
Abstract— The paper describes the application of a 
non-contact, high bandwidth, low cost, SAW-based torque 
measuring system for improving the dynamic performance 
of industrial process motor-drive systems.  Background to 
the SAW technology and its motor integration is discussed 
and a resonance ratio control (RRC) technique for the 
coordinated motion control of multi-inertia mechanical 
systems, based on the measurement of shaft torque via a 
SAW-based torque sensor is proposed.  Furthermore, a 
new controller structure, RRC plus disturbance feedback 
is proposed, which enables the controller to be designed to 
independently satisfy tracking and regulation 
performance. A tuning method for the RRC structure is 
given based on the ITAE index, normalized as a function of 
the mechanical parameters enabling a direct performance 
comparison between a basic proportional and integral (PI) 
controller. The use of a reduced-order state observer is 
presented to provide a dynamic estimate of the load-side 
disturbance torque for a multi-inertia mechanical system, 
with an appraisal of the composite closed-loop dynamics. 
The control structures are experimentally validated and 
demonstrate significant improvement in dynamic tracking 
performance, whilst additionally rejecting periodic load 
side disturbances, a feature previously unrealisable except 
by other, high-gain control schemes that impose small 
stability margins. 

I. INTRODUCTION 
With servo drive systems continually improving in 

performance capability, improved control of the 
electromechanical system dynamics is becoming an 
increasingly common industrial requirement.  However, 
impulsive transient demands from such systems can 
excite mechanical torsional resonances in the associated 
drive-train, ultimately leading to controller instability, 
as illustrated in Fig. 1 showing tortional oscillation in a 
rotating shaft after the application of a 7Nm step load 
change, as measured via an inline instrument SAW 
transducer.  

Practical mechanical drive systems can be complex, 
incorporating several non-stiff interconnecting shafts 
and elastic couplings, the dominant fundamental 
resonant frequency of which is typically <300Hz, which 
often overlaps with the closed-loop dynamic bandwidth 
imposed by the control scheme.  The higher resonant 
modes often remain relatively unexcited, allowing a 
large proportion of typical industrial drive systems to be 
accurately modelled using a two-inertia approximation.  

Until recently, difficulties in acquiring reliable, low-
noise, low-cost, shaft torque transducers that are non-
invasive to the mechanical drive system, have precluded 
the use of direct torque feedback in all but a minority of 
specialised closed-loop servo-drive systems.  Often, 
commonly employed torque transducers viz. strain 
gauge, optical and inductive devices, are too 
mechanically compliant when incorporated in a drive 
system, thereby degrading stability margins and 
reducing closed-loop bandwidth.  Moreover, the 
additional cost associated with their integration is 
prohibitive.   
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Figure 1.  Measured shaft tortional oscillation immediately after 
the application of a 7Nm step load change. 

Here then, an investigation in applying a new, low-
cost, non-contact torque measurement device, based on 
surface acoustic wave (SAW) technology [1], is 
reported for use in high performance brushless machine-
based servo applications, as illustrated in Fig. 2 showing 
a concept schematic of an servo-motor and integrated 
SAW sensor (a), and a commercial, brushless permanent 
magnet motor with integrated SAW shaft-torque 
feedback sensor and monitoring electronics (b). 

It will be shown that direct measurement of shaft 
torque, coupled with a resonance ratio control strategy 
[2-4], can significantly enhance servo-drive system 
dynamics.  Additionally, the use of observers is 
presented to directly incorporate shaft-torque feedback 
to provide load-side torque disturbance rejection, and 
the ability to design controllers for independently 
satisfying closed-loop tracking, and regulation 
performance.  Conventionally the closed-loop dynamics 
induced by the presence of a state observer is often 
ignored since the observer is usually designed to be 

IMPROVED PERFORMANCE OF MOTOR-DRIVE SYSTEMS 
BY SAW SHAFT TORQUE FEEDBACK 

 
N. Schofield1, T. O’Sullivan2, C. M. Bingham2 and A. Lonsdale3 

 
1Department of Electrical Engineering and Electronics, UMIST, Sackville Street, 

Manchester, M60 1QD, UK, Tel.: +44 (0)161 200 4793  Fax: +44 (0)161 200 4774 
2Department of Electronic and Electrical Engineering, Univeristy of Sheffield, Sheffield, S1 3JD, UK 

3Sensor Technology Limited, Balscott Mill, Balscote, Banbury, Oxon, OX15 6JB, UK 
e-mail: nigel.schofield@umist.ac.uk 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/54408?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


much faster than the system dynamics. However in 
practice, a fast observer may lead to the undesirable 
amplification of high frequency noise particularly if the 
feedback sensors are noisy (such a the speed output 
from a quantized encoder). This paper therefore, 
provides a tuning methodology that considers the 
additional dynamics induced by the observer thus 
enabling a further reduction in observer speed. 
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(a)  Motor-sensor integration concept 

Monitoring electronics

Servo-motor

SAW Sensor
(b)  Servo-motor system 

Figure 2.  Servo-motor, integrated SAW shaft-torque feedback 
sensor and monitoring electronics. 

Moreover, since the SAW torque transducer exhibits 
a high sensitivity and bandwidth, and is largely 
unaffected by electromagnetic noise, it can be directly 
integrated into an electrical machine assembly without 
affecting the mechanical stiffness of the system. 

II. SAW TORQUE SENSORS 
Torque sensors play an important role in automatic 

controllers for a great variety of complex mechanical 
systems, from electric drills to submarines.  Currently, 
one of the major consumers of torque sensors is the 
automotive industry [5].  Sensors are needed to measure 
torque on driveshafts and crankshafts of engines in 
order to optimise transmission and engine operation and 
improve vehicle stability.  Torque sensors are also 
required for electrical power assisted steering systems 
(EPAS) that will be installed even in small cars.  The 
benefits of automotive developments, i.e. high volume 
and low cost, has opened up the motor control market 

for SAW-based sensing systems, in-particular for motor 
torque feedback where significant system performance 
enhancements can be realised by the feedback of 
dynamic shaft torque information, as will be discussed 
latter. 

Most conventional torque sensors employ a weak link 
(e.g. a torsion bar) to translate torque into a relatively 
large mechanical movement that can be measured by a 
potentiometer, capacitive, inductive, magnetic or optical 
angular position sensor.  Alternatively a strain produced 
by the torque on the surface of the torsion bar can be 
measured using piezoresistive or piezoelectric strain 
gauges.  In any case, because of the big difference 
between nominal measured torque (10 to 20 Nm for 
EPAS) and specified overload capability (10 to 30 times 
the nominal torque) a mechanical stop that complicates 
a mechanical design is usually required.  Besides, many 
of the above mentioned sensors need a clock-spring 
wire connecting the shaft and the stationary 
interrogation unit. This also adds to complexity and cost 
of the sensor. 

A search for a wireless device sensitive enough to 
omit the weak link and thus not requiring the 
mechanical stop has led to two most promising cost-
effective candidates for high-volume applications. The 
first one is a magneto-elastic sensor the long-term 
stability of which still needs to be proven. The second 
one is a SAW sensor that has already demonstrated its 
high potential in wireless measurements of temperature, 
pressure, torque, force, humidity etc. [6] including those 
in automotive industry [5,7].  The sensitivity of SAW 
devices to strain is sufficient to perform the 
measurements on a shaft that is not weakened [8]. It 
greatly simplifies mechanical design and reduces the 
cost of the whole system.  Besides, SAW sensors can 
withstand heat, dirt and mechanical vibration that 
represent problems for other types of sensor, (e.g. 
optical ones).  The fact that SAW sensors work at radio 
frequencies makes it easier to arrange a non-contact 
coupling between the rotating shaft and the stationary 
interrogation unit.  A careful design of the latter allows 
reduction of the influence of electromagnetic 
interference to an acceptable level. 

Application of SAW devices to non-contact torque 
measurement was first suggested and patented in [9]. 
Since then the authors of the patent have fabricated and 
supplied torque sensors based on SAW resonators to a 
number of industrial customers [1,10].  Non-contact 
torque sensors based on SAW reflective delay lines 
were also introduced in [11,12]. 

A typical SAW torque transducer contains two SAW 
devices mounted on a shaft of known stiffness, as 
illustrated in Fig. 3.  Each device consists of an array of 
thin metal electrodes deposited at fractional wavelengths 
apart on a polished piezoelectric substrate.  An RF 
signal applied to the electrodes excites a surface 



acoustic wave over the device that resonates at a 
frequency determined by the distance between the inter-
digital metal electrodes.  Torsion applied to the 
transducer creates two principle components of strain, 
Sxx and Syy, Fig.3(a), subjecting one SAW device to 
tension and the other to compression.  The strain varies 
the resonant frequency of the SAW devices, the outputs 
of which are connected to an RF coupler.  After mixing 
and signal processing, the sum and difference 
frequencies provide shaft torque, temperature and axial 
stress compensation.  The nominal SAW resonant 
frequency is typically 200MHz, with a 6200kHz 
difference signal equating to maximum strain.  Since the 
SAW sensors operate at radio frequencies, a simple non-
contact coupling between the rotational devices and 
stationary processing unit is readily achieved and, by 
careful design, the influence of electromagnetic 
interference can be reduced to acceptable levels.  The 
temperature coefficient of the SAW devices is < 0.01% 
per °C for -10° to 50°C and < 0.15% per °C for 40° to 
125°C.  The bandwidth of the SAW transducer and 
signal processing unit is >2kHz.  The mechanical 
overload capability is 300% full-scale deflection. 

 

SAW devices

To RF couplers

(a)  Torque sensing elements based on SAW resonators 

SAW devices

(b)  SAW resonators on test shaft assembly 

Figure 3.  SAW-based torque transducer structure 

 

III. MOTOR-DRIVE APPLICATION – A 
TWO-INERTIA MECHANICAL SYSTEM 

Fig. 4(a) shows the schematic of a mechanical system 
containing two lumped inertias Jm and Jd representing 
the motor and load, respectively.  The inertias are 
coupled via a shaft of finite stiffness Kmd, which is 
subject to torsional torque tmd, and excited by a 
combination of electromagnetic torque te, and load 

torque perturbations td.  The motor velocity is 
designated ωm (rad/s) and load velocity ωd (rad/s). Since 
the damping losses are generally low, they are neglected 
without significantly affecting the accuracy of the 
forgoing analysis [2-4, 13-16].   

Fig. 4(b) shows a dynamic model of the two-inertia 
mechanical servo-drive system.  The transfer functions 
from electromagnetic torque to motor speed, and 
electromagnetic torque to load speed, are described by: 
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where ωa is the anti-resonant frequency, ωn the 
resonant frequency, and R the load-motor inertia ratio: 
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(a) Mechanical schematic 

 
 
 
 
 
 
 
 

(b) Control block diagram 

Figure 4.   Two-inertia servo-drive system 

 

IV. PI AND RRC CONTROL STRUCTURES 

A. Tracking dynamic performance 
A classical PI-type control structure is illustrated in 

Fig. 5(a).  This control structure can be extended by 
augmenting a feedback signal proportional to shaft 
torque as illustrated in Fig. 5(b), the feedback transfer 
gain being Ks.  Applying a feedback signal proportional 
to torsion in this manner is commonly referred to as 
Resonance Ratio Control (RRC) [2-4].  The resulting 
closed-loop transfer functions from reference input to 
load speed (tracking dynamics) for both PI and RRC 
structures are given in (6), with the equivalent inertia 
ratio, R̃ given in (7) for completeness. 

It is noted that R̃→ R as Ks→ 0. Tracking 
performance of the two control structures is evaluated 
using the ‘integral of time multiplied by absolute error’ 
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(ITAE) performance index for a step input, to penalise 
overshoot and settling time for a specified rise-time or 
equivalent –3dB bandwidth [17]. 

The step tracking dynamics of the PI-type scheme of 
Fig. 5(a) can be completely defined by the location of its 
closed-loop poles. Equating the coefficients of the 
characteristic equation (the denominator of (6) when Ks 
= 0), with the coefficients of the 4th-order ITAE 
polynomial (8), the system can be tuned for optimum 
performance, where ωx is the equivalent –3dB 
bandwidth. 

 
 
 
 
 
 

(a) PI-type controller 
 
 
 
 
 
 

(b) RRC controller 

Figure 5. Control structures for a two-inertia mechanical model of a 
servo-drive system 
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TABLE I   RRC CONTROLLER GAINS FOR OPTIMAL 
LOAD SIDE TRACKING PERFORMANCE 
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Moreover, equating terms gives the optimum -3dB 

tracking bandwidth as ωx = 0.88ωa, when the motor and 
load inertias are matched, i.e. when R = 1.  For many 
servo-drive system applications, where a gear reduction 
stage is employed, the reflected load inertia is reduced 
by N2, where N is the gear reduction ratio.  By analysing 
the closed-loop pole restrictions, the load side tracking 
performance of the PI controller and two-inertia system 
shows an increasingly underdamped response as R 
reduces from the optimal value, or as ωx becomes 
greater than ωa.  However, by using the RRC structure 
when R ≠ 1, R can be virtually adjusted to R̃ by the 

appropriate selection of Ks, thereby theoretically 
providing optimum performance for any R. Table I 
gives the optimal gains for the RRC controller. 

B. Regulation dynamic performance 
Equation (9) provides the closed-loop transfer 

function from disturbance torque to load speed 
(regulation dynamics), for both the PI (Ks = 0) and RRC 
controllers, where the inertia ratio R̃ for the RRC 
controller is expressed in (7). 

From (9), it can be seen that the location of the 
closed-loop zeros cannot be assigned independently of 
the closed-loop poles, and, consequently, the closed-
loop regulation and tracking dynamics cannot be 
independently tuned.   
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Here, an extended RRC control structure is 
introduced, as illustrated in Fig. 6(a), which includes an 
additional feedback signal proportional to the 
disturbance torque Kpd and its derivative Kdd.  Equation 
(10) now gives the modified closed-loop transfer 
function describing the regulation dynamics, from 
where it can be seen that the closed-loop poles and zeros 
can be independently assigned.  Assigning the closed-
loop zeros to the imaginary axis (i.e. no damping of the 
complex conjugate zeros) for a user-defined frequency, 
ωrj, will reject a periodic load-side disturbance of the 
same frequency.  The required disturbance torque gains 
are given in (11):  
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 Periodic load-side disturbances are a common feature 
of industrial automated production systems, for instance, 
where objects are dropped at equal time intervals onto a 
conveyer belt. For such systems, disturbance torque 
cannot be sensed directly and the extended control 
scheme shown in Fig. 6(a) therefore requires an 
observer to provide a dynamic estimate. Assuming the 
disturbance torque is a state-variable, and its derivative 
is zero, a state-variable representation of the system can 
be obtained that includes the disturbance torque as a 
state (12).  The measured output states can be used to 
reduce the complexity of the observer.  In this case both 
ωm and tmd are sensed, thereby reducing the required 
order of the observer to two, and therefore taking the 
dynamic structure shown in Fig. 6(b). 

Letting ψ = [q1 q2]t be an internal state vector of the 
observer, and G = [g1 g2]t be the observer gain vector, 
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(13) is obtained from Gopinath’s reduced order theorem 
[9], where X1 and X2 represent the measured and 
estimated state variables, respectively.  The transfer 
function describing the relationship between the 
observed and actual load-torque can be obtained from 
(12) and is given by (14) where the denominator 
equation describes the observer pole locations. The 
observer poles are therefore assigned according to the 
coefficients of the 2nd order ITAE polynomial given in 
(15), where 2ςop=1.414 and ωob is the equivalent –3dB 
observer bandwidth. The observer gains G1 and G2 are 
given by (16) and (17) respectively. 

 

(a) RRC controller plus disturbance feedback 

 

(b) Reduced order observer 

Figure 6. Control structures for a two-inertia mechanical model of a 
servo drive system 

U
B
B

X
X

AA
AA

t
J

t

t

JJ

KK
J

t

t
dt
d

e

m

d

d

md

m

dd

mdmd

m

d

d

md

m









+








•








=























+



















•























−

−

=



















2

1

2

1

2221

1211       

      

0
0
0

1

0000

1010

00

0010

ω

ω

ω

ω  
(12) 

 
 

 

 

(13) 

 (14) 

 

22 2 obobob ss ωως ++

 

(15) 

 
(16) 

 
2

2

2
a

obG
ω
ω

=  (17) 

If the observer pole locations are assigned to be much 
greater than the closed loop zeros in (10), it can be 
assumed that the observer dynamics do not unduly 
influence the performance of the closed-loop regulation 
dynamics.  However, in practice the observer poles 
cannot be placed significantly higher since there exists a 

trade-off between the bandwidth of the observer and 
filtering of high frequency noise generated by the 
sensing devices and/or the power amplifier. Moreover, 
in the case of the proposed control scheme, where the 
derivative of the observed load torque is required, the 
attenuation of high frequency noise is of greater 
importance if the control scheme is to be practically 
realisable.  

Consider Fig. 7, which is identical to the control 
structure of Fig. 6(a) except the observer dynamics are 
included in the disturbance feedback. Equation (18) now 
gives the modified closed-loop transfer function 
describing the regulation dynamics, where it can be seen 
that the numerator now contains two pairs of complex 
zeros that can be independently assigned by the 
selection of the observer gains G1 and G2, and the 
disturbance feedback gains Kpd and Kdd.  Thus, by proper 
adjustment of these gains, the closed-loop system 
dynamics can be tuned to reject a specific user defined 
frequency whilst eliminating the effects of the observer 
dynamics on the rejection performance, i.e. a relatively 
slow disturbance observer can be implemented, 
attenuating high frequency noise, without sacrificing the 
control objective. 

 

Figure 7.  RRC controller plus observer disturbance feedback 
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Equation (19) shows a general expression describing 
two pairs of complex zeros, where the first root 
represents the user defined rejection frequency, ωrj 
(damping equals zero), and the other root defines the 
arbitrary location of the second pair of complex zeros. 
By comparing the numerator of (18) with (19), 
expressions can be derived that enable ωrj and the 
observer pole locations to be independently assigned as 
follows: 
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TABLE II  MECHANICAL PARAMETERS 

R 0.5 Jd 0.00145 kgm2 

Jm 0.0029 kgm2 Kmd 110 Nm/rad 
ωa 275.43 rad/s  

 

 

(a) Mechanical system overview 
 

(b) Functions of components 

Figure 8. Experimental facility, components and control system 

V. PERFORMANCE EVALUATION 
Dynamic simulation models of the proposed control 

structures have been implemented in Matlab/Simulink 
and subsequently validated on an experimental test-
facility, as illustrated in Fig. 8.  The test facility 
comprises of 2×2.2kW brushless permanent magnet 
(PM) servo-machines mounted in a back-to-back 
configuration to provide a servo-drive and dynamic 
load, as described by the mechanical parameters given 
in Table II.  An integrated 20Nm, SAW-based torque 
transducer forms the interconnecting shaft between the 

two servo-machines, Fig. 8(a), and is used to realize the 
RRC and disturbance rejection control structures. The 
control algorithms, sensor inputs and control outputs are 
realized via a DSP-based, d-SPACE system as 
illustrated schematically in Fig. 8(b).   
A. Tracking performance   

The RRC controller gains Kp , Ki and Ks are tuned 
optimally according to Table I. Fig. 9 shows simulated 
results from the system in response to a step change in 
reference velocity of 10 rad/s.  Fig. 9(a) shows the 
dynamics resulting from the PI control structure, whilst 
Fig. 9(b) shows the RRC-induced dynamics.  It can be 
seen that since R < 1 (R = 0.5), the PI controller imparts 
an underdamped response, particularly at the load side, 
whilst the RRC controller ‘virtually’ increases R 
resulting in optimal load-side tracking performance. 

For comparison, experimental tracking results are 
presented in Fig. 10, illustrating the validity of the 
controller scheme.  Note, the extra flexibility afforded 
by RRC is shown to be sufficient to simultaneously 
impart optimal closed-loop load-side performance whilst 
also allowing the independent or virtual selection of 
inertia ratio.  

 

(a) PI controller with ωx = 0.88ωa 
 

(b) RRC controller with ωx = 0.88ωa 

Figure 6.   Simulated tracking step responses for the two-inertia 
servo-drive system 

B. Regulation performance 
With identical control gains as for the tracking 

performance evaluation, the regulation performance is 
evaluated via the closed-loop systems ability to reject a 
sinusoidal load-side disturbance. By way of example, 
the load-side disturbance is a 4Nm, 62.8 rad/s (10Hz) 
sine wave generated by the load servo-machine of Fig. 
8(a).  Two case studies are considered: 

Case (i) – where the disturbance torque feedback is 
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assumed ideal and the effects of the observer are of 
sufficient bandwidth that they can be neglected. The 
disturbance feedback gains Kpd and Kdd, are initially 
chosen according to (11) and (12) where ωrj = 62.8 
rad/s; and 

Case (ii) – here a non-ideal disturbance observer is 
assumed.  The disturbance gains are now chosen 
according to (20-23) where ωrj = 62.8 rad/, i.e. the 
disturbance torque feedback is assumed non-ideal and 
the dynamics of the disturbance observer are included in 
the tuning procedure. 

It was found that when disturbance feedback was 
implemented, a disturbance observer with a bandwidth 
ωob > 50Hz (5ωrj in this case) caused controller 
instability due to the noise injected into the closed-loop 
system. Consequently, to provide valid experimental 
results, the observer bandwidth was limited to ωob ≤ 
3ωrj. 

   

(a) PI controller with ωx = 0.88ωa 
 

(b) RRC controller with ωx = 0.88ωa 

Figure 10.   Measured tracking step responses for the experimental 
two-inertia servo-drive system 

Figure 11 illustrates the regulation response when no 
disturbance feedback is implemented within the 
controller structure showing both the load-speed and the 
shaft-torque. Fig. 12(a) illustrates the responses with 
disturbance feedback when the feedback gains are 
chosen assuming an ideal disturbance observer, case (i) 
and Fig. 12(b) assuming a non-ideal disturbance 
observer, case (ii), where for each case, ωob = 3ωrj .  

To illustrate the effects of a further reduction in 
observer speed, the experimental results in Fig. 12 are 
repeated for ωob = 1.5ωrj , i.e. the observer bandwidth is 
halved, the results being  presented in Figs. 13.  It can 
be seen by comparison of Figs. 12(a) and 13(a) that 
reducing the speed of the observer for case (i) 

significantly deteriorates the control objective i.e. the 
attenuation of the load-torque perturbations is further 
reduced and comparable with the results obtained with 
no disturbance feedback (Fig. 11). 

 
 

Figure 11.  Experimental regulation responses with no disturbance 
feedback 

 

Figure 12.  Experimental regulation responses with disturbance 
feedback;   ωob = 3ωrj 

 

Figure 13.  Experimental regulation responses with disturbance 
feedback;   ωob = 1.5ωrj 

Comparing Figs. 12(b) and 13(b) for case (ii), it can 
be seen that the load perturbations are now rejected 
from the load-speed and the rejection performance is not 

Sp
ee

d 
[6

.3
 ra

d/
s/

di
v]

 

Time [20ms/div] 

Sp
ee

d 
[6

.3
 ra

d/
s/

di
v]

 

Time [20ms/div] 

Sp
ee

d 
[3

.1
5 

ra
d/

s/
di

v]
 

To
rq

ue
 [2

 N
m

/d
iv

] 

Time [50ms/div] 

Shaft torque Load speed 

Time [50ms/div] 

Sp
ee

d 
[3

.1
5 

ra
d/

s/
di

v]
 

To
rq

ue
 [2

 N
m

/d
iv

] 

(a)  Case (i) - assume ideal disturbance observer 

(b)  Case (ii) - assume non-ideal disturbance observer 

Shaft torque Load speed 

Sp
ee

d 
[3

.1
5 

ra
d/

s/
di

v]
 

To
rq

ue
 [2

 N
m

/d
iv

] 

Time [50ms/div] 

(a)  Case (i) - assume ideal disturbance observer 

(b)  Case (ii) - assume non-ideal disturbance observer 

Shaft torque Load speed 

Motor 

Load 

Motor 

Load 



unduly influenced by the speed of the observer.  This is 
of significant practical importance for the system under 
investigation where sensor noise (torque transducer and 
encoder in this case) has a significant impact on the 
allowable speed of the observer. 

VI. CONCLUSIONS 
A comparative study of compensation schemes for 

the control of multi-inertia mechanical systems has been 
reported.  An improved technique based on the 
measurement of shaft torque using a SAW-based torque 
sensor is demonstrated to improve dynamic tracking 
performance, whilst additionally rejecting periodic load 
side disturbances.  The proposed scheme allows 
assignment of the closed-loop zeros, thus enabling the 
rejection of a specific periodic load disturbance, and 
independent tuning of tracking and regulation dynamics. 

Integration of the SAW sensor inside a servo-motor is 
viable, leading to a compact unit suitable for industrial 
servo-control applications. 
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