3 research outputs found

    Noise parameter estimation for non-singleton fuzzy logic systems

    Get PDF
    Real-world environments face a wide range of noise (uncertainty) sources and gaining insight into the level of noise is a critical part of many applications. While Non-Singleton Fuzzy Logic Systems (NSFLSs), in particular recently introduced advanced variants such as centroid-based NSFLSs have the capacity to handle known quantities of uncertainty, thus far, the actual level of uncertainty has had to be defined a priori - i.e. prior to run time of a system or controller. This paper does not focus on such advances within the architecture of NSFLSs, but focuses on a novel two-stage approach for uncertainty handling in fuzzy logic systems which integrates: (i) estimation of noise levels and (ii) the appropriate handling of the noise based on this estimate, by means of a dynamically configured NSFLS. As initial evaluation of the approach, two chaotic nonlinear time series (Mackey-Glass and Lorenz), as well as a real-world Darwin sea level pressure series prediction fuzzy logic systems are implemented and compared to commonly used procedures. The results indicate that the proposed strategy of integrating uncertainty/noise estimation with the capacity of non-singleton fuzzy logic systems has the potential to deliver performance benefits in real-world applications without requiring a priori information on noise levels and thus delivers a first step towards smart, noise-adaptive non-singleton fuzzy logic systems and controllers

    Inspection process for dimensioning through images and fuzzy logic

    Get PDF
    This paper presents a hybrid methodology based on a type 1 fuzzy model in singleton version using a 2k factorial design that optimizes the model of the expert system and serves to perform in-line inspection. The factorial design method provides the required database for the creation of the rule base for the fuzzy model and also generates the database to train the expert system. The proposed method was validated in the process of verifying dimensional parameters by means of images compared with the ANFIS and RBFN models which show greater margins of error in the approximation of the function represented by the system compared with the proposed model. The results obtained show that the model has an excellent performance in the prediction and quality control of the industrial process studied when compared with similar expert system techniques as ANFIS and RBFN

    Noise parameter estimation for non-singleton fuzzy logic systems

    No full text
    Real-world environments face a wide range of noise (uncertainty) sources and gaining insight into the level of noise is a critical part of many applications. While Non-Singleton Fuzzy Logic Systems (NSFLSs), in particular recently introduced advanced variants such as centroid-based NSFLSs have the capacity to handle known quantities of uncertainty, thus far, the actual level of uncertainty has had to be defined a priori - i.e. prior to run time of a system or controller. This paper does not focus on such advances within the architecture of NSFLSs, but focuses on a novel two-stage approach for uncertainty handling in fuzzy logic systems which integrates: (i) estimation of noise levels and (ii) the appropriate handling of the noise based on this estimate, by means of a dynamically configured NSFLS. As initial evaluation of the approach, two chaotic nonlinear time series (Mackey-Glass and Lorenz), as well as a real-world Darwin sea level pressure series prediction fuzzy logic systems are implemented and compared to commonly used procedures. The results indicate that the proposed strategy of integrating uncertainty/noise estimation with the capacity of non-singleton fuzzy logic systems has the potential to deliver performance benefits in real-world applications without requiring a priori information on noise levels and thus delivers a first step towards smart, noise-adaptive non-singleton fuzzy logic systems and controllers
    corecore