36 research outputs found

    Considering the Development Workflow to Achieve Reproducibility with Variation

    Get PDF
    International audienceThe ability to reproduce an experiment is fundamental in computer science. Existing approaches focus on repeatability, but this is only the first step to repro-ducibility: Continuing a scientific work from a previous experiment requires to be able to modify it. This ability is called reproducibility with Variation. In this contribution, we show that capturing the environment of execution is necessary but not sufficient ; we also need the environment of development. The variation also implies that those environments are subject to evolution, so the whole software development lifecycle needs to be considered. To take into account these evolutions, software environments need to be clearly defined, reconstructible with variation, and easy to share. We propose to leverage functional package managers to achieve this goal

    Contribution à la convergence d'infrastructure entre le calcul haute performance et le traitement de données à large échelle

    Get PDF
    The amount of produced data, either in the scientific community or the commercialworld, is constantly growing. The field of Big Data has emerged to handle largeamounts of data on distributed computing infrastructures. High-Performance Computing (HPC) infrastructures are traditionally used for the execution of computeintensive workloads. However, the HPC community is also facing an increasingneed to process large amounts of data derived from high definition sensors andlarge physics apparati. The convergence of the two fields -HPC and Big Data- iscurrently taking place. In fact, the HPC community already uses Big Data tools,which are not always integrated correctly, especially at the level of the file systemand the Resource and Job Management System (RJMS).In order to understand how we can leverage HPC clusters for Big Data usage, andwhat are the challenges for the HPC infrastructures, we have studied multipleaspects of the convergence: We initially provide a survey on the software provisioning methods, with a focus on data-intensive applications. We contribute a newRJMS collaboration technique called BeBiDa which is based on 50 lines of codewhereas similar solutions use at least 1000 times more. We evaluate this mechanism on real conditions and in simulated environment with our simulator Batsim.Furthermore, we provide extensions to Batsim to support I/O, and showcase thedevelopments of a generic file system model along with a Big Data applicationmodel. This allows us to complement BeBiDa real conditions experiments withsimulations while enabling us to study file system dimensioning and trade-offs.All the experiments and analysis of this work have been done with reproducibilityin mind. Based on this experience, we propose to integrate the developmentworkflow and data analysis in the reproducibility mindset, and give feedback onour experiences with a list of best practices.RésuméLa quantité de données produites, que ce soit dans la communauté scientifiqueou commerciale, est en croissance constante. Le domaine du Big Data a émergéface au traitement de grandes quantités de données sur les infrastructures informatiques distribuées. Les infrastructures de calcul haute performance (HPC) sont traditionnellement utilisées pour l’exécution de charges de travail intensives en calcul. Cependant, la communauté HPC fait également face à un nombre croissant debesoin de traitement de grandes quantités de données dérivées de capteurs hautedéfinition et de grands appareils physique. La convergence des deux domaines-HPC et Big Data- est en cours. En fait, la communauté HPC utilise déjà des outilsBig Data, qui ne sont pas toujours correctement intégrés, en particulier au niveaudu système de fichiers ainsi que du système de gestion des ressources (RJMS).Afin de comprendre comment nous pouvons tirer parti des clusters HPC pourl’utilisation du Big Data, et quels sont les défis pour les infrastructures HPC, nousavons étudié plusieurs aspects de la convergence: nous avons d’abord proposé uneétude sur les méthodes de provisionnement logiciel, en mettant l’accent sur lesapplications utilisant beaucoup de données. Nous contribuons a l’état de l’art avecune nouvelle technique de collaboration entre RJMS appelée BeBiDa basée sur 50lignes de code alors que des solutions similaires en utilisent au moins 1000 fois plus.Nous évaluons ce mécanisme en conditions réelles et en environnement simuléavec notre simulateur Batsim. En outre, nous fournissons des extensions à Batsimpour prendre en charge les entrées/sorties et présentons le développements d’unmodèle de système de fichiers générique accompagné d’un modèle d’applicationBig Data. Cela nous permet de compléter les expériences en conditions réellesde BeBiDa en simulation tout en étudiant le dimensionnement et les différentscompromis autours des systèmes de fichiers.Toutes les expériences et analyses de ce travail ont été effectuées avec la reproductibilité à l’esprit. Sur la base de cette expérience, nous proposons d’intégrerle flux de travail du développement et de l’analyse des données dans l’esprit dela reproductibilité, et de donner un retour sur nos expériences avec une liste debonnes pratiques

    Hyperspectral Imaging for Fine to Medium Scale Applications in Environmental Sciences

    Get PDF
    The aim of the Special Issue “Hyperspectral Imaging for Fine to Medium Scale Applications in Environmental Sciences” was to present a selection of innovative studies using hyperspectral imaging (HSI) in different thematic fields. This intention reflects the technical developments in the last three decades, which have brought the capacity of HSI to provide spectrally, spatially and temporally detailed data, favoured by e.g., hyperspectral snapshot technologies, miniaturized hyperspectral sensors and hyperspectral microscopy imaging. The present book comprises a suite of papers in various fields of environmental sciences—geology/mineral exploration, digital soil mapping, mapping and characterization of vegetation, and sensing of water bodies (including under-ice and underwater applications). In addition, there are two rather methodically/technically-oriented contributions dealing with the optimized processing of UAV data and on the design and test of a multi-channel optical receiver for ground-based applications. All in all, this compilation documents that HSI is a multi-faceted research topic and will remain so in the future

    Big-Data Science in Porous Materials: Materials Genomics and Machine Learning

    Full text link
    By combining metal nodes with organic linkers we can potentially synthesize millions of possible metal organic frameworks (MOFs). At present, we have libraries of over ten thousand synthesized materials and millions of in-silico predicted materials. The fact that we have so many materials opens many exciting avenues to tailor make a material that is optimal for a given application. However, from an experimental and computational point of view we simply have too many materials to screen using brute-force techniques. In this review, we show that having so many materials allows us to use big-data methods as a powerful technique to study these materials and to discover complex correlations. The first part of the review gives an introduction to the principles of big-data science. We emphasize the importance of data collection, methods to augment small data sets, how to select appropriate training sets. An important part of this review are the different approaches that are used to represent these materials in feature space. The review also includes a general overview of the different ML techniques, but as most applications in porous materials use supervised ML our review is focused on the different approaches for supervised ML. In particular, we review the different method to optimize the ML process and how to quantify the performance of the different methods. In the second part, we review how the different approaches of ML have been applied to porous materials. In particular, we discuss applications in the field of gas storage and separation, the stability of these materials, their electronic properties, and their synthesis. The range of topics illustrates the large variety of topics that can be studied with big-data science. Given the increasing interest of the scientific community in ML, we expect this list to rapidly expand in the coming years.Comment: Editorial changes (typos fixed, minor adjustments to figures
    corecore