(𝑖, 𝑗) represent the 2BT, while the number of non-matching

points is defined as:

𝑁𝑁𝑀𝑃(𝑚, 𝑛) =
1

𝑀 × 𝑁
∑ ∑{𝐵1

𝑡(𝑖, 𝑗) ⨁ 𝐵1
𝑡−1(𝑖 + 𝑚, 𝑗

𝑁

𝑗=1

𝑀

𝑖=1

+ 𝑛)} ‖{𝐵2
𝑡(𝑖, 𝑗) ⨁ 𝐵2

𝑡−1(𝑖 + 𝑚, 𝑗 + 𝑛)}

−𝑠 ≤ 𝑚, 𝑛 ≤ 𝑠 − 1

(16)

where (𝑚, 𝑛) shows the candidate displacement, 𝐵1,2
𝑡 (𝑖, 𝑗) and 𝐵1,2

𝑡−1 are the two-bit

planes for the current and reference frame, respectively, 𝑠 represents the search

range, and ⨁ is the XOR operation. The operation ⃦ denotes the Boolean OR

operation.

Some other algorithms were proposed to enhance and modify the 2BT , all these

algorithms save hardware costs and power consumption but are run at the risk of

losing too much quality and hence they are classified as lossy block matching

algorithms [49-53].

5.4 Lossless Block Matching Algorithms (Fast Full Search)

A lossless algorithm attempts to improve the time to determine the matching MB

without affecting the quality of the FS. However, many studies have indicated that

the quality of the produced compressed videos is not as good as that of the ones

produced by FS [60]. Usually, the ideas of this category are borrowed from the fast

search of Vector Quantisation (VQ) [40].

5.4.1. Partial Distortion Elimination (PDE) Algorithm

This algorithm is the earliest algorithm in this category that has been widely used to

reduce the computational complexity efficiently. It is employed in the FS algorithms

in H.263 and H.264 [76], [86]. It uses the halfway-stop technique in the BDM

calculation. In other words, the partial sum of matching distortion between current

MB and candidate MB is stopped as soon as the matching distortion exceeds the

current minimum distortion, meaning that the remaining computation is avoided. The

conventional top-to-bottom kth partial SAD matching scan is determined as follows:

∑ ∑|𝐶(𝑖, 𝑗) − 𝑅(𝑖+𝑣𝑥 , 𝑗 + 𝑣𝑦)|

𝑁

𝑗=1

𝑘

𝑖=1

 , 𝑘 = 1, 2, … 𝑁 (17)

where 𝑁 represents MB size. If 𝑘 is smaller than 𝑁 and the summation exceeds the

current 𝑆𝐴𝐷𝑚𝑖𝑛, then the remaining summation can quit and move to the next

candidate MB.

The speed-up problem in this algorithm depends on: (1) fast searching, that is, how

fast the global minimum in a given search range is detected; (2) fast matching error,

that is, how to stop the calculation of the matching error early in the comparison

process, which means finding the 𝑘 value in Equation (20) faster to stop the partial

sum [111-112].

The fast searching can be satisfied by applying the PDE algorithm with a spiral-

ordered search starting at the centre of the search area since the best match

location is usually centre-biased, then moving outward in a spiral design. This was

employed in Telenor’s H.263 codec [4].

The fast matching can be satisfied by eliminating the average number of rows

examined per MB as well as the operations required. PDE employs SAD as a BDM

to avoid more multiplication when calculating the matching error using MSE.

Moreover, instead of the ordinary top-to-bottom matching scan, there are different

scanning orders that improve performance of block matching. Kim et al. proposed

various types of matching scan [76], [75], [72] depending on the relationship between

block matching error and the spatial complexity of the reference MB, which is based

on the concept of representative pixels. That is, the representative pixels are

examined earlier than other pixels to detect the impossible candidates faster and

reject them to obtain the reduction of computation in the block-matching algorithm.

This algorithm is called adaptive matching scan algorithm based on gradient

magnitude. It utilises four directions: top-to-bottom, bottom-to-top, left-to-right, right-

to-left. It uses gradient magnitude to measure the image complexity due to

performance and computational complexity. In general, the gradient points in the

direction of the maximum increase of a function. The gradient magnitude G can be

calculated as follows:

|𝐺[𝑓(𝑥, 𝑦)]| ≈ |𝐺𝑥| + |𝐺𝑦| ≈ |𝑓(𝑥, 𝑦) − 𝑓(𝑥 + 1, 𝑦)| + |𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦 + 1)| (18)

The gradient magnitudes are calculated in four 8×8 sub-blocks of the candidate MB,

as shown in Figure 24, and then make a sum of gradient magnitudes in sub-blocks,

which are in four cases: (1)+(2), (3)+(4), (1)+(3), (2)+(4). The maximum value of

these sums points to the direction of matching scan; for example, the direction of

matching scan is from top-to-bottom when the sum of gradient magnitudes (1) and

(2) is maximum, as shown in 28 which describes this algorithm. The sub-block may

be 4×4, i.e. there are 16 sub-blocks as in Jong-Nam et al. [72]. The matching scan

order will also be according to the local complexity of the sub-block.

If the matching scan order is well arranged then the probability of eliminate the

average number of rows examined increases.

Figure 24: Adaptive matching scan based on representative pixels: (a) gradient

magnitudes of sub-block division, (b) (top-to-bottom) matching scan when

(1)+(2) is maximum, (c) bottom-to top matching scan when (3)+(4) is maximum,

(d) left-to right when (1)+(3) is maximum, (e) right-to left when (2)+(4) is

maximum [76]

Figure 25: (a) spiralling inward scanning order, (b) alternating spiralling inward

scanning order

However, these algorithms are not effective since decreasing the number of

checking rows does not necessarily lead to enhancing the real time needed,

because a lot of add/subtract operation is required per MB to compute the gradient

magnitude in order to decide the matching order, which may render it unsuitable for

real-time video coding systems. Therefore, three low complexity scanning orders

were proposed by Grecos et al. (2004) which show improvements of ¼ operation

count ratio and show an increase in the speed-up ratio of 45 times on average as

compared with an adaptive matching scan algorithm based on gradient magnitude.

Unlike the adaptive matching scan algorithm, two of Grecos et al.’s algorithms –

spiralling inward scanning order and alternating spiralling inward scanning order –

used fixed order of SAD computation between current and reference MBs to

eliminate unsuitable predictors in the reference frame. These algorithms are based

on the idea that the sides of the MB could represent the most information. Therefore,

the representative pixels are examined earlier than other pixels without pre-

processing, by computing the SAD value between pixels located on the sides of the

squares of decreasing size inside the current and reference macroblocks, as shown

in Figure ‎25, in order to reject impossible candidate predictors faster than the

conventional top-to-bottom scan. The fixed direction scanning of the spiralling inward

scanning order starts from top-horizontal and ends in left-vertical (Figure 25); it may

increase computations since the complexity of candidate MB could be in any vertical

or horizontal sides. If a candidate MB should be rejected on the basis of left-vertical

SAD information then it has to wait until three sides of SAD computations are

completed. For this reason, the alternating spiralling inward scanning order was

designed to reject the candidate MB on the basis of horizontal and vertical SAD

information, as shown in Figure 29 (b).

The last algorithm of Grecos et al.’s, which is horizontal/vertical scanning order,

utilises very limited pre-processing to avoid increasing the real time needed for

computation and hence losing the benefit of computational reduction that happened

with the adaptive matching scan algorithm. It determines the scanning order by

examining only the SAD between the boundary rows and columns of the current and

candidate MBs. The scanning direction will be the direction of the maximal SAD.

Successive Elimination Algorithm (SEA)

The SEA [85] eliminates impossible candidate MB by checking if the absolute

difference between the summation of current MB pixels and the summation of

candidate MB pixels is larger than the updated minimum SAD; if it is, then this

candidate MB should be rejected. Thus, a large part of unnecessary computation for

impossible candidate MBs can be avoided. This algorithm is based on the triangular

mathematical inequality given by:

 |∑ 𝑥𝑖

𝑖

| ≤ ∑|𝑥𝑖|

𝑖

 (19)

where 𝑥𝑖 are arbitrary real numbers. Appling this inequality to the SAD achieves:

|∑ ∑ 𝐶(𝑖, 𝑗) − ∑ ∑ 𝑅(𝑖 + 𝑥, 𝑗

𝑁

𝑗=1

𝑁

𝑖=1

𝑁

𝑗=1

𝑁

𝑖=1

+ 𝑦)|

= |∑ ∑ 𝐶(𝑖, 𝑗) − 𝑅(𝑖 + 𝑥, 𝑗 + 𝑦)

𝑁

𝑗=1

𝑁

𝑖=1

|

≤ ∑ ∑|𝐶(𝑖, 𝑗) − 𝑅(𝑖 + 𝑥, 𝑗 + 𝑦)|

𝑁

𝑗=1

𝑁

𝑖=1

(20)

where 𝐶(𝑖, 𝑗) is the pixel value of current MB at the position (𝑖, 𝑗) and R(𝑖 + 𝑥, 𝑗 + 𝑦) is

the pixel value of reference frame with the vector (𝑥, 𝑦), which are within the search

range [−𝑝, 𝑝]. In other words, the previous inequality can be written as:

 |𝑆𝐶 − 𝑆𝑅(𝑥, 𝑦)| ≤ 𝑆𝐴𝐷(𝑥, 𝑦) (21)

where 𝑆𝐶 is the summation of current MB and 𝑆𝑅(𝑥, 𝑦)is the summation of candidate

MB at the vector (𝑥, 𝑦). If 𝑆𝐴𝐷𝑚𝑖𝑛(𝑥0, 𝑦0) is the current updated minimum SAD at the

search location (𝑥0, 𝑦0), then to achieve better match MB at the location (𝑥, 𝑦) the

SAD should be less than 𝑆𝐴𝐷𝑚𝑖𝑛 , that is 𝑆𝐴𝐷(𝑥, 𝑦) ≤ 𝑆𝐴𝐷𝑚𝑖𝑛(𝑥0, 𝑦0). This will

substitute in (22) to get: |𝑆𝐶 − 𝑆𝑅(𝑥, 𝑦)| ≤ 𝑆𝐴𝐷𝑚𝑖𝑛(𝑥0, 𝑦0). This means that a MB at

location (𝑥, 𝑦) can be immediately skipped from the search if:

 |𝑆𝐶 − 𝑆𝑅(𝑥, 𝑦)| ≥ 𝑆𝐴𝐷𝑚𝑖𝑛(𝑥0, 𝑦0) (22)

While, if the difference |SC − SR(x, y)| is smaller than 𝑆𝐴𝐷𝑚𝑖𝑛(𝑥0, 𝑦0), then the

candidate MB is elected to calculate SAD between these two MBs and the new SAD

becomes 𝑆𝐴𝐷𝑚𝑖𝑛. Since the candidate MBs are overlapping then the two horizontal

neighbouring candidate MBs 𝑆𝑅(𝑥, 𝑦) and 𝑆𝑅(𝑥 + 1, 𝑦) are also overlapping and they

share N−1 columns. Therefore, subtracting the sum of the first column of MB

𝑆𝑅(𝑥, 𝑦) and adding the sum of the last column in MB 𝑆𝑅(𝑥 + 1, 𝑦) will improve the

block matching computation. A similar procedure can be used for vertical

neighbouring candidate MBs.

Note that, similar to PDE, if the global minimum in a given search range is detected

at the initial search, then SEA will be faster [54], [60]. Various algorithms have been

introduced to enhance SEA [120], [73], [62], [91].

5.4.2 Enhanced Mean Predictive Block Matching Algorithm (EMPBM)

Using Edge Detection

Enhanced Mean Predictive Block Matching Algorithm proposed to decrease the

computations of the previous fast block matching algorithm Mean Predictive Block

Matching algorithm [17-19]. In order to find the matching macroblock for the current

macroblock from the previous frame, this technique classifies the current macroblock

into shade and edge. The shade macroblock has a high probability to move in the

same direction as its neighbouring macroblocks [67]. This will lead to search only the

motion vectors of the neighbouring macroblocks and ignore other motion vectors that

were utilised in the first search step of the Mean Predictive Block Matching algorithm.

For edge macroblock, the proposed technique will use the same approach that was

used in the Mean Predictive Block Matching algorithm [41-43].

Edge information can be described as a straight line across the macroblock with a

sharp change of intensity in the spatial domain [20]. A fixed small size 4×4

macroblock is utilised to achieve good subjective quality. Therefore, this technique

can be useful for small MBs in variable block-size motion estimation. In order to

avoid more computations in the existing edge detection methods, the absolute value

approach has been used. The idea is to use the absolute value between the

summation values of the vertical halves of the macroblock and the absolute value of

the difference between the summation values of the horizontal halves, as shown in

Figure 26.

Figure 26: Vertical halves and horizontal halves for 4×4 MBs

When the sum of theses difference is less than a threshold value, the macroblock is

classified as shade; otherwise, the macroblock will be classified as edge, as follows:

Let 𝐵 = {𝑏𝑖𝑗; 1 ≤ 𝑖, 𝑗 ≤ 4} represent a 4×4 frame macroblock. In this case, 𝑏𝑖𝑗is a

grey level pixel value corresponding to position (i, j) of row i and column j in the

image block B. The discrete gradients of the macroblock B in the x and in the y

directions are determined as follows:


  


4

3

4

1

2

1

4

1 i j

ij

i j

ijx bbG


  


4

1

4

3

4

1

2

1 i j

ij

i j

ijy bbG

(23)

The gradient magnitude is defined by:

 yx GGG 

(24)

If the gradient magnitude G in Equation (26) of the macroblock B is smaller than

threshold T, then it is considered that the macroblock contains no significant gradient

and it is classified as a shade macroblock; otherwise, it will be classified as an edge

macroblock.

The shade macroblock has a high probability to move in the same direction of its

neighbouring macroblock. This fact has been used in MPBM to decrease the search

points [21].

6. DISCUSSION

Various block-based matching algorithms demonstrate varying behaviours in terms

of quality measures, processing times, levels of distortion and the number of points

evaluated during search procedures.

The number of search locations shown within FS operations are extremely resource

intensive and a considerable number of computations are incurred during motion

vector assignment as shown in Table 1.

The values also grow exponentially as the search parameter size increases and

therefore computational complexity. FS technique renders a lossless form of video

compression, whereas the subsequently developed fast block matching solutions are

of the lossy category. Therefore, implementation of the FS technique within a video

coding environment is largely dependent on the hardware constraints under which

an individual operates. Fast block matching algorithms have been proposed to

alleviate the demand on computational resources through the imperceptible loss of

redundant visual content.

Maximum
Displacement Region

Number of
Search Locations

±1 9

±3 49

±7 225

±14 841

±28 3249

Table 1. The number of search location for FS.

TSS is considered as one of the pioneering solutions for fast, block-based motion

estimation and remains a viable option for the compression of video sequences to

this present day [3].

The number of search locations are fixed within each step with nine coordinates for

the initial event and eight for subsequent events (as the point exhibiting the least

distortion becomes the origin of successive search events). In order to provide an

indication of the computational complexity associated with the TSS, Table 2

demonstrates the number of calculations required by this algorithm during certain

displacement region scenarios.

Maximum Displacement
Region

Number of Search
Locations

±1 9

±3 17

±7 25

±14 33

±28 41

Table 2. The number of calculations required by TSS

The TSS and 2-D logarithmic search algorithms were both developed in order to

alleviate the computational intensity associated with FS procedures and share a

similar functional characteristic, in that their subsequent stages of execution employ

a search pattern size of reduced dimensions (based on half that of the current step

size). The most obvious difference between these two techniques is that the 2-D

logarithmic search utilises a pattern with five checking points during the initial search

steps in comparison to nine locations in the instance of the TSS. At stage in which

the motion vector is specified, the 2-D logarithmic search uses a search pattern

identical to that of a TSS window with step size equal to one.

In comparison to a TSS pattern, a reduction in the allocation of search points within

the 2-D logarithmic search mean that distortion calculations for its initial search

operations are minimised. Thus, the can 2-D logarithmic search be considered less

resource intensive than the TSS for video sequences with small ranges of motion.

The negative aspect of adopting a search pattern of this nature, is that the scenarios

in which a significant step size is specified, the 2-D logarithmic search is forced to

conduct several steps until the search area is narrowed towards the vicinity of the

optimum motion vector.

The 2-D logarithmic search was released during the formative years of fast block

matching algorithm development, as such the simulations conducted by Jain and

Jain [68] provide no comparison with other homogeneous techniques. During this

time, motion estimation technologies were in their infancy and their suitability for

application within video coding yet to be extensively affirmed. Experimental

investigations were still conducted however, with the peak-to-signal noise ratio of an

uncompressed video sequence used as the baseline for comparison.

Within the 2-D logarithmic search publication, Jain and Jain [68] specify that the

BDM used to assess the suitability of motion vectors for this technique is the Mean

Absolute Error. Simulations conducted within this paper incorporate two test video

sequences; namely “Cronkite” and “Chemical Plant”. Testing of the 2-D logarithmic

search is implemented across sixteen frames of each video sequence, each with a

resolution size of 256 x 256 pixels. Macroblocks used for the focal point of motion

estimation between frames of the specified video sequences are comprised of 16 x

16 pixel dimensions.

Their PSNR figures present a strong argument for the validity of the 2-D logarithmic

search as a solution for motion estimation processing. The experimental results

indicate that the 2-D logarithmic search is consistently able to achieve higher levels

of fidelity compared to instances where motion compensated frames are not applied.

The figures also demonstrate that use of the 2-D logarithmic search for predicting

motion vectors provides a reduced level of deviation on average in relation to PSNR

values. This is particularly evident between frames six and seven of the “Cronkite”

sequence, where a deficiency in motion compensation results in an interframe

variance of approximately four dBs. The consistency of PSNR figures shown within

the simulation results suggest that this technique unvaryingly navigates towards the

domain of global minimum distortion.

Chronologically, Orthogonal Search [68] succeeded the initial endeavours of block-

based algorithm development and adopted a similar search pattern configuration to

that of the2-D logarithmic search. This pattern design was adapted so that the

horizontal and vertical application of possible motion vector locations is conducted

during subsequent stages of execution. This compounds the reduction of search

point locations in comparison to that of the TSS as a maximum of three calculations

are implemented at each step. Orthogonal Search simulations indicate that its

computational complexity is approximately half that of the TSS, however steps of

search double in frequency and therefore prolonged processing times are observed.

Proposal of the NTSS in the mid-nineties prompted the speculation of an additional

assumption in relation to the behaviours exhibited by distortion distributions. This

technique relied heavily on the suggestion that the motion vectors assigned from

reference frames are in a centralised locality accordant to that of the candidate

macroblock coordinates. This reasoning is exploited by the NTSS [108] through the

inclusion of an additional 3 x 3 coordinate search pattern during distortion level

assessments in order to identify static macroblocks, at which point execution of the

algorithm may be terminated. Implementation of two search patterns at the first step

will incur seventeen BDM calculations and is therefore highly dependent of the

validity of said assumption to ensure computational demands are not overly

exuberant for motion estimations procedures.

Simulations were conducted by the developers of the NTSS with the TSS placed

under identical testing conditions. The findings were particularly significant as the

NTSS was shown to be consistently closer to point of global minimum distortion, but

more significantly it is the most likely to identify the optimum motion vector match.

The study does not however, indicate the required number of search locations for

application of the NTSS within the tested video sequences. The NTSS is liable to

incur an increased number of BDM calculations per step compared to that of the

TSS, however this is mitigated by the innovative half-way stop technique which can

also reduce processing times for static macroblocks.

The success demonstrated by the NTSS in adopting a centre-biased search

functionality stimulated the emergence of a number of similar, block-based matching

techniques in the years to follow. This is the framework in which algorithms

described previously, such as the 4SS [82] and Block-Based Gradient Decent

Search Algorithm (BBGDS) [127], are configured to exploit in order to increase the

efficiency of motion estimation procedures whilst maintaining acceptable levels of

fidelity.

Transformations made by the 4SS and BBGDS algorithms during the implementation

of block matching, motion estimation were variable in regards to both computational

complexity and also levels of observable distortion. Distortion levels incurred by the

BBGDS in the tested video sequences were comparable with that of the NTSS,

whilst computations were reduced by a factor of six. The ramifications of such, are

that the computational resources required to achieve motion vector assignment are

considerably less and the time required in order process such is also attenuated.

The ARPS algorithm is another pioneering block matching solution. The ARPS

incorporates, what were at this period in time, two novel features; ZMP for stationary

or quasi-stationary macroblocks and a predicted motion vector location within the

primary search event. ZMP was shown to be effective for eliminating the superfluous

computations that are incurred by previous algorithms for macroblocks with zero or

minimal amounts of motion in the temporal domain of digital video sequences. The

reasoning behind implementation of an additional, predicted motion vector location is

that this ensures the path of search originates in an auspicious location and removes

the likelihood of becoming trapped into a local minimum as is apparent in earlier

techniques.

Scenarios in which the ARPS is applied without the implementation of ZMP, the

number of motion vector assessments is reduced by a factor of two in comparison to

the DS. Instances in which ZMP is utilised are shown to make further decreases in

necessary computations, however this is less remarkable for high resolution video

sequences due to the increases in paths of movement which obviously result in

greater dispersion of motion vector locations between current and reference frames.

Table 3 shows the properties of the six well-studied block matching algorithms. The

quality measures used to evaluate the performance of the block matching algorithm

are shown in Table 4.

Algorithm Properties

Full Search (FS) [110],

[121], [60]

Simple full exhausted search algorithm used for

benchmarking with the other techniques.

Correlation window moves to each candidate

position within the search area.

Diamond Search (DS) [113] Utilises two search patterns

New Three Steps Search

(NTSS) [108]

Provides improvement over the quality results of

TSS. Widely accepted fast block matching

algorithms.

Used in earlier standards like MPEG 1 and H.261

[96].

Four Step Search (4SS)

[82]

Halfway-stop technique with searching steps of 2 to

4.

Reduces the computational requirement of full

search.

Simple and Efficient TSS

(SESTSS) [70]

Requires around half of the computation for TSS.

keeping the same regularity and good

performance of TSS.

Adaptive Rood Pattern

Search (ARPS) [98]

Faster speed of 2-3 times than that DS.

Maintains similar performance to the DS [138].

Table 3. Comparison of Six of the Standard Lossy Block Matching Algorithms.

Quality Measures Calculation

Mean Square of the

Error
𝑀𝑆𝐸 =

1

𝑀 × 𝑁
∑ ∑(𝑓(𝑖, 𝑗) − 𝑓(𝑖, 𝑗))

2
𝑁

𝑗=1

𝑀

𝑖=1

M and N are the horizontal and vertical dimensions of the frame

𝑓(𝑖, 𝑗) = pixels values at location (𝑖, 𝑗)

𝑓(𝑖, 𝑗) = predicted values at location (𝑖, 𝑗)

Processing time 𝑡𝑠 = search time per macro block

Peak Signal to Noise

Ratio
𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 (

(𝑓𝑚𝑎𝑥)2

𝑀𝑆𝐸
)

Mean Absolute

Differences
𝑀𝐴𝐷 =

1

𝑀 × 𝑁
∑ ∑⌈(𝑓(𝑖, 𝑗) − 𝑓(𝑖, 𝑗))⌉

𝑁

𝑗=1

𝑀

𝑖=1

Sum of Absolute

difference
𝑆𝐴𝐷 = ∑ ∑⌈(𝑓(𝑖, 𝑗) − 𝑓(𝑖, 𝑗))⌉

𝑁

𝑗=1

𝑀

𝑖=1

Table 4: Quality measures to evaluate the performance of the block matching

algorithms.

To evaluate the performance of those standard block marching algorithms, Table 5

shows the average number of search points for a Microblock of size 16x16 which

indicates that significant improvements are shown in comparison to the FS algorithm.

Table 6 shows that the performance of fast black matching algorithms in terms of

PSNR is comparable to the FS algorithms.

Sequence Format FS DS NTSS 4SS SESTSS ARPS

Claire QCIF 184.6 11.63 15.09 14.77 16.13 5.191

Akiyo QCIF 184.6 11.46 14.76 14.67 16.2 4.958

Carphone QCIF 184.6 13.76 17.71 16.12 15.73 7.74

News CIF 204.3 13.1 17.07 16.38 16.92 6.058

Stefan CIF 204.3 17.69 22.56 19.05 16.11 9.641

Coastguard CIF 204.3 19.08 27.26 19.91 16.52 9.474

Table 5: Average number of search points per MB of size 16 ×16

Sequence Format FS DS NTSS 4SS SESTSS ARPS

Calire QCIF 38.94 38.94 38.94 38.92 38.89 38.94

Akiyo QCIF 39.61 39.61 39.61 39.61 39.61 39.61

Carphone QCIF 30.82 30.69 30.7 30.4 30.1 30.58

News CIF 33.77 33.45 33.63 33.42 33.19 33.39

Stefan CIF 22.16 21.49 21.81 21.51 21.04 21.82

Coastguard CIF 26.19 25.98 26.05 26.02 25.6 26.05

Table ‎6: The simulation results of mean PSNR for 50 frames

7. CONCLUSION

Our investigative study into fast block matching algorithms has provided insight into

the competitiveness of such solutions with regard to their computational complexity,

processing times and levels of observed distortion. We have looked at various block

matching algorithms and emphasise on their properties, this is different to other

survey researches which looked at video compressions and briefly discussed block

matching algorithms as illustrated in Table 6. In this survey, we have found that TSS

was able to alleviate the resource intensity of FS operations, whilst providing

satisfactory fidelity levels within encoded video sequences. Thus, the solution was

widely adopted for motion estimation procedures [3], until the mid-nineties when

centre-biased search pattern algorithms were introduced with the proposal of the

NTSS. The NTSS demonstrated similar distortion levels to that as the TSS, however

the additional (centralised) search window and half-way stop functionalities achieved

transformations in regards to computational complexity and therefore times for

processing motion vectors. Several homogeneous techniques such as 4SS

emerged, providing further gains than that of the NTSS, albeit for contrasting

operational benefits.

A shift in search pattern design was demonstrated by the development of the DS

algorithm, which also intended to exploit the assumption that the majority of true

motion vectors reside in a centralised locality. The DS achieved this to a degree by

providing desirable levels of fidelity, whilst minimising the number distortion

calculations in comparison to that of the NTSS and 4SS. The reductions made in

terms of computational complexity by the BBGDS are evidently more remarkable

and suggest the hexagonal conformation of motion vector points are less effective

than standard 3 x 3, square-based windows of search.

Ref. Topics Summary

[140] Survey in perceptual video compression The paper has defined three important

stages in developing perceptual video

compression algorithms which are

perceptual model definition,

implementation of coding, and

performance evaluation

[141] Various techniques of video compression

was survived

Indicated that four-step search algorithm

for fast block motion estimation is

widely used video compression

techniques.

[142] A Review on Motion Estimation in Video

Compression

Concluded that there are still lots of

improvement of video compression

technique still to be searched

[143] Classification of motion estimation

algorithms used for video compression

were discussed

The paper focused on block matching

algorithms indicating that they are

widely used in MPEG1 / H.261 to

MPEG4 / H.263 and H.264/AVC

[144] Looked at motion estimation techniques The paper looked at MPEG and how it

make use of the temporal redundancy

inherent in sequences of full-motion

video to achieve compression

Table 7: Selected examples of survey on video compression algorithms

Figure 27. Comparison between DS, ARPS and ARPS-ZMP [98]

Figure 28. Average number of search location [98]

ARPS experimental data provides empirical evidence showing that its observed

distortion levels are comparable with that of the DS (demonstrated by Figure 27), but

also demonstrates that approximately half the calculations are required in order to

achieve such, as shown in Figure 28. Thus, from our investigation into a variety of

fast block matching algorithms it can be determined that ARPS can provide

competitive solution due to its computational simplicity and the desirable levels of

fidelity in which are achieved.

Ref. Technique Details

Jha et al.

[145]

Wavelet Based Hybrid video compression algorithm.

Adaptive motion compensation scheme is used.

Spatial orientation tree modified zero tree

algorithms are also used

Fabrizio

et. al.

[146]

Particle Swarm

Optimization

PSO approach used to achieve high accuracy in

block matching.

Cai et al.

[147]

Block matching

using DCT & DWT

Develop block matching algorithm with DCT &

DWT

Aziz et al

[149]

Wavelet domain Develop motion estimation and compensation in

the wavelet domain.

Pandian et

al. [150]

PCA PCA applied to the frames. It algorithm kept the

bandwidth of frequency and improve the Edges of

frames

Table 8: Summary of video compression techniques

In summary, modern world video compression technology is developed to be in one

of the bloomed field of research, there are enormous techniques available for a wide

range of applications as illustrated in Table 8.

References

[1] TIAN, L., LI, S., AHN, J., CHU, D., HAN, R., LV, Q. & MISHRA, S. (2013).

"Understanding User Behavior at Scale in a Mobile Video Chat Application". In

Proc. UbiComp '13 ACM International Joint Conference on Pervasive and

Ubiquitous Computing; pp.647-656.

[2] EMARKETER (2013). "Mobile, Video Drive Up Digital Ad Investment in the UK".

[Online]. Available: http://www.emarketer.com/Article/Mobile-Video-Drive-Up-

Digital-Ad-Investment-UK/1010097; [Accessed 5.05. 2017].

http://www.emarketer.com/Article/Mobile-Video-Drive-Up-Digital-Ad-Investment-UK/1010097;
http://www.emarketer.com/Article/Mobile-Video-Drive-Up-Digital-Ad-Investment-UK/1010097;

[3] MUKHTAR, H., AL-DWEIK, A., AL-MUALLA, M. (2016). “Content-Aware and

Occupancy-Based Hybrid ARQ for Video Transmission”, IEEE 59TH

International Midwest Symposium on Circuits and Systems, Abu Dhabi, United

Arab Emirates.

[4] AL-MUALLA, M. E., CANAGARAJAH, C. N. & BULL, D. R. (2002). "Video Coding

for Mobile Communications: Efficiency, Complexity and Resilience": Academic

Press.

[5] ISO/IEC (1993). "Information technology – Coding of moving pictures and

associated audio for digital storage media at up to about 1,5 Mbit/s – Part 2:

video". ISO/IEC 11172-2.

[6] ISO/IEC (1996). "Information technology – Generic coding of moving pictures

and associated audio – Part 2: video". ISO/IEC 13818-2.

[7] ISO/IEC (1999). "Coding of moving pictures and associated audio for digital

storage media at up to about 1.5 Mbit/s". ISO/IEC 11172-3.

[8] ITU-T & ISO/IEC (2003). "Advanced Video Coding for Generic Audiovisual

Services". H.264, MPEG, 14496-10.

[9] SULLIVAN, G., TOPIWALA, P. & LUTHRA, A. (2004). "The H.264/AVC Advanced

Video Coding Standard: Overview and Introduction to the Fidelity Range

Extensions". SPIE conference on Applications of Digital Image Processing

XXVII.

[10] SULLIVAN, G. J. & WIEGAND, T. (2005). "Video Compression - From Concepts

to the H.264/AVC Standard". Proceedings of the IEEE; Vol.93(1); pp.18-31.

[11] OHM, J. & SULLIVAN, G. J. (2013). "High Efficiency Video Coding: The Next

Frontier in Video Compression [Standards in a Nutshell]". IEEE Signal

Processing Magazine; Vol.30(1); pp.152-158.

[12] RICHARDSON, I. (2003). "H.264 and MPEG-4 Video Compression: Video

Coding for Next Generation Multimedia": Wiley.

[13] RICHARDSON, I. E. G. (2010). "The H.264 advanced video compression

standard", 2nd edition; UK: John Wiley & Sons Inc.

[14] AKRAM, M. & IZQUIERDO, E. (2010). "A Multi-Pattern Search Algorithm for

Block Motion Estimation in Video Coding". In Proc. IEEE 12th International Asia-

Pacific Web Conference (APWEB); pp.407-410.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.H.%20Mukhtar.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.A.%20Al-Dweik.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.M.%20Al-Mualla.QT.&newsearch=true

[15] D.S.Huang, Systematic Theory of Neural Networks for Pattern Recognition,

Publishing House of Electronic Industry of China, May 1996.

[16] D.S.Huang, “Radial basis probabilistic neural networks: Model and application,”

International Journal of Pattern Recognition and Artificial Intelligence, 13(7),

pp.1083-1101, 1999.

[17] AHMED, Z., HUSSAIN, A. J. & AL-JUMEILY, D. (2011a). "Enhanced

Computation Time for Fast Block Matching Algorithm". In Proc. IEEE

Developments in E-systems Engineering (DeSE); pp.289-293.

[18] AHMED, Z., HUSSAIN, A. J. & AL-JUMEILY, D. (2011b). "Mean Predictive

Block Matching (MPBM) for fast block-matching motion estimation". In Proc.

IEEE 3rd European Workshop on Visual Information Processing (EUVIP); pp.67-

72.

[19] AHMED, Z., HUSSAIN, A. J. & AL-JUMEILY, D. (2012). "Edge detection for fast

block-matching motion estimation to enhance Mean Predictive Block Matching

algorithm". In Proc. IEEE International Symposium on Innovations in Intelligent

Systems and Applications (INISTA); pp.1-5.

[20] AL-FAYADH, A., HUSSAIN, A. J., LISBOA, P., AND AL-JUMEILY, D. (2009).

"Novel hybrid classified vector quantization using discrete cosine transform for

image compression ". Journal of Electronic Imaging; Vol.18(2).

[21] W.B.Zhao, D.S.Huang, Ji-Yan Du and Li-Ming Wang, “Genetic optimization of

radial basis probabilistic neural networks,” International Journal of Pattern

Recognition and Artificial Intelligence, vol. 18, no. 8, pp. 1473-1500, 2004.

[22] ANANTHASHAYANA, V. K. & PUSHPA, M. K. (2009). "Joint Adaptive Block

Matching Search (JABMS) Algorithm for Motion Estimation". International

Journal of Recent Trends in Engineering; Vol.2(2); pp.212-216.

[23] D.S.Huang, Ji-Xiang Du, “A constructive hybrid structure

optimization methodology for radial basis probabilistic neural networks,” IEEE

Transactions on Neural Networks, vol. 19, no.12, pp 2099-2115, 2008.

[24] D.S.Huang, W.B.Zhao, "Determining the centers of radial basis probabilistic

neural networks by recursive orthogonal least square algorithms," Applied

Mathematics and Computation, vol.162, no.1, pp.461-473, 2005.

[25] D.S.Huang and S.D.Ma,“Linear and nonlinear feedforward neural network

classifiers: A comprehensive understanding,”Journal of Intelligent Systems,

vol.9, no.1, pp.1-38,1999.

[26] BARJATYA, A. (2004). "Block Matching Algorithms for Motion Estimation". Final

Project Paper, DIP 6620.

[27] BHASKARAN, V. & KONSTANTINIDES, K. (1997). "Image and Video

Compression Standards: Algorithms and Architecture", 2nd edition: Kluwer

Academic Publishers.

[28] D.S. Huang, The Study of Data Mining Methods for Gene Expression Profiles,

Science Press of China, March 2009.

[29] D.S.Huang, “A constructive approach for finding arbitrary roots of polynomials by

neural networks,” IEEE Transactions on Neural Networks, vol.15, no.2, pp.477-

491, 2004.

[30] D.S.Huang, and Wen Jiang, “A general CPL-AdS methodology for fixing

dynamic parameters in dual environments,” IEEE Trans. on Systems, Man and

Cybernetics - Part B, vol.42, no.5, pp.1489-1500, 2012.

[31] BOVIK, A. (2010). "Handbook of Image and Video Processing", 2nd edition:

Academic Press.

[32] BOVIK, A. C. (2009). "Chapter 1 - Introduction to Digital Video Processing". In:

The Essential Guide to Video Processing, 2nd edition; Boston: Academic Press.

[33] BROSS, B., HAN, W. J., OHM, J. R., SULLIVAN, G. J. & WEINGAND, T.

(2012). "High Efficiency Video Coding (HEVC), text specification draft 6". Doc.

JCTVC-H1003, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T

VCEG and ISO/IEC MPEG; Vol.21.

[34] CAI, C., ZENG, H. & MITRA, S. (2009). "Fast motion estimation for H.264".

Signal Processing: Image Communication.

[35] D.S.Huang, Horace H.S.Ip, Law Ken C K and Zheru Chi, ”Zeroing polynomials using

modified constrained neural network approach,” IEEE Trans. On Neural Networks，

vol.16, no.3, pp.721-732, 2005.

[36] Xiao-Feng Wang, D.S.Huang and Huan Xu, "An efficient local Chan-Vese model

for image segmentation," Pattern Recognition, vol. 43, no.3, pp. 603-618, 2010.

[37] Xiao-Feng Wang, D.S.Huang, "A novel density-based clustering framework by

using level set method," IEEE Transactions on Knowledge and Data

Engineering, vol. 21, no.11, pp 1515-1531, 2009.

[38] CE, Z., XIAO, L., CHAU, L. & LAI-MAN, P. (2004). "Enhanced hexagonal search

for fast block motion estimation". IEEE Transactions on Circuits and Systems for

Video Technology; Vol.14(10); pp.1210-1214.

[39] CHALIDABHONGSE, J. & KUO, C. C. J. (1997). "Fast motion vector estimation

using multiresolution-spatio-temporal correlations". IEEE Transactions on

Circuits and Systems for Video Technology; Vol.7(3); pp.477-488.

[40] CHANG-DA, B. & GRAY, R. (1985). "An Improvement of the Minimum Distortion

Encoding Algorithm for Vector Quantization". IEEE Transactions on

Communications; Vol.33(10); pp.1132-1133.

[41] Wen Jiang, D.S.Huang, Shenghong Li, “Random-walk based solution to triple

level stochastic point location problem,” IEEE Trans. on Cybernetics, vol.46,

no.6, pp.1438-1451, 2016.

[42] Zhan-Li Sun, D.S.Huang, and Yiu-Ming Cheung, “Extracting nonlinear features

for multispectral images by FCMC and KPCA,” Digital Signal Processing, vol.15,

no.4, 331-346, 2005.

[43] Zhan-Li Sun, D.S.Huang, Yiu-Ming Cheung, Jiming Liu and Guang-Bin Huang,

“Using FCMC, FVS and PCA techniques for feature extraction of multispectral

images,” IEEE Geoscience and Remote Sensing Letters, vol.2, no.2, pp.108-

112, 2005.

[44] CHANYUL, K. (2010). "Complexity adaptation in video encoders for power

limited platforms". Dublin City University.

[45] CHAO-FENG, T., YEN-TAI, L. & MENG-JE, L. (2012). "A VLSI architecture for

three-step search with variable block size motion vector". In Proc. IEEE 1st

Global Conference on Consumer Electronics (GCCE); pp.628-631.

[46] CHEUNG, C.-H. & PO, L.-M. (2002). "A novel cross-diamond search algorithm

for fast block motion estimation". IEEE Trans. Circuits Syst. Video Technol;

Vol.12(12); pp.1168- 1177.

[47] Fischer, W. (2010). Digital and Audio Broadcasting Technology: A Practical

Engineering Guide, Signals and Communication Technology, 3rd ed., DOI

10.1007/978-3-642-11612-4_2.

 [48] ERTURK, S. (2007). "Multiplication-Free One-Bit Transform for Low-Complexity

Block-Based Motion Estimation". IEEE Signal Processing Letters; Vol.14(2);

pp.109-112.

[49] Jian-Xun Mi, D.S.Huang, Bing Wang, Xingjie Zhu, “The nearest-farthest

subspace classification for face recognition,” Neurocomputing, vol.113, pp.241-

250, 2013.

[50] Can-Yi Lu, and D.S.Huang, “Optimized projections for sparse representation

based classification,” Neurocomputing, vol.113, pp.213-219, 2013.

[51] Yang Zhao, and D.S.Huang, “Completed local binary count for rotation invariant

texture classification,” IEEE Trans. on Image Processing, vol.21, no.10, pp. 4492

- 4497, 2012.

[52] Bo Li, Chao Wang and D.S.Huang, “Supervised feature extraction based on

orthogonal discriminant projection,” Neurocomputing, vol. 73, nos.1-3, pp 191-

196, 2009.

[53] Xiao-Feng Wang, D.S.Huang, Ji-Xiang Du, Huan Xu, Laurent Heutte,

“Classification of plant leaf images with complicated background,” Applied

Mathematics and Computation, vol. 205, no.2, pp 916-926, 2008.

[54] ESSANNOUNI, F., THAMI, R. O. H., SALAM, A. & ABOUTAJDINE, D. (2006).

"An efficient fast full search block matching algorithm using FFT algorithms".

IJCSNS International Journal of Computer Science a 130 nd Network Security;

Vol.6(3); pp.130-133.

[55] EZHILARASAN, M. & THAMBIDURAI, P. (2008). "Simplified Block Matching

Algorithm for Fast Motion Estimation in Video Compression ". Journal of

Computer Science; Vol.4(4); pp.282-289.

[56] GOEL, S. & BAYOUMI, M. A. (2006). "Multi-Path Search Algorithm for Block-

Based Motion Estimation". In Proc. of IEEE International Conference on Image

Processing; pp.2373-2376.

[57] GONZALEZ, R., WOODS, R. & EDDINS, S. (2009). "Digital Image processing

using MATLAB", 2nd edition: Gatesmark Publishing.

[58] HORN, B. & SCHUNCK, B. (1981). "Determining Optical Flow". ARTIFICAL

INTELLIGENCE; Vol.17; pp.185-203.

[59] HUANG, D.Y. (2005). "A XviD-based Video Codec for Computer Animation".

MSC Thesis, National Central University.

[60] HUANG, Y.W., CHEN, C.-Y., TSAI, C.-H., SHEN, C.-F. & CHEN, L.-G. (2006).

"Survey on Block Matching Motion Estimation Algorithms and Architectures with

New Results". The Journal of VLSI Signal Processing; Vol.42(3); pp.297-320.

[61] HUI-YU, H. & SHIH-HSU, C. (2011). "Block motion estimation based on search

pattern and predictor". In Proc. IEEE Symposium on Computational Intelligence

for Multimedia, Signal and Vision Processing (CIMSIVP); pp.47-51.

[62] HWAL-SUK, L., JIK-HAN, J. & DONG-JO, P. (2008). "An effective successive

elimination algorithm for fast optimal block-matching motion estimation". In Proc.

of IEEE 15th International Conference on Image Processing (ICIP); pp.1984-

1987.

[63] D.S.Huang, Xing-Ming Zhao, Guang-Bin Huang, and Yiu-Ming Cheung,

“Classifying protein sequences using hydropathy blocks,” Pattern Recognition,

vol.39, no.12, pp. 2293–2300,2006.

[64] Chun-Hou Zheng, D.S.Huang, and Li Shang, “Feature selection in independent

component subspace for microarray data classification,” Neurocomputing,

vol.69, nos.16-18, pp.2407-2410, 2006.

[65] Jun Zhang, D.S.Huang, Tat-Ming Lok, and Michael R. Lyu, “A novel adaptive

sequential niche technique for multimodal function optimization,”

Neurocomputing, vol.69, nos.16-18, pp.2396-2401, 2006.

[66] Fei Han, D.S.Huang, "Improved extreme learning machine for function

approximation by encoding a priori information," Neurocomputing, vol.69,

nos.16-18, pp.2369-2373, 2006.

[67] JAE-YONG, K. & SUNG-BONG, Y. (1999). "An efficient hybrid search algorithm

for fast block matching in video coding". Proceedings of the IEEE the Region 10

Conference TENCON 99; Vol.1; pp.112-115.

[68] JAIN, J. & JAIN, A. (1981). "Displacement Measurement and Its Application in

Interframe Image Coding". IEEE Transactions on Communications; Vol.29(12);

pp.1799-1808.

[69] JIAN, F., KWOK-TUNG, L., MEHRPOUR, H. & KARBOWIAK, A. E. (1995).

"Adaptive block matching motion estimation algorithm using bit-plane matching".

In Proc. IEEE International Conference on Image Processing; Vol.3; pp.496-499.

[70] JIANHUA, L. & LIOU, M. L. (1997). "A simple and efficient search algorithm for

block-matching motion estimation". IEEE Transactions on Circuits and Systems

for Video Technology; Vol.7(2); pp.429-433.

[71] JIZHENG, X., FENG, W. & WENJUN, Z. (2009). "Intra-Predictive Transforms for

Block-Based Image Coding". Signal Processing, IEEE Transactions on;

Vol.57(8); pp.3030-3040.

[72] JONG-NAM, K., SUNG-CHEAL, B. & BYUNG-HA, A. (2001). "Fast Full Search

Motion Estimation Algorithm Using various Matching Scans in Video Coding".

IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and

Reviews; Vol.31(4); pp.540-548.

[73] JUNG, S. M., SHIN, S. C., BAIK, H. & PARK, M. S. (2002). "Efficient multilevel

successive elimination algorithms for block matching motion estimation". IEE

Proceedings -Vision, Image and Signal Processing; Vol.149(2); pp.73-84.

[74] KIM, C. (2010). "Complexity Adaptation in Video Encoders for Power Limited

Platforms". PhD Thesis, Dublin City University.

[75] KIM JONG-NAM, BYUN SUNG-CHEAL, KIM YONG-HOON & AHN BYUNG-HA

(2002). "Fast full search motion estimation algorithm using early detection of

impossible candidate vectors". IEEE Transactions on]Signal Processing;

Vol.50(9); pp.2355-2365.

[76] KIM JONG-NAM & CHOI TAE-SUN (2000). "A fast full-search motion-estimation

algorithm using representative pixels and adaptive matching scan". IEEE

Transactions on Circuits and Systems for Video Technology; Vol.10(7); pp.1040-

1048.

[77] Xiao-Feng Wang, D.S.Huang, “A novel multi-layer level set method for image

segmentation,” Journal of Universal Computer Science, vol.14, no.14, pp.2428-

2452, 2008.

[78] Bo Li, D.S.Huang, Chao Wang and Kun-Hong Liu, “Feature extraction using

constrained maximum variance mapping,” Pattern Recognition, vol.41, no.11,

pp. 3287-3294, 2008.

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V14-4SK62SC-1&_user=1555926&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053683&_version=1&_urlVersion=0&_userid=1555926&md5=b2dd190cfac0c968602aa322c25b2f21#bio1#bio1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V14-4SK62SC-1&_user=1555926&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053683&_version=1&_urlVersion=0&_userid=1555926&md5=b2dd190cfac0c968602aa322c25b2f21#bio3#bio3
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V14-4SK62SC-1&_user=1555926&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053683&_version=1&_urlVersion=0&_userid=1555926&md5=b2dd190cfac0c968602aa322c25b2f21#bio4#bio4

[79] Zhong-Qiu Zhao, D.S.Huang, “Palmprint recognition with 2DPCA+PCA based

on modular neural networks,” Neurocomputing, vol.71, nos.1-3, pp. 448-454,

2007.

[80] KOGA, T., ILINUMA, K., HIRANO, A., IIJIMA, Y. & Y.ISHIGURO (1981). "Motion

compensated interframe coding for video conferencing". National Telecommum

Conference; pp.531–535.

[81] KOU, W. (1995). "Digital Image Compression: Algorithms and Standards":

Kluwer Academic Publishers.

[82] LAI-MAN, P. & WING-CHUNG, M. (1996). "A novel four-step search algorithm

for fast block motion estimation". IEEE Transactions on Circuits and Systems for

Video Technology; Vol.6; pp. 313–317.

[83] LEONTARIS, A., COSMAN, P. C. & TOURAPIS, A. M. (2009). "Multiple

Reference Motion Compensation: A Tutorial Introduction and Survey". Found.

Trends Signal Process; Vol.2(4); pp.247-364.

[84] LI LIU, COHEN, R., SUN, H., VETRO, A. & ZHUANG, X. (2010). "New

Techniques for Next Generation Video Coding". In Proc. IEEE International

Symposium on Broadband Multimedia Systems and Broadcasting (BMSB);

pp.111 - 116.

[85] LI, W. & SALARI, E. (1995). "Successive elimination algorithm for motion

estimation". IEEE Transactions on Image Processing; Vol.4(1); pp.105-107.

[86] LIN CHEN-FU & LEOU JIN-JANG (2005). "An adaptive fast full search motion

estimation algorithm for H.264". In Proc. IEEE International Symposium on

Circuits and Systems ISCAS; Vol.2; pp.1493-1496.

[87] LIU, B. & ZACCARIN, A. (1993). "New fast algorithms for the estimation of block

motion vectors". IEEE Transactions on Circuits and Systems for Video

Technology; Vol.3(2); pp.148-157.

[88] Ji-Xiang Du, D.S.Huang, Xiao-Feng Wang, Xiao Gu, “Shape recognition based

on neural networks trained by differential evolution algorithm,” Neurocomputing,

vol.70, nos.4-6, pp. 896-903, 2007.

[89] Ji-Xiang Du, D.S.Huang, Guo-Jun Zhang and Zeng-Fu Wang, “A novel full

structure optimization algorithm for radial basis probabilistic neural networks,”

Neurocomputing, vol.70, nos.1-3, pp. 592-596, 2006.

[90] Ji-Xiang Du, D.S.Huang, Xiao-Feng Wang, and Xiao Gu, “Computer-aided plant

species identification (CAPSI) based on leaf shape matching technique,”

Transactions of the Institute of Measurement and Control, vol. 28, no. 3, pp. 275-

284, 2006.

[91] MAN-YAU, C. & WAN-CHI, S. (2006). "New results on exhaustive search

algorithm for motion estimation using adaptive partial distortion search and

successive elimination algorithm". In Proc. IEEE International Symposium on

Circuits and Systems ISCAS; pp.3977-3981.

[92] MARPE, D., WIEGAND, T. & SULLIVAN, G. J. (2006). "The H.264/MPEG4

advanced video coding standard and its applications". Communications

Magazine, IEEE; Vol.44(8); pp.134-143.

[93] METKAR, S. & TALBAR, S. (2010). "Fast motion estimation using modified

orthogonal search algorithm for video compression". Signal, Image and Video

Processing; Vol.4; pp.123–128.

[94] MIZUKI, M. M., DESAI, U. Y., MASAKI, I. & CHANDRAKASAN, A. (1996). "A

binary block matching architecture with reduced power consumption and silicon

area requirement". In Proc. IEEE International Conference on Acoustics,

Speech, and Signal Processing ICASSP; Vol.6; pp.3248-3251.

[95] MOERITZ, S. & DIEPOLD, K. (2004). "Understanding MPEG 4: Technology and

Business Insights": Focal Press.

[96] MOGUS, F. A., XINYING, L. & LEI, W. (2010). "Evaluation of the performance of

motion Estimation algorithms in video coding". In Proc. IEEE 2nd International

Conference on Information Science and Engineering (ICISE); pp.3693-3696.

[97] NATARAJAN, B., BHASKARAN, V. & KONSTANTINIDES, K. (1997). "Low-

complexity block-based motion estimation via one-bit transforms". IEEE

Transactions on Circuits and Systems for Video Technology; Vol.7(4); pp.702-

706.

[98] NIE, Y. & MA, K.-K. (2002). "Adaptive rood pattern search for fast block-

matching motion estimation ". IEEE Trans on Image Processing; Vol.11(12);

pp.1442-1448.

[99] NIGHTINGALE, J., QI, W. & GRECOS, C. (2012). "HEVStream: A Framework

for Streaming and Evaluation of High Efficiency Video Coding (HEVC) Content in

Loss-prone Networks". IEEE Transactions on Consumer Electronics; Vol.58(2);

pp.404-412.

[100] Li Shang, D.S.Huang, Ji-Xiang Du, and Chun-Hou Zheng, " Palmprint

recognition using FastICA algorithm and radial basis probabilistic neural

network," Neurocomputing, vol.69, nos.13-15, pp. 1782-1786, 2006.

[101] Zhan-Li Sun, D.S.Huang, and Chun-Hou Zheng, Li Shang, “Optimal selection

of time lags for temporal blind source separation based on genetic algorithm,”

Neurocomputing, vol.69, nos.7-9, pp.884–887, 2006.

[102] Chun-Hou Zheng, D.S.Huang, Zhan-Li Sun, Michael R. Lyu, and Tat-Ming Lok,

"Nonnegative independent component analysis based on minimizing mutual

information technique," Neurocomputing, vol.69, nos.7-9, pp.878–883, 2006.

[103] Li Shang, D.S.Huang, Chun-Hou Zheng, and Zhan-Li Sun, "Noise removal

using a novel non-negative sparse coding shrinkage technique,"

Neurocomputing, vol.69, nos.7-9, pp.874–877, 2006.

[104] PEREIRA, F. C. & EBRAHIMI, T. (2002). "The MPEG-4 Book": Prentice Hall

PTR.

[105] PRASANTHA, H. S., SHASHIDHARA, H. L. & BALASUBRAMANYA MURTHY,

K. N. (2007). "Image Compression Using SVD". In Proc. IEEE International

Conference on Conference on Computational Intelligence and Multimedia

Applications; Vol.3; pp.143-145.

[106] PU, I. M. (2005). "Fundamental Data Compression": Butterworth-Heinemann.

[107] PURI, A., HANG, H. M. & SCHILLING, D. (1987). "An efficient block-matching

algorithm for motion-compensated coding". IEEE International Conference on

Acoustics, Speech, and Signal Processing; Vol.12; pp.1063-1066.

[108] REOXIANG, L., BING, Z. & LIOU, M. L. (1994). "A new three-step search

algorithm for block motion estimation". IEEE Transactions on Circuits and

Systems for Video Technology; Vol.4(4); pp.438-442.

[109] RUIZ, G. A. & MICHELL, J. A. (2011). "An efficient VLSI processor chip for

variable block size integer motion estimation in H.264/AVC". Signal Processing:

Image Communication; Vol.26(6); pp.289-303.

[110] SAYOOD, K. (2006). "Introduction to Data Compression", 3rd edition: Morgan

Kaufmann.

[111] Xiao-Feng Wang, D.S.Huang, Ji-Xiang Du, Huan Xu, Laurent Heutte,

“Classification of plant leaf images with complicated background,” Applied

Mathematics and Computation, vol. 205, no.2, pp 916-926, 2008.

[112] Xiao-Feng Wang, D.S.Huang, “A novel multi-layer level set method for image

segmentation,” Journal of Universal Computer Science, vol.14, no.14, pp.2428-

2452, 2008.

[113] SHAN, Z. & KAI-KUANG, M. (1997). "A new diamond search algorithm for fast

block matching motion estimation". In Proc. IEEE International Conference on

Information, Communications and Signal Processing (ICICS); Vol.1; pp.292-296.

[114] SONG, B. C. & RA, J. B. (1998). "A hierarchical block matching algorithm using

partial distortion measure". In Proc. SPIE Visual Communications and Image

Processing '98; Vol.3309; pp.88-95.

[115] Bo Li, D.S.Huang, Chao Wang and Kun-Hong Liu, “Feature extraction using

constrained maximum variance mapping,” Pattern Recognition, vol.41, no.11,

pp. 3287-3294, 2008.

[116] Kun-Hong Liu, and D.S.Huang, “Cancer classification using rotation forest,”

Computers in Biology and Medicine, vol. 38, no. 5, pp.601-610, 2008.

[117] Fei Han, D.S.Huang, “A new constrained learning algorithm for function

approximation by encoding a priori information into feedforward neural

networks,” Neural Computing and Applications, vol.17, nos.5-6, pp.433-439,

2008.

[118] Fei Han, Qing-Hua Ling, and D.S.Huang, “Modified constrained learning

algorithms incorporating additional functional constraints into neural networks,”

Information Sciences, vol.178, no.3, pp.907-919, 2008.

[119] Chun-Hou Zheng, D.S.Huang, Kang Li, George W Irwin and Zhan-Li Sun,

"MISEP method for Post-Nonlinear Blind Source Separation,” Neural

Computation, vol.19, no.9, pp.2557-2578, 2007.

[120] SOO-MOK, J., SUNG-CHUL, S., HYUNKI, B. & MYONG-SOON, P. (2000).

"Nobel successive elimination algorithms for the estimation of motion vectors". In

Proc. IEEE International Symposium on Multimedia Software Engineering;

pp.332-335.

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V14-4SK62SC-1&_user=1555926&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053683&_version=1&_urlVersion=0&_userid=1555926&md5=b2dd190cfac0c968602aa322c25b2f21#bio1#bio1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V14-4SK62SC-1&_user=1555926&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053683&_version=1&_urlVersion=0&_userid=1555926&md5=b2dd190cfac0c968602aa322c25b2f21#bio3#bio3
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V14-4SK62SC-1&_user=1555926&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053683&_version=1&_urlVersion=0&_userid=1555926&md5=b2dd190cfac0c968602aa322c25b2f21#bio4#bio4

[121] SRINIVASAN, R. & RAO, K. R. (1985). "Predictive coding based on efficient

motion estimation". IEEE Transactions on Communications; Vol.33(8); pp.888–

896.

[122] TURAGA, D. & CHEN, T. (2001). "I/P Frame Selection Using Classification

Based Mode Decision". International Conference on Image Processing ICIP;

pp.550-553.

[124] Ji-Xiang Du, D.S.Huang, Xiao-Feng Wang, Xiao Gu, “Shape recognition based

on neural networks trained by differential evolution algorithm,” Neurocomputing,

vol.70, nos.4-6, pp. 896-903, 2007.

[125] Ji-Xiang Du, D.S.Huang, Guo-Jun Zhang and Zeng-Fu Wang, “A novel full

structure optimization algorithm for radial basis probabilistic neural networks,”

Neurocomputing, vol.70, nos.1-3, pp. 592-596, 2006.

[126] VANNE, J. (2011). "Design and Implementation of Configurable Motion

Estimation Architecture for Video Encoding". PhD Thesis, Tampere University of

Technology

[127] Liu, L.K. And Feig, E (1996) A Block-Based Gradient Decent Search Algorithm

for Block Motion Estimation in Video Coding - IEEE Trans. Circuits and Systems

for Video Technology – Vol. 6, No. 4.

[128] WIEGAND, T., SULLIVAN, G. J., BJONTEGAARD, G. & LUTHRA, A. (2003).

"Overview of the H.264/AVC video coding standard". IEEE Transactions on

Circuits and Systems for Video Technology; Vol.13(7); pp.560-576.

[129] WIEN, M. (2003). "Variable block-size transforms for H.264/AVC". IEEE

Transactions on Circuits and Systems for Video Technology; Vol.13(7); pp.604-

613.

[130] Chun-Hou Zheng, D.S.Huang, and Li Shang, “Feature selection in independent

component subspace for microarray data classification,” Neurocomputing,

vol.69, nos.16-18, pp.2407-2410, 2006.

[131] XIAOQUAN, Y. & NAM, L. (2005). "Rapid block-matching motion estimation

using modified diamond search algorithm". In Proc. IEEE International

Symposium on Circuits and Systems ISCAS; Vol.6; pp.5489-5492.

[132] XIONG, X., SONG, Y. & AKOGLU, A. (2011). "Architecture design of variable

block size motion estimation for full and fast search algorithms in H.264/AVC".

Computers & Electrical Engineering; Vol.37(3); pp.285-299.

[133] Jun Zhang, D.S.Huang, Tat-Ming Lok, and Michael R. Lyu, “A novel adaptive

sequential niche technique for multimodal function optimization,”

Neurocomputing, vol.69, nos.16-18, pp.2396-2401, 2006.

[134] Fei Han, D.S.Huang, "Improved extreme learning machine for function

approximation by encoding a priori information," Neurocomputing, vol.69,

nos.16-18, pp.2369-2373, 2006.

[135] XUAN, J. & LAP-PUI, C. (2004). "An efficient three-step search algorithm for

block motion estimation". IEEE Transactions on Multimedia; Vol.6(3); pp.435-

438.

[136] YI, X., ZHANG, J., LING, N. & SHANG, W. (2005). "Improved and simplified

fast motion estimation for JM (JVT-P021)". Joint Video Team (JVT) of ISO/IEC

MPEG & ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6) 16th

Meeting: Poznan, Poland.

[137] YU, L. & PENG WANG, J. (2010). "Review of the current and future

technologies for video compression". Journal of Zhejiang University - Science C;

Vol.11(1); pp.1-13.

[138] ZHAO, H., YU, X.-B., SUN, J.-H., SUN, C. & CONG, H.-Z. (2008). "An

Enhanced Adaptive Rood Pattern Search Algorithm for Fast Block-Matching

Motion Estimation". Congress on Image and Signal Processing; Vol.1; pp.416-

420.

[139] ZHU, S. & MA, K.-K. (2000). "A new diamond search algorithm for fast block-

matching motion estimation". IEEE Transactions on Image Processing; Vol.9(2);

pp.287-290.

[140] J. Lee, T. Ebrahim, “J. Lee, T. Ebrahim, “IEEE Journal of Selected Topics in

Signal Processing”, IEEE Journal of Selected Topics in Signal Processing, vol. 6,

No 6, 2012, pp. 684-697

[141] G. Suganya, K., Mahesh, “A Survey: Various Techniques of Video

Compression”, International Journal of Engineering Trends and Technology

(IJETT) – Volume 7 Number , 2014, pp. 10-12

[142] S. Bachu and K. Chari, “A Review on Motion Estimation in Video

Compression”, International Conference on Signal Processing and

Communication Engineering Systems, 2015, pp. 250-256.

[143] D. M. Thomas, “A Study on Block Matching Algorithms and Gradient Based

Method for Motion Estimation in Video Compression”, 1st International

Conference on Digital Image Processing and Pattern Recognition, 2011, pp.

136-145.

[144] M. Chriqui, P. Sinha, “Survey of motion estimation techniques for video

compression”, Conference on Low-Light-Level and Real-Time Imaging Systems,

Components and Applications, 2002, pp. 218-226.

[145] D. Jha, F. Kannampuzha, J. Joseph, S. Possa, “Motion Estimation Algorithms

for Baseline Profile of H.264 Video Codec”, International Journal of Engineering

Trends and Technology (IJETT), Vol. 4, No. 4, pp. 727-731, 2013

[146] J. Fabrizio, S. Dubuisson and D. Bereziat, “Motion compensation based on

tangent distance prediction for video compression”, Journal of Signal

Processing: Image Communication, Vol. 27, No. 2, pp. 153–171, 2012.

[147] J. Cai, D. Pan, “On fast and accurate block-based motion estimation algorithms

using particle swarm optimization”, International Journal of Information

Sciences, Vol. 197, pp. 53–64, 2012.

[148] T. Aziz, R. J. Dolly, “Motion Estimation and Motion Compensated Video

Compression Using DCT And DWT”, International Journal of Emerging

Technology and Advanced Engineering, Vol. 2, No. 12, pp. 667-670, 2012.

[149] D. M. Thomas, S. Varier, “A Novel Based Approach for Finding Motion

Estimation in Video Compression”, International Journal of Advanced Research

in Computer and Communication Engineering, Vol. 1, No. 8, pp.

514-520, 2012.

[150] I. A. Pandian, J. Bala, B. A. Georg, “A Study on Block Matching Algorithms for

Motion Estimation”, International Journal on Computer Science and Engineering,

Vol. 3, No. 1, pp. 34-41, 2011.

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7052448
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7052448

