6,982 research outputs found

    On Optimal and Fair Service Allocation in Mobile Cloud Computing

    Get PDF
    This paper studies the optimal and fair service allocation for a variety of mobile applications (single or group and collaborative mobile applications) in mobile cloud computing. We exploit the observation that using tiered clouds, i.e. clouds at multiple levels (local and public) can increase the performance and scalability of mobile applications. We proposed a novel framework to model mobile applications as a location-time workflows (LTW) of tasks; here users mobility patterns are translated to mobile service usage patterns. We show that an optimal mapping of LTWs to tiered cloud resources considering multiple QoS goals such application delay, device power consumption and user cost/price is an NP-hard problem for both single and group-based applications. We propose an efficient heuristic algorithm called MuSIC that is able to perform well (73% of optimal, 30% better than simple strategies), and scale well to a large number of users while ensuring high mobile application QoS. We evaluate MuSIC and the 2-tier mobile cloud approach via implementation (on real world clouds) and extensive simulations using rich mobile applications like intensive signal processing, video streaming and multimedia file sharing applications. Our experimental and simulation results indicate that MuSIC supports scalable operation (100+ concurrent users executing complex workflows) while improving QoS. We observe about 25% lower delays and power (under fixed price constraints) and about 35% decrease in price (considering fixed delay) in comparison to only using the public cloud. Our studies also show that MuSIC performs quite well under different mobility patterns, e.g. random waypoint and Manhattan models

    Survey and Analysis of Production Distributed Computing Infrastructures

    Full text link
    This report has two objectives. First, we describe a set of the production distributed infrastructures currently available, so that the reader has a basic understanding of them. This includes explaining why each infrastructure was created and made available and how it has succeeded and failed. The set is not complete, but we believe it is representative. Second, we describe the infrastructures in terms of their use, which is a combination of how they were designed to be used and how users have found ways to use them. Applications are often designed and created with specific infrastructures in mind, with both an appreciation of the existing capabilities provided by those infrastructures and an anticipation of their future capabilities. Here, the infrastructures we discuss were often designed and created with specific applications in mind, or at least specific types of applications. The reader should understand how the interplay between the infrastructure providers and the users leads to such usages, which we call usage modalities. These usage modalities are really abstractions that exist between the infrastructures and the applications; they influence the infrastructures by representing the applications, and they influence the ap- plications by representing the infrastructures

    Workshop Report: Campus Bridging: Reducing Obstacles on the Path to Big Answers 2015

    Get PDF
    For the researcher whose experiments require large-scale cyberinfrastructure, there exists significant challenges to successful completion. These challenges are broad and go far beyond the simple issue that there are not enough large-scale resources available; these solvable issues range from a lack of documentation written for a non-technical audience to a need for greater consistency with regard to system configuration and consistent software configuration and availability on the large-scale resources at national tier supercomputing centers, with a number of other challenges existing alongside the ones mentioned here. Campus Bridging is a relatively young discipline that aims to mitigate these issues for the academic end-user, for whom the entire process can feel like a path comprised entirely of obstacles. The solutions to these problems must by necessity include multiple approaches, with focus not only on the end user but on the system administrators responsible for supporting these resources as well as the systems themselves. These system resources include not only those at the supercomputing centers but also those that exist at the campus or departmental level and even on the personal computing devices the researcher uses to complete his or her work. This workshop report compiles the results of a half-day workshop, held in conjunction with IEEE Cluster 2015 in Chicago, IL.NSF XSED

    CAMPUS GRIDS: A FRAMEWORK TO FACILITATE RESOURCE SHARING

    Get PDF
    It is common at research institutions to maintain multiple clusters. These might fulfill different needs and policies, or represent different owners or generations of hard- ware. Many of these clusters are under utilized while researchers at other departments may require these resources. This may be solved by linking clusters with grid mid- dleware. This thesis describes a distributed high throughput computing framework to link clusters without changing security or execution environments. The framework initially keeps jobs local to the submitter, overflowing if necessary to the campus, and regional grid. The framework is implemented spanning two campuses at the Holland Computing Center. We evaluate the framework for five characteristics of campus grids. This framework is then further expanded to bridge campus grids into a regional grid, and overflow to national cyberinfrastructure
    • …
    corecore