17 research outputs found

    Noise Reduction for CFA Image Sensors Exploiting HVS Behaviour

    Get PDF
    This paper presents a spatial noise reduction technique designed to work on CFA (Color Filtering Array) data acquired by CCD/CMOS image sensors. The overall processing preserves image details using some heuristics related to the HVS (Human Visual System); estimates of local texture degree and noise levels are computed to regulate the filter smoothing capability. Experimental results confirm the effectiveness of the proposed technique. The method is also suitable for implementation in low power mobile devices with imaging capabilities such as camera phones and PDAs

    Algorithms for the enhancement of dynamic range and colour constancy of digital images & video

    Get PDF
    One of the main objectives in digital imaging is to mimic the capabilities of the human eye, and perhaps, go beyond in certain aspects. However, the human visual system is so versatile, complex, and only partially understood that no up-to-date imaging technology has been able to accurately reproduce the capabilities of the it. The extraordinary capabilities of the human eye have become a crucial shortcoming in digital imaging, since digital photography, video recording, and computer vision applications have continued to demand more realistic and accurate imaging reproduction and analytic capabilities. Over decades, researchers have tried to solve the colour constancy problem, as well as extending the dynamic range of digital imaging devices by proposing a number of algorithms and instrumentation approaches. Nevertheless, no unique solution has been identified; this is partially due to the wide range of computer vision applications that require colour constancy and high dynamic range imaging, and the complexity of the human visual system to achieve effective colour constancy and dynamic range capabilities. The aim of the research presented in this thesis is to enhance the overall image quality within an image signal processor of digital cameras by achieving colour constancy and extending dynamic range capabilities. This is achieved by developing a set of advanced image-processing algorithms that are robust to a number of practical challenges and feasible to be implemented within an image signal processor used in consumer electronics imaging devises. The experiments conducted in this research show that the proposed algorithms supersede state-of-the-art methods in the fields of dynamic range and colour constancy. Moreover, this unique set of image processing algorithms show that if they are used within an image signal processor, they enable digital camera devices to mimic the human visual system s dynamic range and colour constancy capabilities; the ultimate goal of any state-of-the-art technique, or commercial imaging device

    Foveated Non-Local Means Denoising of Color Images, with Cross-Channel Paradigm.

    Get PDF
    Foveation, a peculiarity of the HVS, is characterized by a sharp image having maximal acuity at the central part of the retina, the fovea. The acuity rapidly decreases towards the periphery of the visual field. Foveated imaging was recently investigated for the purpose of image denoising in the Foveated Non-local Means (FNLM) algorithm, and it was shown that for natural images the foveated self-similarity is a far more effective regularization prior than the conventional windowed self-similarity. Color images exhibit spectral redundancy across the R, G and B channels which can be exploited to reduce the effects of noise. We extend the FNLM algorithm to the removal of additive white Gaussian noise from color images. The proposed Color-mixed Foveated NL-means algorithm, denominated as C-FNLM, implements the concept of foveated self-similarity, along with a cross-channel paradigm to exploit the correlation between color channels. The patch similarity is measured through an updated foveated distance for color images. In C-FNLM, we derive the explicit construction of an unified operator which explores the spatially variant nature of color perception in the HVS. We develop a framework for designing the linear operator that simultaneously performs foveation and color mixing. Within this framework, we construct several parametrized families of the color-mixing operation. Our analysis shows that the color-mixed foveation is a far more effective regularity assumption than the windowing conventionally used in NL-means, especially for color image denoising where substantial improvement was observed in terms of contrast and sharpness. Moreover, the unified operator is introduced at a negligible cost in terms of the computational complexity

    Extracción y análisis de características para identificación, agrupamiento y modificación de la fuente de imágenes generadas por dispositivos móviles

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Ingeniería del Software e Inteligencia Artificial, leída el 02/10/2017.Nowadays, digital images play an important role in our society. The presence of mobile devices with integrated cameras is growing at an unrelenting pace, resulting in the majority of digital images coming from this kind of device. Technological development not only facilitates the generation of these images, but also the malicious manipulation of them. Therefore, it is of interest to have tools that allow the device that has generated a certain digital image to be identified. The digital image source can be identified through the features that the generating device permeates it with during the creation process. In recent years most research on techniques for identifying the source has focused solely on traditional cameras. The forensic analysis techniques of digital images generated by mobile devices are therefore of particular importance since they have specific characteristics which allow for better results, and forensic techniques for digital images generated by another kind of device are often not valid. This thesis provides various contributions in two of the main research lines of forensic analysis, the field of identification techniques and the counter-forensics or attacks on these techniques. In the field of digital image source acquisition identification techniques, both closed and open scenarios are addressed. In closed scenarios, the images whose acquisition source are to be determined belong to a group of devices known a priori. Meanwhile, an open scenario is one in which the images under analysis belong to a set of devices that is not known a priori by the fo rensic analyst. In this case, the objective is not t he concrete image acquisition source identification, but their classification into groups whose images all belong to the same mobile device. The image clustering t echniques are of particular interest in real situations since in many cases the forensic analyst does not know a priori which devices have generated certain images. Firstly, techniques for identifying the device type (computer, scanner or digital camera of the mobile device) or class (make and model) of the image acquisition source in mobile devices are proposed, which are two relevant branches of forensic analysis of mobile device images. An approach based on different types of image features and Support Vector Machine as a classifier is presented. Secondly, a technique for the ident ification in open scenarios that consists of grouping digital images of mobile devices according to the acquisition source is developed, that is to say, a class-grouping of all input images is performed. The proposal is based on the combination of hierarchical grouping and flat grouping using the Sensor Pattern Noise. Lastly, in the area of att acks on forensic t echniques, topics related to the robustness of the image source identificat ion forensic techniques are addressed. For this, two new algorithms based on the sensor noise and the wavelet transform are designed, one for the destruction of t he image identity and another for its fo rgery. Results obtained by the two algorithms were compared with other tools designed for the same purpose. It is worth mentioning that the solution presented in this work requires less amount and complexity of input data than the tools to which it was compared. Finally, these identification t echniques have been included in a tool for the forensic analysis of digital images of mobile devices called Theia. Among the different branches of forensic analysis, Theia focuses mainly on the trustworthy identification of make and model of the mobile camera that generated a given image. All proposed algorithms have been implemented and integrated in Theia thus strengthening its functionality.Actualmente las imágenes digitales desempeñan un papel importante en nuestra sociedad. La presencia de dispositivos móviles con cámaras fotográficas integradas crece a un ritmo imparable, provocando que la mayoría de las imágenes digitales procedan de este tipo de dispositivos. El desarrollo tecnológico no sólo facilita la generación de estas imágenes, sino también la manipulación malintencionada de éstas. Es de interés, por tanto, contar con herramientas que permitan identificar al dispositivo que ha generado una cierta imagen digital. La fuente de una imagen digital se puede identificar a través de los rasgos que el dispositivo que la genera impregna en ella durante su proceso de creación. La mayoría de las investigaciones realizadas en los últimos años sobre técnicas de identificación de la fuente se han enfocado únicamente en las cámaras tradicionales. Las técnicas de análisis forense de imágenes generadas por dispositivos móviles cobran, pues, especial importancia, ya que éstos presentan características específicas que permiten obtener mejores resultados, no siendo válidas muchas veces además las técnicas forenses para imágenes digitales generadas por otros tipos de dispositivos. La presente Tesis aporta diversas contribuciones en dos de las principales líneas del análisis forense: el campo de las t écnicas de identificación de la fuente de adquisición de imágenes digitales y las contramedidas o at aques a est as técnicas. En el primer campo se abordan tanto los escenarios cerrados como los abiertos. En el escenario denominado cerrado las imágenes cuya fuente de adquisición hay que determinar pertenecen a un grupo de dispositivos conocidos a priori. Por su parte, un escenario abierto es aquel en el que las imágenes pertenecen a un conjunto de dispositivos que no es conocido a priori por el analista forense. En este caso el obj etivo no es la identificación concreta de la fuente de adquisición de las imágenes, sino su clasificación en grupos cuyas imágenes pertenecen todas al mismo dispositivo móvil. Las técnicas de agrupamiento de imágenes son de gran interés en situaciones reales, ya que en muchos casos el analist a forense desconoce a priori cuáles son los dispositivos que generaron las imágenes. En primer lugar se presenta una técnica para la identificación en escenarios cerrados del tipo de dispositivo (computador, escáner o cámara digital de dispositivo móvil) o la marca y modelo de la fuente en dispositivos móviles, que son dos problemáticas relevantes del análisis forense de imágenes digitales. La propuesta muestra un enfoque basado en distintos tipos de características de la imagen y en una clasificación mediante máquinas de soporte vectorial. En segundo lugar se diseña una técnica para la identificación en escenarios abiertos que consiste en el agrupamiento de imágenes digitales de dispositivos móviles según la fuente de adquisición, es decir, se realiza un agrupamiento en clases de todas las imágenes de ent rada. La propuesta combina agrupamiento jerárquico y agrupamiento plano con el uso del patrón de ruido del sensor. Por último, en el área de los ataques a las técnicas fo renses se tratan temas relacionados con la robustez de las técnicas forenses de identificación de la fuente de adquisición de imágenes. Se especifican dos algoritmos basados en el ruido del sensor y en la transformada wavelet ; el primero destruye la identidad de una imagen y el segundo falsifica la misma. Los resultados obtenidos por estos dos algoritmos se comparan con otras herramientas diseñadas para el mismo fin, observándose que la solución aquí presentada requiere de menor cantidad y complejidad de datos de entrada. Finalmente, estas técnicas de identificación han sido incluidas en una herramienta para el análisis forense de imágenes digitales de dispositivos móviles llamada Theia. Entre las diferentes ramas del análisis forense, Theia se centra principalmente en la identificación confiable de la marca y el modelo de la cámara móvil que generó una imagen dada. Todos los algoritmos desarrollados han sido implementados e integrados en Theia, reforzando así su funcionalidad.Depto. de Ingeniería de Software e Inteligencia Artificial (ISIA)Fac. de InformáticaTRUEunpu

    Scene-Dependency of Spatial Image Quality Metrics

    Get PDF
    This thesis is concerned with the measurement of spatial imaging performance and the modelling of spatial image quality in digital capturing systems. Spatial imaging performance and image quality relate to the objective and subjective reproduction of luminance contrast signals by the system, respectively; they are critical to overall perceived image quality. The Modulation Transfer Function (MTF) and Noise Power Spectrum (NPS) describe the signal (contrast) transfer and noise characteristics of a system, respectively, with respect to spatial frequency. They are both, strictly speaking, only applicable to linear systems since they are founded upon linear system theory. Many contemporary capture systems use adaptive image signal processing, such as denoising and sharpening, to optimise output image quality. These non-linear processes change their behaviour according to characteristics of the input signal (i.e. the scene being captured). This behaviour renders system performance “scene-dependent” and difficult to measure accurately. The MTF and NPS are traditionally measured from test charts containing suitable predefined signals (e.g. edges, sinusoidal exposures, noise or uniform luminance patches). These signals trigger adaptive processes at uncharacteristic levels since they are unrepresentative of natural scene content. Thus, for systems using adaptive processes, the resultant MTFs and NPSs are not representative of performance “in the field” (i.e. capturing real scenes). Spatial image quality metrics for capturing systems aim to predict the relationship between MTF and NPS measurements and subjective ratings of image quality. They cascade both measures with contrast sensitivity functions that describe human visual sensitivity with respect to spatial frequency. The most recent metrics designed for adaptive systems use MTFs measured using the dead leaves test chart that is more representative of natural scene content than the abovementioned test charts. This marks a step toward modelling image quality with respect to real scene signals. This thesis presents novel scene-and-process-dependent MTFs (SPD-MTF) and NPSs (SPDNPS). They are measured from imaged pictorial scene (or dead leaves target) signals to account for system scene-dependency. Further, a number of spatial image quality metrics are revised to account for capture system and visual scene-dependency. Their MTF and NPS parameters were substituted for SPD-MTFs and SPD-NPSs. Likewise, their standard visual functions were substituted for contextual detection (cCSF) or discrimination (cVPF) functions. In addition, two novel spatial image quality metrics are presented (the log Noise Equivalent Quanta (NEQ) and Visual log NEQ) that implement SPD-MTFs and SPD-NPSs. The metrics, SPD-MTFs and SPD-NPSs were validated by analysing measurements from simulated image capture pipelines that applied either linear or adaptive image signal processing. The SPD-NPS measures displayed little evidence of measurement error, and the metrics performed most accurately when they used SPD-NPSs measured from images of scenes. The benefit of deriving SPD-MTFs from images of scenes was traded-off, however, against measurement bias. Most metrics performed most accurately with SPD-MTFs derived from dead leaves signals. Implementing the cCSF or cVPF did not increase metric accuracy. The log NEQ and Visual log NEQ metrics proposed in this thesis were highly competitive, outperforming metrics of the same genre. They were also more consistent than the IEEE P1858 Camera Phone Image Quality (CPIQ) metric when their input parameters were modified. The advantages and limitations of all performance measures and metrics were discussed, as well as their practical implementation and relevant applications

    NHXM Final Auxiliary Items Phase B designs

    Get PDF
    This document describes the architecture and design concept of Auxiliary Items foreseen in the NHXM Scientific Instrument. It has been prepared in the context of the “Accordo Attuativo della convenzione quadro ASI-INAF per il Supporto scientifico alla realizzazione della missione New Hard X-ray Mission: Fase B” with the contributions of the scientific collaboration involved in the project

    The Fifteenth Marcel Grossmann Meeting

    Get PDF
    The three volumes of the proceedings of MG15 give a broad view of all aspects of gravitational physics and astrophysics, from mathematical issues to recent observations and experiments. The scientific program of the meeting included 40 morning plenary talks over 6 days, 5 evening popular talks and nearly 100 parallel sessions on 71 topics spread over 4 afternoons. These proceedings are a representative sample of the very many oral and poster presentations made at the meeting.Part A contains plenary and review articles and the contributions from some parallel sessions, while Parts B and C consist of those from the remaining parallel sessions. The contents range from the mathematical foundations of classical and quantum gravitational theories including recent developments in string theory, to precision tests of general relativity including progress towards the detection of gravitational waves, and from supernova cosmology to relativistic astrophysics, including topics such as gamma ray bursts, black hole physics both in our galaxy and in active galactic nuclei in other galaxies, and neutron star, pulsar and white dwarf astrophysics. Parallel sessions touch on dark matter, neutrinos, X-ray sources, astrophysical black holes, neutron stars, white dwarfs, binary systems, radiative transfer, accretion disks, quasars, gamma ray bursts, supernovas, alternative gravitational theories, perturbations of collapsed objects, analog models, black hole thermodynamics, numerical relativity, gravitational lensing, large scale structure, observational cosmology, early universe models and cosmic microwave background anisotropies, inhomogeneous cosmology, inflation, global structure, singularities, chaos, Einstein-Maxwell systems, wormholes, exact solutions of Einstein's equations, gravitational waves, gravitational wave detectors and data analysis, precision gravitational measurements, quantum gravity and loop quantum gravity, quantum cosmology, strings and branes, self-gravitating systems, gamma ray astronomy, cosmic rays and the history of general relativity
    corecore