11,528 research outputs found

    Freely Scalable Quantum Technologies using Cells of 5-to-50 Qubits with Very Lossy and Noisy Photonic Links

    Full text link
    Exquisite quantum control has now been achieved in small ion traps, in nitrogen-vacancy centres and in superconducting qubit clusters. We can regard such a system as a universal cell with diverse technological uses from communication to large-scale computing, provided that the cell is able to network with others and overcome any noise in the interlinks. Here we show that loss-tolerant entanglement purification makes quantum computing feasible with the noisy and lossy links that are realistic today: With a modestly complex cell design, and using a surface code protocol with a network noise threshold of 13.3%, we find that interlinks which attempt entanglement at a rate of 2MHz but suffer 98% photon loss can result in kilohertz computer clock speeds (i.e. rate of high fidelity stabilizer measurements). Improved links would dramatically increase the clock speed. Our simulations employed local gates of a fidelity already achieved in ion trap devices.Comment: corrected typos, additional references, additional figur

    Gaussian Quantum Information

    Get PDF
    The science of quantum information has arisen over the last two decades centered on the manipulation of individual quanta of information, known as quantum bits or qubits. Quantum computers, quantum cryptography and quantum teleportation are among the most celebrated ideas that have emerged from this new field. It was realized later on that using continuous-variable quantum information carriers, instead of qubits, constitutes an extremely powerful alternative approach to quantum information processing. This review focuses on continuous-variable quantum information processes that rely on any combination of Gaussian states, Gaussian operations, and Gaussian measurements. Interestingly, such a restriction to the Gaussian realm comes with various benefits, since on the theoretical side, simple analytical tools are available and, on the experimental side, optical components effecting Gaussian processes are readily available in the laboratory. Yet, Gaussian quantum information processing opens the way to a wide variety of tasks and applications, including quantum communication, quantum cryptography, quantum computation, quantum teleportation, and quantum state and channel discrimination. This review reports on the state of the art in this field, ranging from the basic theoretical tools and landmark experimental realizations to the most recent successful developments.Comment: 51 pages, 7 figures, submitted to Reviews of Modern Physic

    A population-based microbial oscillator

    Get PDF
    Genetic oscillators are a major theme of interest in the emerging field of synthetic biology. Until recently, most work has been carried out using intra-cellular oscillators, but this approach restricts the broader applicability of such systems. Motivated by a desire to develop large-scale, spatially-distributed cell-based computational systems, we present an initial design for a population-level oscillator which uses three different bacterial strains. Our system is based on the client-server model familiar to computer science, and uses quorum sensing for communication between nodes. We present the results of extensive in silico simulation tests, which confirm that our design is both feasible and robust.Comment: Submitte

    GASP : Geometric Association with Surface Patches

    Full text link
    A fundamental challenge to sensory processing tasks in perception and robotics is the problem of obtaining data associations across views. We present a robust solution for ascertaining potentially dense surface patch (superpixel) associations, requiring just range information. Our approach involves decomposition of a view into regularized surface patches. We represent them as sequences expressing geometry invariantly over their superpixel neighborhoods, as uniquely consistent partial orderings. We match these representations through an optimal sequence comparison metric based on the Damerau-Levenshtein distance - enabling robust association with quadratic complexity (in contrast to hitherto employed joint matching formulations which are NP-complete). The approach is able to perform under wide baselines, heavy rotations, partial overlaps, significant occlusions and sensor noise. The technique does not require any priors -- motion or otherwise, and does not make restrictive assumptions on scene structure and sensor movement. It does not require appearance -- is hence more widely applicable than appearance reliant methods, and invulnerable to related ambiguities such as textureless or aliased content. We present promising qualitative and quantitative results under diverse settings, along with comparatives with popular approaches based on range as well as RGB-D data.Comment: International Conference on 3D Vision, 201

    Characterization and implementation of robust quantum information processing

    Get PDF
    Quantum information processing has practical applications like exponential speed ups in optimisation problems or the simulation of complex quantum systems. However, well controlled quantum systems realised experimentally to process the information are sensitive to noise. The progress in leading experimental platforms like superconducting qubits or trapped ions has al-lowed the realisation of high-fidelity quantum processors known as Noisy Intermediate-Scale Quantum (NISQ) devices with roughly 50 qubits. NISQ devices are meant to be large enough to show, despite their imperfections, an advantage over classical processors in some computational tasks and pro-vide a rich playground to prove principles for future quantum algorithms and protocols. However, quantum processors need to be scaled up to imple-ment quantum algorithms that are relevant for practical applications. For this purpose, Quantum Error Correction (QEC) codes, which encode the information in multi-partite quantum states that are generally highly en-tangled, become crucial to eliminate the errors introduced by noise sources like qubit loss. Here we introduce a protocol to correct qubit loss, i.e., the impossibility to access the information encoded in a qubit, in the color code, a leading candidate for fault-tolerant quantum computation. We show that the achieved tolerance of 46(1)% to qubit loss is related to a novel percola-tion problem on three coupled lattices. Our work shows the high robustness of the color under our protocol and has practical importance for implemen-tations of fault-tolerant QEC. In our second line of research we propose and analyse local entanglement witnesses as efficient and platform-agnostic detectors of the entanglement between qubit subsystems, providing a de-scription of the entanglement structure in, in principle, arbitrarily large quantum systems. Since entanglement is a genuinely quantum property used as a resource in most quantum algorithms, local witnesses, which can be implemented with current technology, are of interest for current and future quantum processors
    corecore