3 research outputs found

    Introductory Chapter: Challenges in Neuro-Memristive Circuit Design

    Get PDF

    Memristors

    Get PDF
    This Edited Volume Memristors - Circuits and Applications of Memristor Devices is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of Engineering. The book comprises single chapters authored by various researchers and edited by an expert active in the physical sciences, engineering, and technology research areas. All chapters are complete in itself but united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors on physical sciences, engineering, and technology,and open new possible research paths for further novel developments

    When Machine Learning Meets Information Theory: Some Practical Applications to Data Storage

    Get PDF
    Machine learning and information theory are closely inter-related areas. In this dissertation, we explore topics in their intersection with some practical applications to data storage. Firstly, we explore how machine learning techniques can be used to improve data reliability in non-volatile memories (NVMs). NVMs, such as flash memories, store large volumes of data. However, as devices scale down towards small feature sizes, they suffer from various kinds of noise and disturbances, thus significantly reducing their reliability. This dissertation explores machine learning techniques to design decoders that make use of natural redundancy (NR) in data for error correction. By NR, we mean redundancy inherent in data, which is not added artificially for error correction. This work studies two different schemes for NR-based error-correcting decoders. In the first scheme, the NR-based decoding algorithm is aware of the data representation scheme (e.g., compression, mapping of symbols to bits, meta-data, etc.), and uses that information for error correction. In the second scenario, the NR-decoder is oblivious of the representation scheme and uses deep neural networks (DNNs) to recognize the file type as well as perform soft decoding on it based on NR. In both cases, these NR-based decoders can be combined with traditional error correction codes (ECCs) to substantially improve their performance. Secondly, we use concepts from ECCs for designing robust DNNs in hardware. Non-volatile memory devices like memristors and phase-change memories are used to store the weights of hardware implemented DNNs. Errors and faults in these devices (e.g., random noise, stuck-at faults, cell-level drifting etc.) might degrade the performance of such DNNs in hardware. We use concepts from analog error-correcting codes to protect the weights of noisy neural networks and to design robust neural networks in hardware. To summarize, this dissertation explores two important directions in the intersection of information theory and machine learning. We explore how machine learning techniques can be useful in improving the performance of ECCs. Conversely, we show how information-theoretic concepts can be used to design robust neural networks in hardware
    corecore