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ABSTRACT 

Video compression is the process of reducing the amount of data required to 

represent digital video while preserving an acceptable video quality. Recent studies 

on video compression have focused on multimedia transmission, videophones, 

teleconferencing, high definition television, CD-ROM storage, etc. The idea of 

compression techniques is to remove the redundant information that exists in the 

video sequences.  

Motion compensation predictive coding is the main coding tool for removing temporal 

redundancy of video sequences and it typically accounts for 50-80% of video 

encoding complexity. This technique has been adopted by all of the existing 

International Video Coding Standards. It assumes that the current frame can be 

locally modelled as a translation of the reference frames. The practical and widely 

method used to carry out motion compensated prediction is block matching 

algorithm. In this method, video frames are divided into a set of non-overlapped 

macroblocks and compared with the search area in the reference frame in order to 

find the best matching macroblock. This will carry out displacement vectors that 

stipulate the movement of the macroblocks from one location to another in the 

reference frame. Checking all these locations is called full Search, which provides 

the best result. However, this algorithm suffers from long computational time, which 

necessitates improvement. Several methods of Fast Block Matching algorithm are 

developed to reduce the computation complexity.  



  

This paper focuses on a survey for two video compression techniques: the first is 

called the lossless block matching algorithm process, in which the computational 

time required to determine the matching macroblock of the full search is decreased 

while the resolution of the predicted frames is the same as for the full search. The 

second is called lossy block matching algorithm process, which reduces the 

computational complexity effectively but the search result’s quality is not the same as 

for the full search. 

 

1. INTRODUCTION 

 

Digital video is a series of orthogonal bitmap digital images called frames displayed 

in a rapid succession at a constant rate to give the illusion of a motion picture. The 

applications of digital video have extended to a wide range of industrial applications, 

especially in the area of entertainment, communications, and broadcasting. As 

results of technological advances, several commercial products are becoming 

integral part of modern life, such as High Definition Television (HDTV), digital 

cinema, smart phones, and mobile devices. Huge revenue from these products and 

services are gained since the number of end users increases continuously. In 2013, 

more than one billion unique users visit YouTube each month, and video chat 

reaches tens of thousands of users online at any time during a day [1]. In addition, 

the digital video industry invests a lot in the research and development of video 

technology around £1.5 billion in 2013 in the UK alone [2] to ensure continuous 

growth in the long term. The major challenge for efficient digital video storage and 

transmission lies in the huge amount of data needed to display digital video, and 

hence large memory space is required to store video images, and equally large 

bandwidth for their transmission. To reduce this amount of data while preserving an 

acceptable video quality, various video compression techniques have been actively 

proposed and developed by researchers and companies since the 1980s [3-4]. The 

idea of these techniques is to provide efficient solutions to represent video data in a 

more compact and robust way so that the information can be stored or transmitted 

faster in videoconferencing and videophone, digital broadcasting, interactive games 

http://en.wikipedia.org/wiki/Digital_image


  

(internet), etc. Well-known international video coding standards include the former 

MPEG series and H.26x series [5-11]. 

The main idea of compression techniques is to remove the redundant information 

that exists in video sequences. Digital video carries four types of redundancy: colour 

space redundancy, spatial redundancy, temporal redundancy and statistical 

redundancy [12-16], [32]. These redundancies are processed separately because of 

the differences in their characteristics. Video compression contains two systems: 

video encoders and video decoders. A video encoder compresses the original video 

for storage and transmission, after which the encoded video is decompressed by a 

video decoder back to the displayable video before playback and editing. A video 

encoder consists of three main functional units to remove redundant information: 

colour subsampling, a temporal model (inter-frame encoder) or a spatial model 

(intra-frame encoder) and an entropy encoder. Video compression efficiency is 

achieved by inter-frame encoder which reduces or eliminates temporal redundancy. 

An inter-frame encoder exploits the high correlation that exists between successive 

frames in video sequences especially if the frame rate is high. This correlation leads 

to temporal redundancy. The goal of inter-frame encoding is to reduce this 

redundancy. Video coding standards share a number of common features for inter-

frame encoding. Each standard assumes that after colour subsampling there are four 

stages of inter-frame encoding to produce the compressed bitstream, which are: 

temporal prediction, transform, quantisation and entropy coding [23-25].  

Temporal prediction is the main tool that reduces temporal redundancy by predicting 

some frames from others to reduce the transmission rate of the sequence of the 

video images and obtain high compression. This means that the current frame could 

be locally modelled as a translation of the reference frames. Reference frames have 

to be encoded first, while a residual (difference) between current and reference 

frames which contain less energy will be encoded later instead of encoding the 

current frame [12]. To decrease this residual, the prediction can be improved by 

estimating the motion of the moving objects between the current and the reference 

frames, which is called Motion Estimation (ME) technique [110]. That is, the motion 

estimation used to calculate the Motion Vectors (MVs) by comparing the current 

frame and the reference frame. The technique that uses MVs to predict a new frame 



  

from a reference frame is called Motion Compensation (MC). The predicted frame is 

known as the Motion Compensated Prediction (MCP) [13]. The first output of this 

process will be the difference between the current frame and the MCP, which is 

called the Residual Prediction Error (RPE) (or Displaced Frame Difference (DFD)); 

the second output will be the motion vectors. The MVs are encoded using entropy 

coding and RPE between the current frame and the MCP is encoded using transform 

coding, quantisation and entropy coding. At the decoder, the received MVs will be 

utilised to form an MCP from the reconstructed reference frame, and then the current 

frame will be reconstructed by adding the reconstructed RPE to the MCP [9], [83], 

[13], [110], [92], [4].  

ME technique has the highest complexity among all other stages; it typically 

accounts for 50-80% of the total video encoder complexity. This technique has been 

adopted by all existing international video coding standards such as the MPEG 

series and the H.26x series including its latest H.265 code [5], [6], [8], [9], [10], [11]. 

Therefore, ME is the main challenge for implementing real-time video encoding.  

It is possible to estimate the displacement for every one or two pixel positions 

between successive video frames. However, this is not a practical method since the 

calculation of these motion vectors is very computationally intensive. Moreover, the 

number of motion vectors is equal to or half the number of pixels [35-37]. These 

vectors will be sent to the decoder in order to form an MCP. As a result, a large 

amount of data should be transmitted [88-90]. Therefore, the most practical and 

widely used method is to use a group of pixels, called MacroBlock (MB) to estimate 

the motion of the current frame. This method is called Block Matching Algorithm 

(BMA) or Block Matching Motion Estimation (BMME) [121], [60], [58], [13].  

BMA is the most popular technique used for motion estimation in which video frames 

are divided into a set of non-overlapped MBs of size N×M. Each target MB in the 

current frame is compared with a number of candidate macroblocks within the 

search area in the reference frame in order to find the best matching macroblock. 

The spatial difference between the two matching macroblocks will determine a set of 

displacement vectors that stipulate the movement of the macroblocks from one 

location to another in the reference frame [26], [55]. There are a number of Block 

Distortion Measures (BDMs) that can be used to calculate the difference between 



  

two macroblocks, namely Mean Absolute Difference (MAD), Sum of Absolute 

Differences (SAD) and Mean Square Error (MSE) [110]. If a maximum displacement 

of p pixels/frame is allowed, then (2𝑝 + 1)2 locations have to be searched in order to 

find the best match of the current macroblock. Checking all search area locations is 

referred to as the Full Search (FS) algorithm. It produces the best possible match 

and the highest resolution MCP. However, this algorithm suffers from long 

computational time, which necessitates improvement. Various methods of fast block 

matching algorithms have been developed to decrease and improve the 

computational complexity [98], [60], [34].  

In this paper, we investigate two classifications of fast block matching algorithm. 

Lossless block matching algorithm process, in which the computational time required 

to determine the matching macroblock of the full search is decreased while the 

resolution of the predicted frames is the same as the full search. Lossy block 

matching algorithm process reduces the computational complexity effectively but the 

search result’s quality is not the same as that of the full search. 

 

2. INTRODUCTION TO VIDEO COMPRESSION 

2.1 Fundamentals of Video Compression  

 

Video compression, or video coding, has become an essential part of multimedia 

systems. A huge amount of information is needed in order to display a digital video, 

therefore a large memory space will be required to store digital video images and it 

will need an equally large bandwidth for transmission. Video compression is the 

process of reducing the amount of data required to represent digital video images 

while preserving an acceptable video quality. This technique provides efficient 

solutions to representing video data in a more compact and robust way so that the 

information can be stored or transmitted faster in videoconferencing and videophone, 

digital broadcasting, interactive games (internet), and etc [124], [56]. The balance 

between video quality (dependent upon frame size, frame rate and bit depth and file 

size) should be considered [125].  



  

2.2 Video Coding International Standard  

 

The existing standard of video compression techniques are developed by two public 

international organisations: the International Telecommunication Union–

Telecommunication Standardization Sector (ITU-T), known as the Visual Coding 

Experts Group (VCEG), and the International Organization for 

Standardization/International Electrotechnical Commission (ISO/IEC).  

The standards approved by the ISO/IEC are called the MPEG family, whose 

applications range from consumer video on CD-ROM (MPEG-1 1991) to 

broadcast/storage standard or high definition TV (MPEG-2 1994) and object-based 

representation (MPEG-4 Visual or part 2 1998). On the other hand, H.26x series of 

video standards published by the ITU-T focuses on improving the coding efficiency 

for bandwidth-restricted telecommunication applications as the number of video 

services increases. The ITU-T published its first video coding standard H.261 in 

1990, and in 1995, it evolved H.263 video coding standards (and later 

enhancements of H.263 known as H.263+ and H.263++) with higher compression 

ratios [5], [6], [84]. The various applications for transmitting videos over the network 

have created great demand for efficient video coding.  

VCEG and MPEG formed the Joint Video Team (JVT) in December 2001 to 

complete the draft of the video coding standard as H.264/AVC (MPEG-4 Part 10) in 

May 2003. The video coding standard H.264/AVC is reported to achieve gains in 

compression efficiency of up to 50% compared with its predecessor MPEG-2. 

However, the increasing popularity of high definition TV, video delivery on mobile 

devices and other multimedia applications create new demands for video coding 

standards. In January 2010, the Joint Collaborative Team on Video Coding (JCT-VC) 

was created as a group composed of VCEG and MPEG to develop a new-generation 

video coding international standard. In February 2012, JCT-VC introduced the 

committee draft video compression standard called High Efficiency Video Coding 

(HEVC), which is also known as H.265 and MPEG-H Part 2. The final draft 

international standard appeared in January 2013 [11]. HEVC code (without reduction 

in visual quality) has improved the video compression ratio by at least 50%, 

compared with H.264, across various applications such as videoconferencing, digital 

http://en.wikipedia.org/wiki/International_Telecommunication_Union
http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/International_Electrotechnical_Commission
http://en.wikipedia.org/wiki/Video_compression


  

storage media, television broadcasting, internet streaming and communication [128], 

[84], [99], [33]. 

2.3 Redundant Information  

For all the standard video compression techniques, video coding can be obtained by 

taking advantage of the redundant information in any video [74], [4], [93], [5], [110], 

[44]. These include the following:  

1. Colour Space Redundancy 

Human Visual System (HVS) is more sensitive to luminance components than to 

chrominance components. Therefore, colour subsampling can reduce the resolution 

required to represent chrominance components. The first of several steps in 

compression is to transfer the information in the picture into the frequency domain.  

2. Spatial Redundancy 

This redundancy comes from the spatial correlation in an image, where a block of an 

image can be predicted from its neighbouring pixels, which is called intra-frame 

compression, as shown in Figure 1. There are several spatial compression 

algorithms that are proposed for this purpose; the most common uses are predictive 

coding, transform coding such as Discrete Cosine Transform (DCT), quantisation 

and entropy coding. 

3. Temporal Redundancy 

Adjacent frames are highly correlated; that is, most of the time, the image frame 

looks similar to the frame before it. This redundant information can be removed using 

inter-frame compression.  

There are several inter-frame compression methods of varying degrees of 

complexity, such as subsampling coding, difference coding, block-based difference 

coding and motion compensation [5], [93].  



  

 

Figure 1: Spatial and temporal correlation in video sequence [12] 

4. Statistical Redundancy 

For any data, there is a minimum number of bits required to represent it without 

losing any information. Bit redundancy could be removed to improve intra-frame and 

inter-frame compression. This can be performed by entropy coding such as Run 

Length Coding (RLC), Huffman Coding and Arithmetic Coding [57].  

3. LOSSLESS AND LOSSY COMPRESSION 

 

In general, video coding contains two systems: video encoders and video decoders, 

as shown in Figure 2. A video encoder consists of three main functional units: colour 

subsampling, a temporal model (inter-frame encoder) or a spatial model (intra-frame 

encoder) and an entropy encoder. The target of the encoder is to condense the huge 

amount of information needed to display a video frame in order to achieve a high 

compression ratio as shown in Equation (1): 

 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =  
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑉𝑖𝑑𝑒𝑜 𝑆𝑖𝑧𝑒 (𝐵𝑦𝑡𝑒𝑠)

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑉𝑖𝑑𝑒𝑜 𝑆𝑖𝑧𝑒 (𝐵𝑦𝑡𝑒𝑠)
 (1) 

 



  

 

 
Figure 2. Encoder/ Decoder System. 

 

The encoder can be classified into two approaches: lossless and lossy approaches. 

Lossless technique (which is also known as bitpreserving or the reversible method) 

is used to compress the statistical redundancy. This method has a low compression 

ratio of about 3:1 or 4:1 in the best case, but the reconstructed data is identical to the 

original data. Lossy technique usually achieves a high compression ratio from 50:1 

to 200:1 or more, but the reconstructed data is not identical to the original data; that 

is, there is loss of information [13],[126].  

3.1 Quality Measure in Video Coding  

 

In video compression, lossy approach is the main method used to achieve a high 

compression ratio; however, this approach leads to lost information (it is called 

distortion) after reconstruction of the compressed video. In order to assess the 

quality of the reconstructed video, several methods have been developed. One of 

the simplest and most popular methods is to use Mean Square Error (MSE) for each 

frame separately and take their arithmetic mean. MSE is the average of the squared 

error measure determined according to the following equation: 

 𝑀𝑆𝐸 =  
1

𝑀 × 𝑁
∑ ∑(𝑓(𝑖, 𝑗) − 𝑓(𝑖, 𝑗))

2
𝑁

𝑗=1

𝑀

𝑖=1

 (2) 

where M and N are the horizontal and vertical dimensions of the frame, respectively, 

and 𝑓(𝑖, 𝑗) and 𝑓(𝑖, 𝑗) are the pixel values at location (𝑖, 𝑗) of the original and 

reconstructed frames, respectively.  

A more common form of the MSE measure is the Peak Signal-to-Noise Ratio 

(PSNR), which is defined as:  

 𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 (
(𝑓𝑚𝑎𝑥)2

𝑀𝑆𝐸
) dB (3) 



  

Where 𝑓𝑚𝑎𝑥  is the maximum possible pixel value (for example, 255 for an 8-bit 

resolution component). Equation 3 shows that the PSNR measures the strength of 

the signal relative to the strength of the error. In application, PSNR between the 

original and reconstructed video sequences is measured by computing the PSNR for 

each frame separately and taking their arithmetic mean. A high PSNR usually 

indicates high quality and low PSNR usually indicates low quality. However, PSNR is 

an objective measure, which means that a particular value of PSNR does not 

necessarily equate to a subjective video quality perceived by the Human Visual 

System (HVS). The easy and quick calculation of PSNR makes it a very popular 

quality measure and it is widely used to compare the quality of the decompressed 

and the original videos [4], [110].  

3.2 Types of Frames  

 

Video frames are compressed using various algorithms depending on the frame 

type. Figure 3 shows the three major frame types used in various video coding 

algorithms, which consist of I-frame, P-frame and B-frame [27], [95], [13] . 

I-frame ‘Intra-coded frame’: this type of frame is coded independently from all other 

frames. This frame is compressed as a still image using a still image compression 

technique such as transform coding, vector quantisation or entropy coding. This type 

of frame is the largest size in encoding but is faster to decompress than the other 

frames. 

P-frame ‘Predicted frame’: an inter-coded frame, which is forward predicted from the 

last I-frame or P-frame, i.e. it is impossible to reconstruct it without the data of the 

previous frame (I or P). P-frames are typically a smaller size in encoding than I-

frames.   

B-frame ‘Bi-predictive frame’: an inter-coded frame, which is a bi-directionally 

predicted frame, coded based on both the previous and next I- or P- frames, but a B-

frame cannot be the reference for other B-frames, i.e. there are two other frames 

necessary to reconstruct them. So B-frames are an effective video coding tool to 

improve coding efficiency. However, using B-frames for coding requires more 

memory in the encoder and decoder, as an extra frame (next reference) needs to be 



  

stored during the decoding process. Furthermore, B-frames introduce extra delay 

(next reference send first), which is unacceptable in two-way video coding such as 

for a videoconferencing application; in this case, no B-frames are used [110].  

3.3 Group of Pictures 

 

Frames between two successive I-frames, including the leading I-frame, are 

collectively called a Group of Pictures (GOP), which is the smallest random access 

unit in the video sequence, as shown in Figure ‎3. A GOP pattern is defined by the 

ratio of P- to B-frames within a GOP. Common frame patterns used for DVD are IBP 

and IBBP. All three frame’ types do not have to be used in a pattern. For example, 

an IP pattern can be used in two ways for video coding. Longer GOP lengths (the 

term long GOP refers to the fact that there are several P- and B-frames used 

between I-frame intervals) encode video efficiently by giving a good compression 

ratio. Smaller GOP patterns with shorter GOP lengths work better with video that has 

quick movements, but they do not compress the data as much. For television 

systems, an I-frame is sent typically every half second in order to enable channel 

surfing [95]. 

I-frame is often used to efficiently code frames corresponding to scene changes, i.e. 

frames that are different from previous frames and cannot be easily predicted. Since 

video sequences have variable scene durations, depending on the content, it is not 

possible to use a fixed GOP structure to code the video sequence effectively. This is 

because the position of I-frames in the sequence depends on the time that scene 

changes happen. For example, video coding standards allow for macroblocks which 

are 16×16 pixels in P- and B-frames to be intra-coded if they cannot be predicted 

efficiently. This means that, even if all the frames are set to be of types P or B, there 

may be many macroblocks in each frame that are intra-coded [122], [59].  



  

 
Figure 3: Types of coded frames [59] 

 
Coding as P- and B-frames gives a higher compression rate, but it is more 

computationally expensive than coding an I-frame. This relates to the fact that coding 

P- and B-frames uses motion estimation and motion compensation as will be defined 

in Section 4. 

 

3.4 Inter-Frame Compression  

 

Inter-frame compression exploits the high correlation that exists between successive 

frames in video sequences, especially if the frame rate is high. This correlation leads 

to temporal redundancy [28-30]. The goal of inter-frame coding is to reduce this 

redundancy. Video coding standards share a number of common features, as shown 

in Figure ‎4. Each standard assumes that after colour subsampling there will be four 

stages of inter-frame encoding to produce the compressed bitstream: temporal 

prediction, transform, quantisation and entropy coding. 



  

 

Figure 4: Inter-frame encoder 

3.5 Temporal Prediction  

 

The goal of temporal prediction is to reduce temporal redundancy coming from high 

correlation between successive frames. This can be done by predicting some frames 

from others to reduce the transmission rate of video image sequences and obtain 

further compression. Reference frames of type I or P could be used to predict frames 

of type P or B. In forward prediction, past frames in the display order are used as 

reference frames to the current frame; while, in backward prediction, the reference 

frames of the current frame are displayed in the display order in the future frames. 

The average of the forward and backward predictions may be used to predict frames 

of type B. In any prediction, reference frames have to be encoded first, while a 

residual (difference) between current and reference frames which contain less 

energy will be encoded later instead of the encoded current frame [12].  

To decrease this residual, the prediction is improved by estimating the motion of the 

moving objects in-between the current and the reference frames, which is called 

Motion Estimation (ME) technique. That is, the motion estimation has been used to 

calculate the Motion Vectors (MVs) by comparing the current frame and the 

reference frame. The technique that uses the MVs to predict a new frame from a 

reference frame is called Motion Compensation (MC). The predicted frame is known 

as a Motion Compensated Prediction (MCP). The first output of this process will be 

the difference between the current frame and the MCP, which is called the residual 

prediction error (RPE) (or displaced frame difference (DFD)); the second output will 

be the motion vectors.  



  

Motion vectors are encoded by lossless compression, while RPE is encoded by 

lossy compression to get high compression ratio [9], [83], [13], [110], [92], [4 ].  

3.6 Transform Coding (TC)  

 

Transform coding is one of the most important applications of data compression, 

which is employed to reduce spatial redundancy. The RPE, which is the difference 

between the current frame and the MCP frame, has a high correlation between 

neighbouring pixels, as shown in Figure ‎5. Inter-frame compression can be coded 

more efficiently by exploiting these similarities and reducing the spatial redundancy. 

Transform coding converts the data from a spatial domain of the RPE into a 

transform domain to produce a set of coefficients. The energy of the transformed 

data (coefficients) is localised and compacted at certain areas. The transform should 

be reversible and can transform as much information as possible into a small 

number of transform coefficients [100-103].  

Over the years, a variety of linear transform methods have been developed. The 

most popular transforms can be classified into two types: block-based transform 

coding and image-based transform coding [13], [71].  

Block-based coding is widely used in image/video coding standards systems. In 

block-based transforms, an image is divided into non-overlapping macroblocks and 

for each macroblock the 2-D transform coding is applied. Most transform coding 

systems employ a macroblock size of 8×8 or 16×16. Note that both sizes are powers 

of 2, which reduces the computation complexity of the transform coding and requires 

low memory. The block-based transform coding converts the macroblock pixel 

information into the frequency domain where pixel correlation information is captured 

in a DC coefficient and pixel difference information is captured in AC coefficients. 



  

 

Figure 5: The similarity between neighbouring pixels of the residual prediction 
error 

 

The AC coefficients normally have very small values because of the high correlation 

between the pixels in a macroblock. Therefore, the energy is concentrated in the DC 

coefficients and a small number of AC coefficients that are close to the DC 

coefficient. That is, the macroblock energy is usually concentrated in the low 

frequency region. Furthermore, block-based transform allows each macroblock to be 

processed according to its content in order to improve the coding performance 

significantly, as performed in H.264. The disadvantage of such block-based 

transform is that the transform can only exploit the correlations within the macroblock 

and hence this technique suffers from artefacts at edge macroblocks using low bit 

rates, which affects the coding efficiency. Popular block-based transforms include: 

Discrete Cosine Transform (DCT), Karhunen–Loeve Transform (KLT), and Singular 

Value Decomposition (SVD) [13], [31], [71], [105]. 



  

Image-based transform resolves the problem of artefacts initiated at edge 

macroblocks using Discrete Wavelet Transform (DWT) on the entire image or video 

frame. An image-based transform would provide better energy compaction, but it 

tends to suffer from higher computational complexity and memory requirements in 

comparison to block-based transform because the whole image is processed as a 

unit. Therefore, block-based transform is better compatible with the residual 

prediction error [63-66], [71], [126], [13], [31].  

3.7 Quantisation (Q) 

 

Quantisation is a mapping of a large set of possible inputs into a smaller set of 

possible outputs. Quantisation forms the heart of lossy compression and it is an 

irreversible process. The goal of this scheme is to map the data from a source into 

as few bits as possible such that the reconstructed data from these bits is as close to 

the original one as possible. There are two types of quantisation, scalar and vector. 

Scalar quantisation maps a single value of the input signal to one quantised output 

value (level). A scalar quantiser of the same step size is called a uniform quantiser, 

while a quantiser of different step size is called a non-uniform quantiser. If the step 

size is large (coarse), fewer numbers of bits are required and hence high 

compression ratio is achieved while the quality of the reconstructed data is reduced. 

However, small step size gives a larger range of quantised values and hence 

reduces compression efficiency and improves the reconstructed data. In each video 

coding standard, there exists a defined set of quantisation step size parameters that 

provide the best balance between decoded video quality and compression ratio for 

different applications.  

Vector quantisation maps a group of input values (vector) (such as a block of image 

samples) to a group of quantised values which is the index from a “codebook”. 

Vector quantisation can be used alone as a method of compression and it is 

powerful with high computational complexity.  

Scalar quantisation techniques are involved in most video coding standards with the 

combination of transform coding. After the transformation, the energy in both the 

pixel and the transform domains are equal but the transform coefficients are less 



  

correlated than the original data. In transform domain, the majority of energy is 

concentrated on the low frequencies while little energy is concentrated on the high 

frequencies. Since human eyes are more sensitive to low frequencies compared to 

high frequencies, greater compression can be achieved by apply coarser 

quantisation step size at higher frequencies to remove insignificant coefficient values 

[81], [106], [104], [137], [92], [110], [13]. 

3.8 Entropy coding (EC) 

 

Entropy coding is the last stage in a video encoding system. It is a lossless 

compression scheme used to remove statistical redundancy by determining the 

minimum number of bits required to represent the data without losing any 

information. EC converts the MVs, the quantised transform coefficients and other 

information from the intra-compression process into a compressed bitstream suitable 

for transmission or storage. The widely used entropy coding are Variable Length 

Coding (VLC) and Arithmetic Coding. Arithmetic coding usually provides better 

compression efficiency, with relatively high computational complexity. These codes 

are improved by Context-Adaptive VLC (CAVLC) and Universal VLC (UVLC), which 

are based on VLC, while Context-Adaptive Binary Arithmetic Coding (CABAC) is 

based on arithmetic coding. CABAC provides bit-rate savings of 9-14% compared to 

CAVLC but this is at the cost of higher complexity. The low complexity CAVLC 

entropy encoding method is utilised by the H.264 standard [128], [13], [137]. 

3.9 Decoding of Inter-frame compression 

 

The decoder interprets the compressed data stream of the compressed motion 

vectors and compressed RPE; the process is reversed to reconstruct the original 

frame.  

In the decoder side (Figure 6), the reference frame is reconstructed by intra-frame 

decoding and is ready to compensate and predict the current frame. To produce 

decode of residual prediction error which is denoted by  𝑅𝑃𝐸̂ in Figure ‎6, entropy 

decoding is used followed by inverse quantisation (𝑄−1), then inverse transform 



  

coding 𝑇𝐶−1. Note that the irreversible quantisation process means that 𝑅𝑃𝐸̂ is not 

identical to RPE. Finally, 𝑅𝑃𝐸̂ is added to the predicted frame to introduce the 

reconstructed frame. 

 

Figure 6: Inter frame decoder 
 

4. MOTION COMPENSATION AND MOTION ESTIMATION 

4.1 Motion Compensation (MC) 

 

Motion compensation (MC) has been used as a main tool to reduce the temporal 

redundancy that comes from the small change in the contents from one image to 

another in video sequences. That is, MC is the key to achieve high compression ratio 

for the coding system. This technique dates back to the early 1970s and has been 

adopted by all of the existing international video coding standards, such as MPEG 

series and H.26x series including H.265 [5], [6], [8], [9], [10], [11]. 



  

 

Figure 7: The residual prediction error without ME and the residual prediction 
error with ME [13] 

 

Motion Compensated Prediction (MCP) assumes that the current frame can be 

locally modelled as a translation of the reference frames. MC uses reference frames 

to predict the current frame, and then encodes RPE. Normally, a P-frame is 

predicted from one of the previous reference frames. Similarly, a motion 

compensated bi-prediction or B-frame is predicted from two previous reference 

frames and the next frame. To achieve such a high coding efficiency, H.264/MPEG-4 

AVC use Multiple Reference Frames’ ME (MRFME) of up to five reference frames to 

predict the current frame. However, this dramatically increases the computational 

complexity of the encoders. Moreover, MRFME must be stored in memory until they 

are no longer needed for further usage, which requires a large amount of memory 

usage [60], [74], [121]. 



  

The simplest method of MCP is to use previous frame as the predictor for the current 

frame, and encode the difference between them. However, this prediction can be 

effective only if the two frames are similar and the residual values are close to zero. 

In any video, either the camera is moving or the object is moving with the fixed 

camera or scene lighting changes [77-79]. In all cases, the difference between 

successive frames will not be close to zero and a lot of energy remains in the 

residual frame. This means that there is still a big amount of information to compress 

after this stage. To achieve further compression, a better prediction of the current 

frame may be formed by compensating for motion between the two frames. In order 

to carry out motion compensated prediction, the motion of the moving objects has to 

be estimated first; this is known as Motion Estimation (ME). Figure ‎7 shows the 

residual prediction error with/without ME [121],[60], [137].  

4.2 Motion Estimation (ME) 

 

Motion Estimation is the first step of inter-frame compression and usually the most 

computationally intensive part (about 50% for one reference - 80% for five of the 

entire system) in a video encoder [121], [60] ,[58], [134], [13], [133]. It is possible to 

estimate the displacement for every pixel position between successive video frames, 

producing a field of pixel flow vectors known as the optical flow. The field is 

subsampling and hence only one vector for every two pixels is shown. However, for 

motion compensation, this is not a practical method since the calculation of optical 

flow is very computationally intensive and needs computations for each pixel. 

Moreover, the number of optical flow vectors is equal to or half the number of pixels. 

These vectors will be sent to the decoder in order to form MCP. As a result, a large 

amount of data should be transmitted [121], [60], [58], [13]. The practical and widely 

method used to estimate the motion of a group of pixels (macroblock) of the current 

frame is called Block Matching Algorithm (BMA).  

4.3. Block Matching Motion Estimation  

 



  

Block matching algorithm is the most popular technique used for motion estimation, 

in which the current luminance frame is divided into non-overlapped MacroBlocks 

(MBs) of size N×M. These macroblocks are then compared with the corresponding 

macroblock and their adjacent neighbours in the reference frame. This will carry out 

displacement vectors that stipulate the movement of the macroblocks from one 

location to another in the reference frame [26]. For any macroblock in the current 

frame, the BMA finds the matching macroblock of the same size N×M in the search 

area within the reference frame. The position of the matching macroblock gives the 

Motion Vector (MV) of the current macroblock, as shown in Figure 8. This motion 

vector has two parts, horizontal and vertical, which can be positive or negative. A 

positive value means motion to the right or motion down and a negative value means 

motion to the left or motion up. These motion vectors will be used to form the MCP to 

the current frame from the reference by block motion compensation, as shown in 

Figure ‎9. MVs will be encoded using entropy coding and the RPE between the 

current frame and the MCP will be encoded using transform coding, quantisation and 

entropy coding. At the decoder, the received MVs and RPE will be decoded and 

utilised to form MCP from the reconstructed reference frame in which the 

reconstructed RPE are used to reconstruct the current frame.  

 

 

Figure ‎8: Block matching ME 



  

 

Figure 9: Block motion compensation [74] 
 

The matching measure is usually determined using a Block Distortion Measure 

(BDM) like Mean Absolute Difference (MAD), or Sum of Absolute Differences (SAD) 

or Mean Square Error (MSE). The macroblock with the least cost is considered to be 

the one matching the current macroblock [93].  

The search area for a macroblock match is usually constrained up to 𝑝 pixels on all 

four sides around the corresponding macroblock in the reference frame, where 𝑝 is 

the search parameter. Larger motions require a larger 𝑝 value, which demands more 

computational power, as shown in Figure 9.  

For the current macroblock C of dimension N×N and the candidate macroblock R in 

the reference frame with a displacement of (𝑣𝑥, 𝑣𝑦), SAD, MAD and MSE are defined 

as: 

 𝑆𝐴𝐷 =  ∑ ∑|𝐶(𝑖, 𝑗) − 𝑅(𝑖+𝑣𝑥 , 𝑗 + 𝑣𝑦)|
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where 𝐶(𝑖, 𝑗) is the pixel value of current MB at position (𝑖, 𝑗) and R(𝑖+𝑣𝑥, 𝑗 + 𝑣𝑦) is 

the pixel value of the reference frame with the vector (𝑣𝑥 , 𝑣𝑦) within the search range 

[−𝑝, 𝑝]. 

4.4. Block-Size Motion Estimation 

 

Macroblock size is an important parameter of the BMA. In the BMA, increasing the 

size of the macroblock means that more computations are required. However, it also 

means that there will be fewer macroblocks per frame, so the amount of computation 

needed to perform motion estimation will be decreased. There is a high possibility 

that the big macroblock will contain different objects moving in different directions. In 

other words, using a larger macroblock size reduces the amount of computation; 

however, it provides poor prediction; while smaller macroblock size can produce 

better motion compensation results and hence reduces residual energy. However, 

smaller MB size leads to increased complexity and increase in the number of motion 

vectors that need to be transmitted, which may outweigh the benefit of reduced 

residual energy. An effective compromise is to adapt the macroblock size to the 

picture characteristics, for example choosing a large block size in the homogeneous 

and shade regions of a frame and choosing a small block size for areas of high 

details, edges, and complex motion, which is called Variable Block-Size Motion 

Estimation (VBSME) [92],  [13], [110], [109].  

The default block size for motion compensation is 16×16 samples for the luminance 

component. Fixed Block-Size Motion Estimation (FBSME) of size 16×16 or 8×8 has 

been used in the first-generation coding standards; while H.264\AVC utilises 

VBSME, which is more complicated. VBSME allows a macroblock of 16×16 samples 

of the luminance component to be partitioned into 4 ways, as shown in Figure ‎10: 

one 16×16 MB, two 16×8 sub-MBs, two 8×16 sub-MBs or four 8×8 sub-MBs. In 

addition, each of the four 8×8 sub-MB partitions within the MB can be further sub-

partitioned into 3 ways: two 8×4 sub-MBs, two 4×8 sub-MBs or four 4×4 sub-MBs. 

These partitions and sub-partitions give around 41 MBs in total for each MB. For 

each type of sub-MB, a motion vector is required. Each motion vector must be coded 

and transmitted with the choice of partition(s). In order to get these MVs for each 



  

MB, the computation of comparison operations was increased. To enhance these 

computations, a large partition size is applied for homogeneous areas of the frame 

and a sub-partition size may be useful for detailed areas [22], [110], [9], [129],[109]. 

 

 

Figure 10: Macroblock partitions and sub-macroblock partitions 
 

4.5. Full Search (FS) 

 

The simplest algorithm which can be used for motion estimation to find motion 

vectors is the Full Search (FS), or Exhaustive Search (ES), which exhaustively 

searches for the best matching block within the search area, where the correlation 

window is moved to each candidate position within the search area. It can be 

described by: 

 𝑆𝐴𝐷(𝑚, 𝑛) = ∑ ∑|𝑐(𝑖, 𝑗) − 𝑠(𝑖 + 𝑚, 𝑗 + 𝑛)|

𝑁

𝑗=1

𝑁

𝑖=1

 ;   − 𝑝 ≤  𝑚, 𝑛 ≤  𝑝 (7) 

 𝑀𝑉 =  {(𝑢, 𝑣) | 𝑆𝐴𝐷(𝑢, 𝑣)  ≤  𝑆𝐴𝐷(𝑚, 𝑛); − 𝑝 ≤  𝑚, 𝑛 ≤  𝑝}   (8) 

 

where  SAD(m, n) is the distortion of the candidate macroblock at search position (m, 

n), {c(x, y) | 1 ≤  x ≤  N , 1 ≤  y ≤  N} means current macroblock data, {s(x, y)|  −

p ≤  x ≤  p +  N , −p ≤  y ≤  p +  N } stands for search area data; the search range 

is [−p, p], the block size is N×N.  

From the above, (2p + 1)2 of search locations need to be examined by the FS 

algorithm. As a result, FS finds the best possible match and gives the highest PSNR 



  

amongst any block matching algorithm; however, a large amount of computational 

complexity is involved, especially with VBSME and MRFME. 

Various methods of fast block matching algorithms have been developed to 

decrease and improve this computational complexity. If the algorithm enhances the 

computation and produces the same quality results as FS then it is called lossless 

block matching algorithm while if the algorithm could not keep the same quality 

results then it is called lossy block matching algorithm [110], [121], [60]. 

 

5 FAST BLOCK MATCHING ALGORITHMS 

 

Motion estimation shows computational complexity. Hence, the computational 

complexity of video coding can be reduced by efficiently coding ME. A block 

matching algorithm is the most common technique used for motion estimation to find 

the best matching macroblock for the current macroblock from the reference frame. 

FS is the simplest but the most computation-intensive BMA, which exhaustively tests 

all the search locations for the best matching macroblock within the search area. As 

a result, FS finds the best possible match and gives the highest PSNR. Moreover, 

variable block size and multiple reference frames have been involved in later video 

coding standards. Therefore, the required computation is highly increased and 

motion estimation has become a problem in many video applications, for example 

mobile video and real-time video coding.  

In the last three decades, various methods of fast BMA have been developed to 

reduce such high computational complexity. Some of the fast BMA algorithms have 

been adopted in video coding standards [5], [6], [8] . This indicates that this is an 

extremely active field of research, and most fast block matching algorithms are 

introduced first for FBSME and then extended to VBSME [132]. The performance of 

each algorithm can be estimated by benchmarking with FS. The effective one 

minimises the RPE and saves the computational time compared with Full Search. 

Fast block matching algorithms can be classified into lossy block matching 

algorithms and lossless block matching algorithms. Lossy BMAs reduce the 

computational complexity; however, the search results quality is not the same as for 

FS. That is, the PSNR of the decompressed video with lossy BMA is not as good as 



  

the PSNR of the one with the full search. While lossless BMA preserves the video 

quality as well as speeding up the FS [98], [60], [34]. 

 

5.1. Lossy Block Matching Algorithms 

 

5.1.1 Fixed Set of Search Patterns  

 

Fixed set of search patterns or what is known as reduction in search positions is the 

most popular category in lossy block matching algorithms. These algorithms reduce 

search complexity by selecting a subset of the possible search candidate locations 

instead of all possible MBs within the search window. Most algorithms in this 

category state that the error decreases monotonically as the search location moves 

closer to the best-matching location. Therefore, the search starts with the locations 

coarsely spread over the search window according to some predefined uniform 

pattern. After that, the search is repeated with a smaller spread around the search 

location with the minimum BDM (error) obtained from the preceding step. Each 

search pattern has a specific shape (rectangle, diamond, hexagonal, cross, etc.) [4, 

2002; [60].  

The first algorithm initiated in this category is the Two-Dimensional Logarithmic 

Search (2D-LOG), which is proposed in 1981 [68]. After that, some well‐known 

similar algorithms were proposed, such as: Three Step Search (TSS) [80], 

Orthogonal Direction Search (OSA) [107], New Three Step Search (NTSS) [108], 

Four Step Search (4SS) [82], Diamond Search (DS) [113], Simple and Efficient 

Search (SESTSS) [70], Cross-Diamond Search algorithm (CDS) [46], Novel 

Hexagon-based Search (NHS) [39],  Efficient Three Step Search (ETSS) [135], 

Modified DS (MODS) [131], Multi-pattern-based search (TCon) [14] and many 

others. 

Much of the research and coding was dependent on the Fixed Set of Search 

Patterns due to its high-speed search capabilities in comparison to other lossy BMA 

categories. Unfortunately, these algorithms produce significant loss in visual quality 

when the actual motion does not match the pattern and hence these algorithms 



  

become trapped in a local minimum. As an example, a centre-biased search pattern 

cannot provide optimal motion estimation for videos with large motions [61].  

 
5.1.2 Three Step Search (TSS), New TSS (NTSS), and Simple and Efficient TSS 
(SESTSS) 
 

Three step search, new three-step search and simple and efficient three-step search 

come under the N-Step Search class. The steps of this class are summarised as 

follows: (1) Choose step size (which is usually slightly larger or equal to half of the 

search window). (2) Number of search points is selected at a distance of the step 

size as well as the centre point. The macroblock with the minimum BDM value 

becomes the centre of the next step. (3) Divide step size by two and select new 

search points at a distance of the new step size. (4) Repeat step 2 until the step size 

becomes one.  

 

TSS uses a maximum of three steps in a coarse to fine search patterns. For a usual 

search window of parameter p= 7 the initial step size will be 4=(p+1)/2; TSS utilises 

nine search points centred at the search area (eight points on the boundary of the 

search square and one centre point) to be compared in the first step search. As 

mentioned before, the point with the minimum BDM value becomes the centre of the 

next step. Therefore, there are eight search points to be compared in the second and 

third step searches, i.e. the total number of search points is (9+8+8=25), as shown in 

Figure ‎11. 



  

 

Figure 11: TSS [80] 

 

Due to its simplicity and reasonable performance, the TSS is widely used for 

research purposes [45]. The drawback of the TSS is that it is not efficient with small 

motion video, since the search points forming the search pattern in the first step are 

positioned at a relatively large distance from the search centre. While 80% of the 

MBs in various motion video sequences can be regarded as stationary or quasi-

stationary MBs, which means that 80% of MVs are centre-biased, i.e. they lie within 

a region of 5×5 of the central area [46]; therefore TSS is not efficient for most video 

sequences.  

This problem was solved in 1994 by proposing a new search called NTSS [108]. 

NTSS provided improvement over the quality results of TSS (refer to Figure 12). 

Therefore, this algorithm is considered as one of the first widely accepted fast block 

matching algorithms. Moreover, it has been used in earlier standards like MPEG 1 

and H.261 [96].  



  

 

Figure 12: NTSS [108] 

 

NTSS added a smaller search pattern of eight points at the central area to the first 

step of the original TSS search pattern. That is, NTSS requires more search points 

compared to TSS. For search windows of parameter p= 7, NTSS requires 33 search 

points for large motion MBs while TSS always required 25, which means more 

computations may be needed.  

Another extension illustrated to speed up TSS was done by Simple and Efficient TSS 

[70]. SESTSS requires around half of the computation for TSS while keeping the 

same regularity and good performance. It exploits the fact that the uniform 

distribution search pattern in TSS is not effective since the error decreases 

monotonically as the search location moves closer to the best-match location. 

Minimum points cannot occur in two directions opposite to each other, which means 

that, for the search pattern in TSS, at most half of the total eight points are actually 

required to be searched in each step, and, thus, the computational complexity can 

be further reduced. Additional computation is needed to determine which directions 

are selected. The algorithm still has three steps like TSS but each step has two 

phases as follows [70]: 

Step 1: first phase: compute MAD of the three locations A, B and C as shown in 

Figure 13. Point A refers to the centre location. B and C are located at step size = 4 



  

away from A, towards the right-hand side and bottom. In the second phase, a few 

more points are added depending on the following conditions:  

 

 

𝐼𝑓 𝑀𝐴𝐷(𝐴) ≥  𝑀𝐴𝐷(𝐵) 𝑎𝑛𝑑 𝑀𝐴𝐷(𝐴)  ≥  𝑀𝐴𝐷(𝐶), 𝑠𝑒𝑙𝑒𝑐𝑡 (𝑏) 

𝐼𝑓 𝑀𝐴𝐷(𝐴) ≥  𝑀𝐴𝐷(𝐵)𝑎𝑛𝑑 𝑀𝐴𝐷(𝐴) <  𝑀𝐴𝐷(𝐶), 𝑠𝑒𝑙𝑒𝑐𝑡 (𝑐) 

𝐼𝑓 𝑀𝐴𝐷(𝐴) <  𝑀𝐴𝐷(𝐵)𝑎𝑛𝑑 𝑀𝐴𝐷(𝐴) <  𝑀𝐴𝐷(𝐶), 𝑠𝑒𝑙𝑒𝑐𝑡 (𝑑) 

𝐼𝑓 𝑀𝐴𝐷(𝐴) <  𝑀𝐴𝐷(𝐵)𝑎𝑛𝑑 𝑀𝐴𝐷(𝐴) ≥  𝑀𝐴𝐷(𝐶), 𝑠𝑒𝑙𝑒𝑐𝑡 (𝑒) 

 

(9) 

 

Figure13: Search patterns of SESTSS depending on MAD of A, B and C [70]. 
 

Step 2: the point with the minimum MAD value from step 1 becomes the centre of 

the current step and the step size will be 2. The pattern of the first phase in this step 

is similar to first phase in step 1. 

Step 3: repeat step 2 with step size equal to 1. 

Figure 14 shows an example for the SESTSS.  



  

 

Figure 14: Example of the SESTSS search procedure [70] 
 

 
5.1.3 Diamond Search (DS) 
 

DS is one of the most common and widely used algorithms. DS requires significantly 

less computation by reducing the average search points while achieving acceptable 

performance in comparison with its prior fixed set of search pattern algorithms. 

Therefore, it is adopted by the reference software of MPEG-4 [7], [60].  

Similar to NTSS, DS is based on the assumption that most motion vectors of typical 

video sequences are centre-biased. Also, it is based on the fact that the MB 

displacement of real-world video sequences could be in any direction, but mainly in 

horizontal and vertical directions [113].  

This technique utilises two search patterns, a large diamond search pattern (LDSP) 

of 9 search points and a small diamond search pattern (SDSP) of five search points, 

as follows:  

The matching MB is searched within the search points of the LDSP which are 

{(±2,0), (0, ±2), (0,0), (±1,±1)}, as shown in Figure ‎15. The position of the minimum 

BDM for the LDSP becomes the centre of the new search. If the minimum BDM is 

already at the centre of the LDSP, then the search pattern is switched from the 

LDSP to a SDSP of four points {(±1, 0), (0, ±1)}. Otherwise, the search in the next 

step will be performed only for three or five neighbouring points that complete the 



  

LDSP of this new centre, as illustrated in Figure 15. The LDSP is repeatedly used in 

the searching procedure until the step in which the minimum BDM point stays at the 

centre of the LDSP. The search pattern is then switched to a SDSP. The minimum 

BDM point found from the SDSP will be the best matching block [139], [26], [96], 

[113].  

 

 

Figure 15: Diamond Search Algorithm [113] 

 

5.1.4 Predictive Search  

 

Predictive search technique is a lossy block matching algorithm that exploits the 

correlation between the current MB and its neighbouring MB. It utilises the motion 

information in the spatial and/or temporal neighbouring MB. The predicted MV can 

be obtained by selecting one of the previously-coded neighbouring MVs; for 

example, the predictors can be the MVs of the MBs on the left, top, and top right, as 

shown in Figure 16, or the MV of the collocated MB in the previous frame, as shown 

in Figure 17, and in the previous two frames.  

 

 



  

Figure 16: Current MB with the predictor MV of top (T), left (L) and top right 
(TR) MBs 

 

Figure 17: Current MB and the collocated MB in the previous frame 

  

The Motion Vector Predictor (MVP) is utilised in two ways: the difference between 

the current motion vector and the MVP, which is called motion vector difference, is 

transmitted instead of the current MV itself. The MVP in this case is the median of 

three candidate predictors, which are the motion vectors of the three neighbouring 

MBs, as illustrated in Figure ‎17 [4].  

The MVP forms an initial estimate of current MV. This type is a fast motion 

estimation algorithm that has low computational complexity with acceptable 

performance [130]. It can effectively reduce the search points and hence the 

computation by exploiting the target macroblock that is likely to belong to the area of 

the neighbouring MVs, and the initial search starts directly in this area. The MVP 

could be one or more of the previously-coded neighbouring MVs, or their average 

MVs as in Figure 17. Additional memory for storing the neighbouring MVs is needed 

in this method [13], [55], [39] .  

This technique is used in the Adaptive Rood Pattern Search (ARPS) algorithm [98], 

Joint Adaptive Block Matching Search (JABMS) algorithm, Unsymmetrical Multi-

Hexagon search (UMHexagonS) [136], and simplified block matching algorithm for 

fast motion estimation [22].  

 

5.1.5 Adaptive Rood Pattern Search (ARPS) Algorithm 

ARPS algorithm [98] based MPEG-4 Verification Model (VM) [7] showed a speed 2-3 

times faster than that of the DS and maintained a fairly similar performance [138]. 



  

ARPS uses a predictive search technique to form an initial estimate of finding the 

global minimum point. This relates to the fact that, if the MB around the current block 

moves in a particular direction, there is a high probability that the current MB will also 

have a similar motion vector. Moreover, the step-size search pattern of this algorithm 

changes according to the motion vector predicted behaviour. This technique 

depends on the DS technique, which uses two different types of fixed patterns, the 

Large Search Pattern (LSP) and the Small Search Pattern (SSP), as shown in 

Figure ‎18. In addition, the MVP of this algorithm is the coded motion vector of the 

immediate left MB, which means one neighbouring MV needs to be recorded. This 

MVP is utilised to pre-determine the motion behaviour of the current MB and to 

define the most suitable step size to perform efficient ME.  

The steps of this algorithm are as follows:  

Step 1: determine the step size that refers to the distance between the centre and 

any vertex points in the LSP. If 𝑥 and 𝑦 are the horizontal and vertical components of 

the MVP, respectively, then the step size will be the maximum absolute value of 

these components determined as follows [98]: 

 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 = 𝑀𝑎𝑥{|𝑥|, |𝑦|} (10) 

For the MB on the left side of the frame, the step size will be fixed as 2 pixels.  

Step 2: the matching macroblock is searched first within the search points of LSP 

plus the search point indicated by the MVP. The point that has the least MAD 

becomes the origin for subsequent search steps. The new search centre directly 

moves to an area where there is a high probability of finding the global minimum, 

and the new search pattern is changed to a SSP, as shown in Figure 19. 

Step 3: the matching MB found in the current step will be re-positioned as the new 

search centre of the next search if it is not already at the centre of the search 

pattern. This process will be repeated until the matching MB stays at the centre of 

the SSP.  

A further development of this algorithm is called Adaptive Rood Pattern-Zero Motion 

Prejudgment (ARP-ZMP). This can be achieved by checking for zero motion 

prejudgment in which, if the SAD between the current MB and the MB at the same 

location in the reference frame (i.e., the centre of the current search window) is less 

than a predefined threshold, then the search is stopped and the MV will be zero [98].  



  

 

Figure 18:  The sold circle points (●) are the LSP and the squares (■) are the 
SSP for ARPS 

 

 

Figure 19: Adaptive Rood Pattern Search [98] 

 

5.1.6 Hierarchical or Multiresolution Search  

 

Hierarchical search exploits the correlation between different resolution levels that 

represent the same image, which is shown in Figures ‎20 and 21 [114]. It uses a 

multiresolution structure (also known as a pyramid structure) that has different image 

resolutions with smaller image size at the coarser level. The multiresolution structure 

is constructed either with simple subsampling or filtering.  

Hierarchical search is based on the idea of performing motion estimation at each 

level successively. Thus, motion estimation is first applied at the lowest resolution 

level to obtain an estimate of motion vector. This MV is then passed to the next 

higher resolution level as an initial estimate. Motion estimation at the higher 



  

resolution level is then used to refine this initial estimate. This process is repeated 

until the highest resolution level is reached. Typically, a two- or three-level 

hierarchical search is adopted. To reduce the complexity of calculating BDMs, small 

MBs are used for block matching algorithm at lower resolution levels. Moreover, 

smaller search ranges are used at higher-resolution levels, since motion estimation 

starts from a good initial estimate. This reduces the number of locations to be 

searched. More levels can save the amount of computation required, but it has the 

disadvantage of possibly being trapped in a local minimum because, when the 

subsampling or filtering is applied to an image, some important details will be lost. 

Multiresolution technique has been regarded as one of the most efficient methods in 

BMA and it is adopted in applications with very large frames and search areas [114], 

[ 34],  [4], [98], [60]. 

 

 

 

Figure 20: Two-level Hierarchical Search 



  

 

Figure 21: Hierarchical motion estimation using a mean pyramid of three levels 
[114] 

 

 

5.2 Subsampled Pixels on Matching Error Computation 

 

The previous three groups of BMAs can reduce the computation of ME by limiting 

the number of search locations. This category reduces the complexity of the BDM by 

decreasing the number of MB pixels in current and candidate MBs to speed up ME. 

In homogeneous areas, neighbouring pixels have high correlation and hence 

subsampling for these areas can be done without search quality regression. 

However, in highly textured areas the subsampling will be less accurate [115-119]. 

Therefore, this category does not guarantee to find the best match, hence it is lossy 

BMA even when checking all search area locations. Koga et al used in their work 

[80], a uniform subsampling pattern that performs 2:1 pixel subsampling in both 

horizontal and vertical directions. As a result, the total computation can be reduced 

by a factor of 4, as shown in Figure 22. Liu and Zaccarin in their work [87] have used 

a non-uniform subsampling pattern.  

Figure ‎23 shows a block of 8 × 8 pixels with each pixel labelled 𝑎, 𝑏, 𝑐, and 𝑑 in a 

regular pattern. If only the pixels of the pattern that consists of all the 𝒂 pixels are 

used for block matching, then the computation is reduced by a factor of 4. To reduce 

the drawback that ¾ of the pixels do not enter into the matching computation, all four 

subsampling patterns are using in a specific alternating manner.  



  

 

Figure 22: Uniform subsampling pattern 2:1 [80] 

 

Figure 23: Non-uniform subsampling pattern 4:1 [87] 

 

To enhance the quality of a non-uniform subsampling, Yui-Lam and Wan-Chi (Yui-

Lam and Wan-Chi, 1995) changed the number of pixels in the subsampling pattern 

according to block details. That is, for shade MBs fewer pixels are used and more 

pixels are involved for high-activity MBs. Such a computation reduction method can 

be incorporated into other BMAs to achieve higher computational gain.  

 

5.3 Bitwidth Reduction 

 

In a luminance frame, each pixel is represented with 8 bits resolution. This search 

technique reduces the original 8 bits resolution to less bits width in order to reduce 

the hardware cost and power consumption and then applies normal ME search 

strategies. The first algorithm proposed in this category was Bit-Plane Matching 

(BPM), which indicates whether a pixel is edge or not [69]. The MB mean is used as 

the threshold to satisfy a One–Bit Transformation (1BT), and the bit plane of an 

image frame is constructed in the form of: 



  

 

𝐵(𝑖, 𝑗) = {
1 𝑖𝑓 𝐼(𝑖, 𝑗) ≥ 𝑡𝑏𝑚

  
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 

(11) 

where 𝑡𝑏𝑚 is the threshold value that is set equal to the MB mean, 𝐼(𝑖, 𝑗) shows the 

(𝑖, 𝑗)𝑡ℎ pixel of the image frame and 𝐵(𝑖, 𝑗) shows the corresponding bit-plane value.  

The other common transformation maps a frame of multi-valued pixels to a frame of 

binary-valued pixels by comparing the original frame with their multi-bandpass 

filtered versions to construct 1BT representations [96]. Each frame I is filtered with a 

17 ×17 kernel K which is given as in Equation 15. The filtered frame 𝐼𝐹 is compared 

with the original frame I to create a one-bit frame B, as in Equation 16 [48].  

 𝐾(𝑖, 𝑗) = {
1/25 𝑖, 𝑗 ∈ [0,4,8,12,16]

  
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}  (12) 

 

 𝐵(𝑖, 𝑗) = {
1 𝑖𝑓 𝐼(𝑖, 𝑗) ≥ 𝐼𝐹(𝑖, 𝑗)
  

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}  (13) 

where 𝐼𝐹(𝑖, 𝑗) is the filtered form of the image frame 𝐼(𝑖, 𝑗). 

To find the best matching MB for the current MB, a full search can be used. The 

error between current and candidate MBs will be calculated as the Number of Non-

Matching Points (NNMP), which is measured by the exclusive-or (XOR) operation as 

follows [48]: 

 
𝑁𝑁𝑀𝑃(𝑚, 𝑛) =  

1

𝑀 × 𝑁
∑ ∑(𝐵𝑡(𝑖, 𝑗) ⨁ 𝐵𝑡−1(𝑖 + 𝑚, 𝑗 + 𝑛))

𝑁

𝑗=1

𝑀

𝑖=1

 

−𝑠 ≤  𝑚, 𝑛 ≤  𝑠 − 1 

(14) 

where (𝑚, 𝑛) shows the candidate displacement, 𝐵𝑡(𝑖, 𝑗) and 𝐵𝑡−1(𝑖, 𝑗) are the one-bit 

planes for the current and reference frame, respectively, 𝑠 determines the search 

range, and ⨁ is the XOR operation [94]. 

In Erturk [48], a Two-Bit Transformation (2BT) was proposed to improve motion 

estimation accuracy compared with 1BT. The first bit plane of 2BT is constructed 

using the mean value (𝜇 = 𝐸[𝐼𝑡𝑤]) of the threshold window surrounding the current 

MB. The second bit plane is constructed using the square root of the variance value 

(𝜎2 = 𝐸[𝐼𝑡𝑤
2 ] − 𝐸2[𝐼𝑡𝑤]) as follows:  



  

 𝐵1(𝑖, 𝑗) = {
1 𝑖𝑓 𝐼(𝑖, 𝑗) ≥ 𝜇
  

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}  (15) 

 
𝐵2(𝑖, 𝑗) = {

1 𝑖𝑓 𝐼(𝑖, 𝑗) ≥ 𝜇 + 𝜎  𝑜𝑟  𝐼(𝑖, 𝑗) ≤  𝜇 − 𝜎  
  

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}  

 

where 𝐵1(𝑖, 𝑗) and 𝐵2(𝑖, 𝑗) represent the 2BT, while the number of non-matching 

points is defined as:  

𝑁𝑁𝑀𝑃(𝑚, 𝑛) =  
1

𝑀 × 𝑁
∑ ∑{𝐵1

𝑡(𝑖, 𝑗) ⨁ 𝐵1
𝑡−1(𝑖 + 𝑚, 𝑗

𝑁

𝑗=1

𝑀

𝑖=1

+ 𝑛)} ‖{𝐵2
𝑡(𝑖, 𝑗) ⨁ 𝐵2

𝑡−1(𝑖 + 𝑚, 𝑗 + 𝑛)}  

−𝑠 ≤  𝑚, 𝑛 ≤  𝑠 − 1 

(16) 

where (𝑚, 𝑛) shows the candidate displacement, 𝐵1,2
𝑡 (𝑖, 𝑗) and 𝐵1,2

𝑡−1 are the two-bit 

planes for the current and reference frame, respectively, 𝑠 represents the search 

range, and ⨁ is the XOR operation. The operation  ⃦ denotes the Boolean OR 

operation.  

Some other algorithms were proposed to enhance and modify the 2BT , all these 

algorithms save hardware costs and power consumption but are run at the risk of 

losing too much quality and hence they are classified as lossy block matching 

algorithms [49-53].  

 

 

5.4 Lossless Block Matching Algorithms (Fast Full Search) 

 

A lossless algorithm attempts to improve the time to determine the matching MB 

without affecting the quality of the FS. However, many studies have indicated that 

the quality of the produced compressed videos is not as good as that of the ones 

produced by FS [60]. Usually, the ideas of this category are borrowed from the fast 

search of Vector Quantisation (VQ) [40].  

 

5.4.1. Partial Distortion Elimination (PDE) Algorithm  



  

 

This algorithm is the earliest algorithm in this category that has been widely used to 

reduce the computational complexity efficiently. It is employed in the FS algorithms 

in H.263 and H.264 [76], [86]. It uses the halfway-stop technique in the BDM 

calculation. In other words, the partial sum of matching distortion between current 

MB and candidate MB is stopped as soon as the matching distortion exceeds the 

current minimum distortion, meaning that the remaining computation is avoided. The 

conventional top-to-bottom kth partial SAD matching scan is determined as follows:  

∑ ∑|𝐶(𝑖, 𝑗) − 𝑅(𝑖+𝑣𝑥 , 𝑗 + 𝑣𝑦)| 

𝑁

𝑗=1

𝑘

𝑖=1

 ,   𝑘 = 1, 2, …  𝑁 (17) 

where 𝑁 represents MB size. If 𝑘 is smaller than 𝑁 and the summation exceeds the 

current 𝑆𝐴𝐷𝑚𝑖𝑛, then the remaining summation can quit and move to the next 

candidate MB.  

The speed-up problem in this algorithm depends on: (1) fast searching, that is, how 

fast the global minimum in a given search range is detected; (2) fast matching error, 

that is, how to stop the calculation of the matching error early in the comparison 

process, which means finding the 𝑘 value in Equation (20) faster to stop the partial 

sum [111-112].  

The fast searching can be satisfied by applying the PDE algorithm with a spiral-

ordered search starting at the centre of the search area since the best match 

location is usually centre-biased, then moving outward in a spiral design. This was 

employed in Telenor’s H.263 codec [4].  

The fast matching can be satisfied by eliminating the average number of rows 

examined per MB as well as the operations required. PDE employs SAD as a BDM 

to avoid more multiplication when calculating the matching error using MSE. 

Moreover, instead of the ordinary top-to-bottom matching scan, there are different 

scanning orders that improve performance of block matching. Kim et al. proposed 

various types of matching scan [76], [75], [72] depending on the relationship between 

block matching error and the spatial complexity of the reference MB, which is based 

on the concept of representative pixels. That is, the representative pixels are 

examined earlier than other pixels to detect the impossible candidates faster and 

reject them to obtain the reduction of computation in the block-matching algorithm. 



  

This algorithm is called adaptive matching scan algorithm based on gradient 

magnitude. It utilises four directions: top-to-bottom, bottom-to-top, left-to-right, right-

to-left. It uses gradient magnitude to measure the image complexity due to 

performance and computational complexity. In general, the gradient points in the 

direction of the maximum increase of a function. The gradient magnitude G can be 

calculated as follows:  

|𝐺[𝑓(𝑥, 𝑦)]| ≈  |𝐺𝑥| + |𝐺𝑦| ≈ |𝑓(𝑥, 𝑦) − 𝑓(𝑥 + 1, 𝑦)| + |𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦 + 1)| (18) 

The gradient magnitudes are calculated in four 8×8 sub-blocks of the candidate MB, 

as shown in Figure 24, and then make a sum of gradient magnitudes in sub-blocks, 

which are in four cases: (1)+(2), (3)+(4), (1)+(3), (2)+(4). The maximum value of 

these sums points to the direction of matching scan; for example, the direction of 

matching scan is from top-to-bottom when the sum of gradient magnitudes (1) and 

(2) is maximum, as shown in 28 which describes this algorithm. The sub-block may 

be 4×4, i.e. there are 16 sub-blocks as in Jong-Nam et al. [72]. The matching scan 

order will also be according to the local complexity of the sub-block. 

  

If the matching scan order is well arranged then the probability of eliminate the 

average number of rows examined increases.  

 

 

Figure 24: Adaptive matching scan based on representative pixels: (a) gradient 

magnitudes of sub-block division, (b) (top-to-bottom) matching scan when 

(1)+(2) is maximum, (c) bottom-to top matching scan when (3)+(4) is maximum, 

(d) left-to right when (1)+(3) is maximum, (e) right-to left when (2)+(4) is 

maximum [76] 

 



  

 

Figure 25: (a) spiralling inward scanning order, (b) alternating spiralling inward 

scanning order 

 

However, these algorithms are not effective since decreasing the number of 

checking rows does not necessarily lead to enhancing the real time needed, 

because a lot of add/subtract operation is required per MB to compute the gradient 

magnitude in order to decide the matching order, which may render it unsuitable for 

real-time video coding systems. Therefore, three low complexity scanning orders 

were proposed by Grecos et al. (2004) which show improvements of ¼ operation 

count ratio and show an increase in the speed-up ratio of 45 times on average as 

compared with an adaptive matching scan algorithm based on gradient magnitude. 

Unlike the adaptive matching scan algorithm, two of Grecos et al.’s algorithms – 

spiralling inward scanning order and alternating spiralling inward scanning order – 

used fixed order of SAD computation between current and reference MBs to 

eliminate unsuitable predictors in the reference frame. These algorithms are based 

on the idea that the sides of the MB could represent the most information. Therefore, 

the representative pixels are examined earlier than other pixels without pre-

processing, by computing the SAD value between pixels located on the sides of the 

squares of decreasing size inside the current and reference macroblocks, as shown 

in Figure ‎25, in order to reject impossible candidate predictors faster than the 

conventional top-to-bottom scan. The fixed direction scanning of the spiralling inward 

scanning order starts from top-horizontal and ends in left-vertical (Figure 25); it may 

increase computations since the complexity of candidate MB could be in any vertical 

or horizontal sides. If a candidate MB should be rejected on the basis of left-vertical 

SAD information then it has to wait until three sides of SAD computations are 

completed. For this reason, the alternating spiralling inward scanning order was 



  

designed to reject the candidate MB on the basis of horizontal and vertical SAD 

information, as shown in Figure 29 (b).  

 

The last algorithm of Grecos et al.’s, which is horizontal/vertical scanning order, 

utilises very limited pre-processing to avoid increasing the real time needed for 

computation and hence losing the benefit of computational reduction that happened 

with the adaptive matching scan algorithm. It determines the scanning order by 

examining only the SAD between the boundary rows and columns of the current and 

candidate MBs. The scanning direction will be the direction of the maximal SAD.  

Successive Elimination Algorithm (SEA) 

The SEA [85] eliminates impossible candidate MB by checking if the absolute 

difference between the summation of current MB pixels and the summation of 

candidate MB pixels is larger than the updated minimum SAD; if it is, then this 

candidate MB should be rejected. Thus, a large part of unnecessary computation for 

impossible candidate MBs can be avoided. This algorithm is based on the triangular 

mathematical inequality given by:  

 |∑ 𝑥𝑖

𝑖

| ≤ ∑|𝑥𝑖|

𝑖

 (19) 

where 𝑥𝑖 are arbitrary real numbers. Appling this inequality to the SAD achieves: 

|∑ ∑ 𝐶(𝑖, 𝑗) − ∑ ∑ 𝑅(𝑖 + 𝑥, 𝑗

𝑁

𝑗=1

𝑁

𝑖=1

𝑁

𝑗=1

𝑁

𝑖=1

+ 𝑦)| 

= |∑ ∑ 𝐶(𝑖, 𝑗) − 𝑅(𝑖 + 𝑥, 𝑗 + 𝑦)

𝑁

𝑗=1

𝑁

𝑖=1

| 

≤ ∑ ∑|𝐶(𝑖, 𝑗) − 𝑅(𝑖 + 𝑥, 𝑗 + 𝑦)|

𝑁

𝑗=1

𝑁

𝑖=1

 

(20) 

where 𝐶(𝑖, 𝑗) is the pixel value of current MB at the position (𝑖, 𝑗) and R(𝑖 + 𝑥, 𝑗 + 𝑦) is 

the pixel value of reference frame with the vector (𝑥, 𝑦), which are within the search 

range [−𝑝, 𝑝]. In other words, the previous inequality can be written as: 

 |𝑆𝐶 −  𝑆𝑅(𝑥, 𝑦)| ≤ 𝑆𝐴𝐷(𝑥, 𝑦) (21) 

where 𝑆𝐶 is the summation of current MB and 𝑆𝑅(𝑥, 𝑦)is the summation of candidate 

MB at the vector (𝑥, 𝑦). If 𝑆𝐴𝐷𝑚𝑖𝑛(𝑥0, 𝑦0) is the current updated minimum SAD at the 

search location (𝑥0, 𝑦0), then to achieve better match MB at the location (𝑥, 𝑦) the 

SAD should be less than 𝑆𝐴𝐷𝑚𝑖𝑛 , that is 𝑆𝐴𝐷(𝑥, 𝑦) ≤ 𝑆𝐴𝐷𝑚𝑖𝑛(𝑥0, 𝑦0). This will 



  

substitute in (22) to get: |𝑆𝐶 −  𝑆𝑅(𝑥, 𝑦)| ≤ 𝑆𝐴𝐷𝑚𝑖𝑛(𝑥0, 𝑦0). This means that a MB at 

location (𝑥, 𝑦) can be immediately skipped from the search if:  

 

 |𝑆𝐶 −  𝑆𝑅(𝑥, 𝑦)| ≥ 𝑆𝐴𝐷𝑚𝑖𝑛(𝑥0, 𝑦0) (22) 

While, if the difference |SC −  SR(x, y)| is smaller than  𝑆𝐴𝐷𝑚𝑖𝑛(𝑥0, 𝑦0), then the 

candidate MB is elected to calculate SAD between these two MBs and the new SAD 

becomes 𝑆𝐴𝐷𝑚𝑖𝑛. Since the candidate MBs are overlapping then the two horizontal 

neighbouring candidate MBs 𝑆𝑅(𝑥, 𝑦) and 𝑆𝑅(𝑥 + 1, 𝑦) are also overlapping and they 

share N−1 columns. Therefore, subtracting the sum of the first column of MB 

𝑆𝑅(𝑥, 𝑦) and adding the sum of the last column in MB 𝑆𝑅(𝑥 + 1, 𝑦) will improve the 

block matching computation. A similar procedure can be used for vertical 

neighbouring candidate MBs.  

Note that, similar to PDE, if the global minimum in a given search range is detected 

at the initial search, then SEA will be faster [54], [60]. Various algorithms have been 

introduced to enhance SEA [120], [73], [62], [91]. 

5.4.2 Enhanced Mean Predictive Block Matching Algorithm (EMPBM) 

Using Edge Detection  

Enhanced Mean Predictive Block Matching Algorithm proposed to decrease the 

computations of the previous fast block matching algorithm Mean Predictive Block 

Matching algorithm [17-19]. In order to find the matching macroblock for the current 

macroblock from the previous frame, this technique classifies the current macroblock 

into shade and edge. The shade macroblock has a high probability to move in the 

same direction as its neighbouring macroblocks [67]. This will lead to search only the 

motion vectors of the neighbouring macroblocks and ignore other motion vectors that 

were utilised in the first search step of the Mean Predictive Block Matching algorithm. 

For edge macroblock, the proposed technique will use the same approach that was 

used in the Mean Predictive Block Matching algorithm [41-43].  

Edge information can be described as a straight line across the macroblock with a 

sharp change of intensity in the spatial domain [20]. A fixed small size 4×4 

macroblock is utilised to achieve good subjective quality. Therefore, this technique 

can be useful for small MBs in variable block-size motion estimation. In order to 



  

avoid more computations in the existing edge detection methods, the absolute value 

approach has been used. The idea is to use the absolute value between the 

summation values of the vertical halves of the macroblock and the absolute value of 

the difference between the summation values of the horizontal halves, as shown in 

Figure 26. 

 

Figure 26: Vertical halves and horizontal halves for 4×4 MBs 

 

When the sum of theses difference is less than a threshold value, the macroblock is 

classified as shade; otherwise, the macroblock will be classified as edge, as follows:  

Let 𝐵 =  {𝑏𝑖𝑗;  1 ≤ 𝑖, 𝑗 ≤ 4} represent a 4×4 frame macroblock. In this case, 𝑏𝑖𝑗is a 

grey level pixel value corresponding to position (i, j) of row i and column j in the 

image block B. The discrete gradients of the macroblock B in the x and in the y 

directions are determined as follows: 
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(23) 

The gradient magnitude is defined by: 

 yx GGG 
 

(24) 

If the gradient magnitude G in Equation (26) of the macroblock B is smaller than 

threshold T, then it is considered that the macroblock contains no significant gradient 

and it is classified as a shade macroblock; otherwise, it will be classified as an edge 

macroblock.  



  

The shade macroblock has a high probability to move in the same direction of its 

neighbouring macroblock. This fact has been used in MPBM to decrease the search 

points [21]. 

 

6. DISCUSSION  

 

Various block-based matching algorithms demonstrate varying behaviours in terms 

of quality measures, processing times, levels of distortion and the number of points 

evaluated during search procedures. 

The number of search locations shown within FS operations are extremely resource 

intensive and a considerable number of computations are incurred during motion 

vector assignment as shown in Table 1.  

The values also grow exponentially as the search parameter size increases and 

therefore computational complexity. FS technique renders a lossless form of video 

compression, whereas the subsequently developed fast block matching solutions are 

of the lossy category. Therefore, implementation of the FS technique within a video 

coding environment is largely dependent on the hardware constraints under which 

an individual operates. Fast block matching algorithms have been proposed to 

alleviate the demand on computational resources through the imperceptible loss of 

redundant visual content. 

Maximum 
Displacement Region 

Number of 
Search Locations 

±1 9 

±3 49 

±7 225 

±14 841 

±28 3249 

Table 1. The number of search location for FS. 

TSS is considered as one of the pioneering solutions for fast, block-based motion 

estimation and remains a viable option for the compression of video sequences to 

this present day [3]. 

 



  

The number of search locations are fixed within each step with nine coordinates for 

the initial event and eight for subsequent events (as the point exhibiting the least 

distortion becomes the origin of successive search events). In order to provide an 

indication of the computational complexity associated with the TSS, Table 2 

demonstrates the number of calculations required by this algorithm during certain 

displacement region scenarios. 

Maximum Displacement 
Region 

Number of Search 
Locations 

±1 9 

±3 17 

±7 25 

±14 33 

±28 41 

 
Table 2. The number of calculations required by TSS 

 

The TSS and 2-D logarithmic search algorithms were both developed in order to 

alleviate the computational intensity associated with FS procedures and share a 

similar functional characteristic, in that their subsequent stages of execution employ 

a search pattern size of reduced dimensions (based on half that of the current step 

size). The most obvious difference between these two techniques is that the 2-D 

logarithmic search utilises a pattern with five checking points during the initial search 

steps in comparison to nine locations in the instance of the TSS. At stage in which 

the motion vector is specified, the 2-D logarithmic search uses a search pattern 

identical to that of a TSS window with step size equal to one. 

 



  

In comparison to a TSS pattern, a reduction in the allocation of search points within 

the 2-D logarithmic search mean that distortion calculations for its initial search 

operations are minimised. Thus, the can 2-D logarithmic search be considered less 

resource intensive than the TSS for video sequences with small ranges of motion. 

The negative aspect of adopting a search pattern of this nature, is that the scenarios 

in which a significant step size is specified, the 2-D logarithmic search is forced to 

conduct several steps until the search area is narrowed towards the vicinity of the 

optimum motion vector. 

The 2-D logarithmic search was released during the formative years of fast block 

matching algorithm development, as such the simulations conducted by Jain and 

Jain [68] provide no comparison with other homogeneous techniques. During this 

time, motion estimation technologies were in their infancy and their suitability for 

application within video coding yet to be extensively affirmed. Experimental 

investigations were still conducted however, with the peak-to-signal noise ratio of an 

uncompressed video sequence used as the baseline for comparison. 

Within the 2-D logarithmic search publication, Jain and Jain [68] specify that the 

BDM used to assess the suitability of motion vectors for this technique is the Mean 

Absolute Error. Simulations conducted within this paper incorporate two test video 

sequences; namely “Cronkite” and “Chemical Plant”. Testing of the 2-D logarithmic 

search is implemented across sixteen frames of each video sequence, each with a 

resolution size of 256 x 256 pixels. Macroblocks used for the focal point of motion 

estimation between frames of the specified video sequences are comprised of 16 x 

16 pixel dimensions.  



  

Their PSNR figures present a strong argument for the validity of the 2-D logarithmic 

search as a solution for motion estimation processing. The experimental results 

indicate that the 2-D logarithmic search is consistently able to achieve higher levels 

of fidelity compared to instances where motion compensated frames are not applied. 

The figures also demonstrate that use of the 2-D logarithmic search for predicting 

motion vectors provides a reduced level of deviation on average in relation to PSNR 

values. This is particularly evident between frames six and seven of the “Cronkite” 

sequence, where a deficiency in motion compensation results in an interframe 

variance of approximately four dBs. The consistency of PSNR figures shown within 

the simulation results suggest that this technique unvaryingly navigates towards the 

domain of global minimum distortion. 

Chronologically, Orthogonal Search [68] succeeded the initial endeavours of block-

based algorithm development and adopted a similar search pattern configuration to 

that of the2-D logarithmic search. This pattern design was adapted so that the 

horizontal and vertical application of possible motion vector locations is conducted 

during subsequent stages of execution. This compounds the reduction of search 

point locations in comparison to that of the TSS as a maximum of three calculations 

are implemented at each step. Orthogonal Search simulations indicate that its 

computational complexity is approximately half that of the TSS, however steps of 

search double in frequency and therefore prolonged processing times are observed. 

Proposal of the NTSS in the mid-nineties prompted the speculation of an additional 

assumption in relation to the behaviours exhibited by distortion distributions. This 

technique relied heavily on the suggestion that the motion vectors assigned from 

reference frames are in a centralised locality accordant to that of the candidate 



  

macroblock coordinates. This reasoning is exploited by the NTSS [108] through the 

inclusion of an additional 3 x 3 coordinate search pattern during distortion level 

assessments in order to identify static macroblocks, at which point execution of the 

algorithm may be terminated. Implementation of two search patterns at the first step 

will incur seventeen BDM calculations and is therefore highly dependent of the 

validity of said assumption to ensure computational demands are not overly 

exuberant for motion estimations procedures. 

 

Simulations were conducted by the developers of the NTSS with the TSS placed 

under identical testing conditions. The findings were particularly significant as the 

NTSS was shown to be consistently closer to point of global minimum distortion, but 

more significantly it is the most likely to identify the optimum motion vector match. 

The study does not however, indicate the required number of search locations for 

application of the NTSS within the tested video sequences. The NTSS is liable to 

incur an increased number of BDM calculations per step compared to that of the 

TSS, however this is mitigated by the innovative half-way stop technique which can 

also reduce processing times for static macroblocks. 

The success demonstrated by the NTSS in adopting a centre-biased search 

functionality stimulated the emergence of a number of similar, block-based matching 

techniques in the years to follow. This is the framework in which algorithms 

described previously, such as the 4SS [82] and Block-Based Gradient Decent 

Search Algorithm (BBGDS) [127], are configured to exploit in order to increase the 

efficiency of motion estimation procedures whilst maintaining acceptable levels of 

fidelity.  



  

Transformations made by the 4SS and BBGDS algorithms during the implementation 

of block matching, motion estimation were variable in regards to both computational 

complexity and also levels of observable distortion. Distortion levels incurred by the 

BBGDS in the tested video sequences were comparable with that of the NTSS, 

whilst computations were reduced by a factor of six. The ramifications of such, are 

that the computational resources required to achieve motion vector assignment are 

considerably less and the time required in order process such is also attenuated. 

The ARPS algorithm is another pioneering block matching solution. The ARPS 

incorporates, what were at this period in time, two novel features; ZMP for stationary 

or quasi-stationary macroblocks and a predicted motion vector location within the 

primary search event. ZMP was shown to be effective for eliminating the superfluous 

computations that are incurred by previous algorithms for macroblocks with zero or 

minimal amounts of motion in the temporal domain of digital video sequences. The 

reasoning behind implementation of an additional, predicted motion vector location is 

that this ensures the path of search originates in an auspicious location and removes 

the likelihood of becoming trapped into a local minimum as is apparent in earlier 

techniques.  

Scenarios in which the ARPS is applied without the implementation of ZMP, the 

number of motion vector assessments is reduced by a factor of two in comparison to 

the DS. Instances in which ZMP is utilised are shown to make further decreases in 

necessary computations, however this is less remarkable for high resolution video 

sequences due to the increases in paths of movement which obviously result in 

greater dispersion of motion vector locations between current and reference frames. 

 



  

Table 3 shows the properties of the six well-studied block matching algorithms. The 

quality measures used to evaluate the performance of the block matching algorithm 

are shown in Table 4.  

 

Algorithm Properties 

Full Search (FS) [110], 

[121], [60] 

Simple full exhausted search algorithm used for 

benchmarking with the other techniques. 

Correlation window moves to each candidate 

position within the search area. 

Diamond Search (DS) [113] Utilises two search patterns 

New Three Steps Search  

(NTSS) [108] 

Provides improvement over the quality results of 

TSS. Widely accepted fast block matching 

algorithms.  

Used in earlier standards like MPEG 1 and H.261 

[96].  

Four Step Search (4SS) 

[82] 

Halfway-stop technique with searching steps of 2 to 

4.  

Reduces the computational requirement of full 

search.   

Simple and Efficient TSS 

(SESTSS) [70] 

Requires around half of the computation for TSS. 

keeping the same regularity and good 

performance of TSS. 

Adaptive Rood Pattern 

Search (ARPS) [98] 

Faster speed of 2-3 times than that DS. 

Maintains similar performance to the DS [138]. 

 

Table 3. Comparison of Six of the Standard Lossy Block Matching Algorithms. 

 

Quality Measures Calculation 

Mean Square of the 

Error 
𝑀𝑆𝐸 =  

1

𝑀 × 𝑁
∑ ∑(𝑓(𝑖, 𝑗) − 𝑓(𝑖, 𝑗))

2
𝑁

𝑗=1

𝑀

𝑖=1

 

M and N are the horizontal and vertical dimensions of the frame 



  

𝑓(𝑖, 𝑗) = pixels values at location (𝑖, 𝑗)  

𝑓(𝑖, 𝑗) = predicted values at location (𝑖, 𝑗) 

Processing time 𝑡𝑠 =  search time per macro block  

Peak Signal to Noise 

Ratio 
𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 (

(𝑓𝑚𝑎𝑥)2

𝑀𝑆𝐸
) 

Mean Absolute 

Differences 
𝑀𝐴𝐷 =  

1

𝑀 × 𝑁
∑ ∑⌈(𝑓(𝑖, 𝑗) − 𝑓(𝑖, 𝑗))⌉

𝑁

𝑗=1

𝑀

𝑖=1

 

Sum of Absolute 

difference  
𝑆𝐴𝐷 =  ∑ ∑⌈(𝑓(𝑖, 𝑗) − 𝑓(𝑖, 𝑗))⌉

𝑁

𝑗=1

𝑀

𝑖=1

 

 

Table 4: Quality measures to evaluate the performance of the block matching 

algorithms.  

 

To evaluate the performance of those standard block marching algorithms, Table 5 

shows the average number of search points for a Microblock of size 16x16 which 

indicates that significant improvements are shown in comparison to the FS algorithm.  

Table 6 shows that the performance of fast black matching algorithms in terms of 

PSNR is comparable to the FS algorithms.   

 

Sequence Format FS DS NTSS 4SS SESTSS ARPS 

Claire QCIF 184.6 11.63 15.09 14.77 16.13 5.191 

Akiyo QCIF 184.6 11.46 14.76 14.67 16.2 4.958 

Carphone QCIF 184.6 13.76 17.71 16.12 15.73 7.74 

News CIF 204.3 13.1 17.07 16.38 16.92 6.058 

Stefan CIF 204.3 17.69 22.56 19.05 16.11 9.641 

Coastguard CIF 204.3 19.08 27.26 19.91 16.52 9.474 

 

Table 5: Average number of search points per MB of size 16 ×16 
 

 

 

 

 



  

Sequence Format FS DS NTSS 4SS SESTSS ARPS 

Calire QCIF 38.94 38.94 38.94 38.92 38.89 38.94 

Akiyo QCIF 39.61 39.61 39.61 39.61 39.61 39.61 

Carphone QCIF 30.82 30.69 30.7 30.4 30.1 30.58 

News CIF 33.77 33.45 33.63 33.42 33.19 33.39 

Stefan CIF 22.16 21.49 21.81 21.51 21.04 21.82 

Coastguard CIF 26.19 25.98 26.05 26.02 25.6 26.05 

 
Table ‎6: The simulation results of mean PSNR for 50 frames 
 
 

7. CONCLUSION 

 

Our investigative study into fast block matching algorithms has provided insight into 

the competitiveness of such solutions with regard to their computational complexity, 

processing times and levels of observed distortion.  We have looked at various block 

matching algorithms and emphasise on their properties, this is different to other 

survey researches which looked at video compressions and briefly discussed block 

matching algorithms as illustrated in Table 6. In this survey, we have found that TSS 

was able to alleviate the resource intensity of FS operations, whilst providing 

satisfactory fidelity levels within encoded video sequences. Thus, the solution was 

widely adopted for motion estimation procedures [3], until the mid-nineties when 

centre-biased search pattern algorithms were introduced with the proposal of the 

NTSS. The NTSS demonstrated similar distortion levels to that as the TSS, however 

the additional (centralised) search window and half-way stop functionalities achieved 

transformations in regards to computational complexity and therefore times for 

processing motion vectors. Several homogeneous techniques such as 4SS 

emerged, providing further gains than that of the NTSS, albeit for contrasting 

operational benefits. 



  

A shift in search pattern design was demonstrated by the development of the DS 

algorithm, which also intended to exploit the assumption that the majority of true 

motion vectors reside in a centralised locality. The DS achieved this to a degree by 

providing desirable levels of fidelity, whilst minimising the number distortion 

calculations in comparison to that of the NTSS and 4SS. The reductions made in 

terms of computational complexity by the BBGDS are evidently more remarkable 

and suggest the hexagonal conformation of motion vector points are less effective 

than standard 3 x 3, square-based windows of search. 

 

Ref. Topics  Summary 

[140] Survey in perceptual video compression  The paper has defined three important 

stages in developing perceptual video 

compression algorithms  which are 

perceptual model definition, 

implementation of coding, and 

performance evaluation 

[141]  Various techniques of video compression 

was survived  

Indicated that four-step search algorithm 

for fast block motion estimation is 

widely used video compression 

techniques.  

[142]  A Review on Motion Estimation in Video 

Compression 

Concluded that there are still lots of 

improvement of video compression 

technique still to be searched 

[143] Classification of motion estimation 

algorithms used for video compression 

were discussed 

The paper focused on block matching 

algorithms indicating that they are 

widely used in MPEG1 / H.261 to 

MPEG4 / H.263 and H.264/AVC 

[144]  Looked at motion estimation techniques The paper looked at MPEG and how it 

make  use of the temporal redundancy 

inherent in sequences of full-motion 

video to achieve compression 

 

Table 7: Selected examples of survey on video compression algorithms  

 

 



  

Figure 27. Comparison between DS, ARPS and ARPS-ZMP [98] 

 

Figure 28. Average number of search location [98] 

 

ARPS experimental data provides empirical evidence showing that its observed 

distortion levels are comparable with that of the DS (demonstrated by Figure 27), but 

also demonstrates that approximately half the calculations are required in order to 



  

achieve such, as shown in Figure 28. Thus, from our investigation into a variety of 

fast block matching algorithms it can be determined that ARPS can provide 

competitive solution due to its computational simplicity and the desirable levels of 

fidelity in which are achieved.  

Ref.  Technique  Details 

Jha et al.  

[145] 

Wavelet Based  Hybrid video compression algorithm. 

Adaptive motion compensation scheme is used. 

Spatial orientation tree modified zero tree 

algorithms are also used 

Fabrizio 

et. al. 

[146]  

Particle  Swarm  

Optimization 

PSO approach used to achieve high accuracy in 

block matching.  

Cai et al. 

[147] 

Block  matching  

using DCT & DWT 

Develop block matching algorithm with DCT & 

DWT 

Aziz et al 

[149]  

Wavelet domain  Develop motion estimation and compensation in 

the wavelet domain. 

Pandian et 

al. [150] 

PCA PCA applied to the frames. It algorithm kept the 

bandwidth of frequency and improve the Edges of 

frames  

 

 

Table 8: Summary of video compression techniques 

In summary, modern world video compression technology is developed to be in one 

of the bloomed field of research, there are enormous techniques available for a wide 

range of applications as illustrated in Table 8.  
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