141 research outputs found

    Neural Distributed Autoassociative Memories: A Survey

    Full text link
    Introduction. Neural network models of autoassociative, distributed memory allow storage and retrieval of many items (vectors) where the number of stored items can exceed the vector dimension (the number of neurons in the network). This opens the possibility of a sublinear time search (in the number of stored items) for approximate nearest neighbors among vectors of high dimension. The purpose of this paper is to review models of autoassociative, distributed memory that can be naturally implemented by neural networks (mainly with local learning rules and iterative dynamics based on information locally available to neurons). Scope. The survey is focused mainly on the networks of Hopfield, Willshaw and Potts, that have connections between pairs of neurons and operate on sparse binary vectors. We discuss not only autoassociative memory, but also the generalization properties of these networks. We also consider neural networks with higher-order connections and networks with a bipartite graph structure for non-binary data with linear constraints. Conclusions. In conclusion we discuss the relations to similarity search, advantages and drawbacks of these techniques, and topics for further research. An interesting and still not completely resolved question is whether neural autoassociative memories can search for approximate nearest neighbors faster than other index structures for similarity search, in particular for the case of very high dimensional vectors.Comment: 31 page

    Neural Autoassociative Memories for Binary Vectors: A Survey

    Full text link

    The Performance of Associative Memory Models with Biologically Inspired Connectivity

    Get PDF
    This thesis is concerned with one important question in artificial neural networks, that is, how biologically inspired connectivity of a network affects its associative memory performance. In recent years, research on the mammalian cerebral cortex, which has the main responsibility for the associative memory function in the brains, suggests that the connectivity of this cortical network is far from fully connected, which is commonly assumed in traditional associative memory models. It is found to be a sparse network with interesting connectivity characteristics such as the “small world network” characteristics, represented by short Mean Path Length, high Clustering Coefficient, and high Global and Local Efficiency. Most of the networks in this thesis are therefore sparsely connected. There is, however, no conclusive evidence of how these different connectivity characteristics affect the associative memory performance of a network. This thesis addresses this question using networks with different types of connectivity, which are inspired from biological evidences. The findings of this programme are unexpected and important. Results show that the performance of a non-spiking associative memory model is found to be predicted by its linear correlation with the Clustering Coefficient of the network, regardless of the detailed connectivity patterns. This is particularly important because the Clustering Coefficient is a static measure of one aspect of connectivity, whilst the associative memory performance reflects the result of a complex dynamic process. On the other hand, this research reveals that improvements in the performance of a network do not necessarily directly rely on an increase in the network’s wiring cost. Therefore it is possible to construct networks with high associative memory performance but relatively low wiring cost. Particularly, Gaussian distributed connectivity in a network is found to achieve the best performance with the lowest wiring cost, in all examined connectivity models. Our results from this programme also suggest that a modular network with an appropriate configuration of Gaussian distributed connectivity, both internal to each module and across modules, can perform nearly as well as the Gaussian distributed non-modular network. Finally, a comparison between non-spiking and spiking associative memory models suggests that in terms of associative memory performance, the implication of connectivity seems to transcend the details of the actual neural models, that is, whether they are spiking or non-spiking neurons

    Hardware Architectures and Implementations for Associative Memories : the Building Blocks of Hierarchically Distributed Memories

    Get PDF
    During the past several decades, the semiconductor industry has grown into a global industry with revenues around $300 billion. Intel no longer relies on only transistor scaling for higher CPU performance, but instead, focuses more on multiple cores on a single die. It has been projected that in 2016 most CMOS circuits will be manufactured with 22 nm process. The CMOS circuits will have a large number of defects. Especially when the transistor goes below sub-micron, the original deterministic circuits will start having probabilistic characteristics. Hence, it would be challenging to map traditional computational models onto probabilistic circuits, suggesting a need for fault-tolerant computational algorithms. Biologically inspired algorithms, or associative memories (AMs)—the building blocks of cortical hierarchically distributed memories (HDMs) discussed in this dissertation, exhibit a remarkable match to the nano-scale electronics, besides having great fault-tolerance ability. Research on the potential mapping of the HDM onto CMOL (hybrid CMOS/nanoelectronic circuits) nanogrids provides useful insight into the development of non-von Neumann neuromorphic architectures and semiconductor industry. In this dissertation, we investigated the implementations of AMs on different hardware platforms, including microprocessor based personal computer (PC), PC cluster, field programmable gate arrays (FPGA), CMOS, and CMOL nanogrids. We studied two types of neural associative memory models, with and without temporal information. In this research, we first decomposed the computational models into basic and common operations, such as matrix-vector inner-product and k-winners-take-all (k-WTA). We then analyzed the baseline performance/price ratio of implementing the AMs with a PC. We continued with a similar performance/price analysis of the implementations on more parallel hardware platforms, such as PC cluster and FPGA. However, the majority of the research emphasized on the implementations with all digital and mixed-signal full-custom CMOS and CMOL nanogrids. In this dissertation, we draw the conclusion that the mixed-signal CMOL nanogrids exhibit the best performance/price ratio over other hardware platforms. We also highlighted some of the trade-offs between dedicated and virtualized hardware circuits for the HDM models. A simple time-multiplexing scheme for the digital CMOS implementations can achieve comparable throughput as the mixed-signal CMOL nanogrids

    On the application of neural networks to symbol systems.

    Get PDF
    While for many years two alternative approaches to building intelligent systems, symbolic AI and neural networks, have each demonstrated specific advantages and also revealed specific weaknesses, in recent years a number of researchers have sought methods of combining the two into a unified methodology which embodies the benefits of each while attenuating the disadvantages. This work sets out to identify the key ideas from each discipline and combine them into an architecture which would be practically scalable for very large network applications. The architecture is based on a relational database structure and forms the environment for an investigation into the necessary properties of a symbol encoding which will permit the singlepresentation learning of patterns and associations, the development of categories and features leading to robust generalisation and the seamless integration of a range of memory persistencies from short to long term. It is argued that if, as proposed by many proponents of symbolic AI, the symbol encoding must be causally related to its syntactic meaning, then it must also be mutable as the network learns and grows, adapting to the growing complexity of the relationships in which it is instantiated. Furthermore, it is argued that in order to create an efficient and coherent memory structure, the symbolic encoding itself must have an underlying structure which is not accessible symbolically; this structure would provide the framework permitting structurally sensitive processes to act upon symbols without explicit reference to their content. Such a structure must dictate how new symbols are created during normal operation. The network implementation proposed is based on K-from-N codes, which are shown to possess a number of desirable qualities and are well matched to the requirements of the symbol encoding. Several networks are developed and analysed to exploit these codes, based around a recurrent version of the non-holographic associati ve memory of Willshaw, et al. The simplest network is shown to have properties similar to those of a Hopfield network, but the storage capacity is shown to be greater, though at a cost of lower signal to noise ratio. Subsequent network additions break each K-from-N pattern into L subsets, each using D-from-N coding, creating cyclic patterns of period L. This step increases the capacity still further but at a cost of lower signal to noise ratio. The use of the network in associating pairs of input patterns with any given output pattern, an architectural requirement, is verified. The use of complex synaptic junctions is investigated as a means to increase storage capacity, to address the stability-plasticity dilemma and to implement the hierarchical aspects of the symbol encoding defined in the architecture. A wide range of options is developed which allow a number of key global parameters to be traded-off. One scheme is analysed and simulated. A final section examines some of the elements that need to be added to our current understanding of neural network-based reasoning systems to make general purpose intelligent systems possible. It is argued that the sections of this work represent pieces of the whole in this regard and that their integration will provide a sound basis for making such systems a reality

    A Review of Findings from Neuroscience and Cognitive Psychology as Possible Inspiration for the Path to Artificial General Intelligence

    Full text link
    This review aims to contribute to the quest for artificial general intelligence by examining neuroscience and cognitive psychology methods for potential inspiration. Despite the impressive advancements achieved by deep learning models in various domains, they still have shortcomings in abstract reasoning and causal understanding. Such capabilities should be ultimately integrated into artificial intelligence systems in order to surpass data-driven limitations and support decision making in a way more similar to human intelligence. This work is a vertical review that attempts a wide-ranging exploration of brain function, spanning from lower-level biological neurons, spiking neural networks, and neuronal ensembles to higher-level concepts such as brain anatomy, vector symbolic architectures, cognitive and categorization models, and cognitive architectures. The hope is that these concepts may offer insights for solutions in artificial general intelligence.Comment: 143 pages, 49 figures, 244 reference

    Reinforcing connectionism: learning the statistical way

    Get PDF
    Connectionism's main contribution to cognitive science will prove to be the renewed impetus it has imparted to learning. Learning can be integrated into the existing theoretical foundations of the subject, and the combination, statistical computational theories, provide a framework within which many connectionist mathematical mechanisms naturally fit. Examples from supervised and reinforcement learning demonstrate this. Statistical computational theories already exist for certainn associative matrix memories. This work is extended, allowing real valued synapses and arbitrarily biased inputs. It shows that a covariance learning rule optimises the signal/noise ratio, a measure of the potential quality of the memory, and quantifies the performance penalty incurred by other rules. In particular two that have been suggested as occuring naturally are shown to be asymptotically optimal in the limit of sparse coding. The mathematical model is justified in comparison with other treatments whose results differ. Reinforcement comparison is a way of hastening the learning of reinforcement learning systems in statistical environments. Previous theoretical analysis has not distinguished between different comparison terms, even though empirically, a covariance rule has been shown to be better than just a constant one. The workings of reinforcement comparison are investigated by a second order analysis of the expected statistical performance of learning, and an alternative rule is proposed and empirically justified. The existing proof that temporal difference prediction learning converges in the mean is extended from a special case involving adjacent time steps to the general case involving arbitary ones. The interaction between the statistical mechanism of temporal difference and the linear representation is particularly stark. The performance of the method given a linearly dependent representation is also analysed
    corecore