4,232 research outputs found

    Observer-based tuning of two-inertia servo-drive systems with integrated SAW torque transducers

    Get PDF
    This paper proposes controller design and tuning methodologies that facilitate the rejection of periodic load-side disturbances applied to a torsional mechanical system while simultaneously compensating for the observer’s inherent phase delay. This facilitates the use of lower-bandwidth practically realizable disturbance observers. The merits of implementing full- and reduced-order observers are investigated, with the latter being implemented with a new low-cost servo-machine-integrated highband width torque-sensing device based on surface acoustic wave (SAW) technology. Specifically, the authors’ previous work based on proportional–integral–derivative (PID) and resonance ratio control (RRC) controllers (IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1226–1237, Aug. 2006) is augmented with observer disturbance feedback. It is shown that higher-bandwidth disturbance observers are required to maximize disturbance attenuation over the low-frequency band (as well as the desired rejection frequency), thereby attenuating a wide range of possible frequencies. In such cases, therefore, it is shown that the RRC controller is the preferred solution since it can employ significantly higher observer bandwidth, when compared to PID counterparts, by virtue of reduced noise sensitivity. Furthermore, it is demonstrated that the prototype servo-machine-integrated 20-N · mSAWtorque transducer is not unduly affected by machine-generated electromagnetic noise and exhibits similar dynamic behavior as a conventional instrument inline torque transducer

    SAW torque transducers for disturbance rejection and tracking control of multi-inertia servo-drive systems

    Get PDF
    The paper proposes a resonance ratio control (RRC) technique for the coordinated motion control of multi-inertia mechanical systems, based on the measurement of shaft torque via a SAW-based torque sensor. Furthermore, a new controller structure, RRC plus disturbance feedback is proposed, which enables the controller to be designed to independently satisfy tracking and regulation performance. A tuning method for the RRC structure is given based on the ITAE index, normalized as a function of the mechanical parameters enabling a direct performance comparison between a basic proportional and integral (PI) controller. The use of a reduced-order state observer is presented to provide a dynamic estimate of the load-side disturbance torque for a multi-inertia mechanical system, with an appraisal of the composite closed-loop dynamics. It is shown that the integrated formulation of the tuning criteria enables lower bandwidth observers to be implemented with a corresponding reduction in noise and computational load. The control structures are experimentally validated via a purpose designed test facility and demonstrate significant improvement in dynamic tracking performance, whilst additionally rejecting periodic load side disturbances, a feature previously unrealisable except by other, high-gain control schemes that impose small stability margins

    Improved performance of motor-drive systems by SAW shaft torque feedback

    Get PDF
    The paper describes the application of a non-contact, high bandwidth, low cost, SAW-based torque measuring system for improving the dynamic performance of industrial process motor-drive systems. Background to the SAW technology and its motor integration is discussed and a resonance ratio control (RRC) technique for the coordinated motion control of multi-inertia mechanical systems, based on the measurement of shaft torque via a SAW-based torque sensor is proposed. Furthermore, a new controller structure, RRC plus disturbance feedback is proposed, which enables the controller to be designed to independently satisfy tracking and regulation performance. A tuning method for the RRC structure is given based on the ITAE index, normalized as a function of the mechanical parameters enabling a direct performance comparison between a basic proportional and integral (PI) controller. The use of a reduced-order state observer is presented to provide a dynamic estimate of the load-side disturbance torque for a multi-inertia mechanical system, with an appraisal of the composite closed-loop dynamics. The control structures are experimentally validated and demonstrate significant improvement in dynamic tracking performance, whilst additionally rejecting periodic load side disturbances, a feature previously unrealisable except by other, high-gain control schemes that impose small stability margins

    Propulsion systems noise technology

    Get PDF
    Turbofan engine noise research relevant to conventional aircraft is discussed. In the area of fan noise, static to flight noise differences were discussed and data were presented for two different ways of simulating flight behavior. Experimental results from a swept rotor fan design are presented which show that this concept has potential for reducing the multiple-pure-tone or buzz-saw noise related to the shock waves on a fan operating at supersonic tip speeds. Acoustic suppressor research objectives centered around the effect of the wave system generated by the fan stage that is the input to the treatment. A simplifying and unifying parameter, mode cutoff ratio was described. Results are presented which show that suppressor performance can be improved if the input wave is more precisely described. In jet noise, calculated results showing the potential noise reduction from the use of internal mixer nozzles rather than separate flow nozzles are presented

    Disturbance Observer-based Robust Control and Its Applications: 35th Anniversary Overview

    Full text link
    Disturbance Observer has been one of the most widely used robust control tools since it was proposed in 1983. This paper introduces the origins of Disturbance Observer and presents a survey of the major results on Disturbance Observer-based robust control in the last thirty-five years. Furthermore, it explains the analysis and synthesis techniques of Disturbance Observer-based robust control for linear and nonlinear systems by using a unified framework. In the last section, this paper presents concluding remarks on Disturbance Observer-based robust control and its engineering applications.Comment: 12 pages, 4 figure

    Aircraft turbofan noise

    Get PDF
    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed

    Genetic algorithms based adaptive active vibration control of a flexible plate structure

    Get PDF
    This paper investigates the development of an active vibration control (AVC) mechanism for a flexible plate structure using a genetic modelling strategy where the utilisation of genetic algorithms (GAs) for dynamic modelling of the system is considered. The global search technique of GAs is used to obtain a dynamic model of a flexible plate structure based on one-step-ahead (OSA) prediction and verified within the AVC system. The GA based AVC algorithm thus developed is implemented within a flexible plate simulation environment and its performance in the reduction of deflection at the centre of the plate is assessed. The validation of the algorithm is presented in both the time and frequency domains. An assessment of the results thus obtained is given in comparison to AVC system using conventional recursive least squares (RLS) method. Investigations reveal that the developed GA based AVC system performs better in the suppression of vibration of a flexible plate structure compared to an RLS based AVC system

    Yet Another Tutorial of Disturbance Observer: Robust Stabilization and Recovery of Nominal Performance

    Full text link
    This paper presents a tutorial-style review on the recent results about the disturbance observer (DOB) in view of robust stabilization and recovery of the nominal performance. The analysis is based on the case when the bandwidth of Q-filter is large, and it is explained in a pedagogical manner that, even in the presence of plant uncertainties and disturbances, the behavior of real uncertain plant can be made almost similar to that of disturbance-free nominal system both in the transient and in the steady-state. The conventional DOB is interpreted in a new perspective, and its restrictions and extensions are discussed
    • 

    corecore