1,075 research outputs found

    SURE-LET for Orthonormal Wavelet-Domain Video Denoising

    Get PDF
    We propose an efficient orthonormal wavelet-domain video denoising algorithm based on an appropriate integration of motion compensation into an adapted version of our recently devised Stein's unbiased risk estimator-linear expansion of thresholds (SURE-LET) approach. To take full advantage of the strong spatio-temporal correlations of neighboring frames, a global motion compensation followed by a selective block-matching is first applied to adjacent frames, which increases their temporal correlations without distorting the interframe noise statistics. Then, a multiframe interscale wavelet thresholding is performed to denoise the current central frame. The simulations we made on standard grayscale video sequences for various noise levels demonstrate the efficiency of the proposed solution in reducing additive white Gaussian noise. Obtained at a lighter computational load, our results are even competitive with most state-of-the-art redundant wavelet-based techniques. By using a cycle-spinning strategy, our algorithm is in fact able to outperform these methods

    Super Resolution of Wavelet-Encoded Images and Videos

    Get PDF
    In this dissertation, we address the multiframe super resolution reconstruction problem for wavelet-encoded images and videos. The goal of multiframe super resolution is to obtain one or more high resolution images by fusing a sequence of degraded or aliased low resolution images of the same scene. Since the low resolution images may be unaligned, a registration step is required before super resolution reconstruction. Therefore, we first explore in-band (i.e. in the wavelet-domain) image registration; then, investigate super resolution. Our motivation for analyzing the image registration and super resolution problems in the wavelet domain is the growing trend in wavelet-encoded imaging, and wavelet-encoding for image/video compression. Due to drawbacks of widely used discrete cosine transform in image and video compression, a considerable amount of literature is devoted to wavelet-based methods. However, since wavelets are shift-variant, existing methods cannot utilize wavelet subbands efficiently. In order to overcome this drawback, we establish and explore the direct relationship between the subbands under a translational shift, for image registration and super resolution. We then employ our devised in-band methodology, in a motion compensated video compression framework, to demonstrate the effective usage of wavelet subbands. Super resolution can also be used as a post-processing step in video compression in order to decrease the size of the video files to be compressed, with downsampling added as a pre-processing step. Therefore, we present a video compression scheme that utilizes super resolution to reconstruct the high frequency information lost during downsampling. In addition, super resolution is a crucial post-processing step for satellite imagery, due to the fact that it is hard to update imaging devices after a satellite is launched. Thus, we also demonstrate the usage of our devised methods in enhancing resolution of pansharpened multispectral images

    SURE-LET for Orthonormal Wavelet-Domain Video Denoising

    Full text link

    Software for non-parametric image registration of 2-photon imaging data

    Get PDF
    Functional 2-photon microscopy is a key technology for imaging neuronal activity. The recorded image sequences, however, can contain non-rigid movement artifacts which requires high-accuracy movement correction. Variational optical flow (OF) estimation is a group of methods for motion analysis with established performance in many computer vision areas. However, it has yet to be adapted to the statistics of 2-photon neuroimaging data. In this work, we present the motion compensation method Flow-Registration that outperforms previous alignment tools and allows to align and reconstruct even low signal-to-noise ratio 2-photon imaging data and is able to compensate high-divergence displacements during local drug injections. The method is based on statistics of such data and integrates previous advances in variational OF estimation. Our method is available as an easy-to-use ImageJ/FIJI plugin as well as a MATLAB toolbox with modular, object oriented file IO, native multi-channel support and compatibility with existing 2-photon

    Rank M-type Filters for Image Denoising

    Get PDF

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world
    • …
    corecore