15 research outputs found

    Cooperative Detection and Network Coding in Wireless Networks

    Get PDF
    In cooperative communication systems, multiple terminals in wireless networks share their antennas and resources for information exchange and processing. Recently, cooperative communications have been shown to achieve significant performance improvements in terms of transmission reliability, coverage area extension, and network throughput, with respect to existing classical communication systems. This dissertation is focused on two important applications of cooperative communications, namely: (i) cooperative distributed detection in wireless sensor networks, and (ii) many-to-many communications via cooperative space-time network coding. The first application of cooperative communications presented in this dissertation is concerned with the analysis and modeling of the deployment of cooperative relay nodes in wireless sensor networks. Particularly, in dense wireless sensor networks, sensor nodes continuously observe and collect measurements of a physical phenomenon. Such observations can be highly correlated, depending on the spatial separation between the sensor nodes as well as how the physical properties of the phenomenon are evolving over time. This unique characteristic of wireless sensor networks can be effectively exploited with cooperative communications and relays deployment such that the distributed detection performance is significantly improved as well as the energy efficiency. In particular, this dissertation studies the Amplify-and-Forward (AF) relays deployment as a function of the correlation of the observations and analyzes the achievable spatial diversity gains as compared with the classical wireless sensor networks. Moreover, it is demonstrated that the gains of cooperation can be further leveraged to alleviate bandwidth utilization inefficiencies in current sensor networks. Specifically, the deployment of cognitive AF cooperative relays to exploit empty/under-utilized time-slots and the resulting energy savings are studied, quantified and compared. The multiple terminal communication and information exchange form the second application of cooperative communications in this dissertation. Specifically, the novel concept of Space-Time-Network Coding (STNC) that is concerned with formulation of the many-to-many cooperative communications over Decode-and-Forward (DF) nodes is studied and analyzed. Moreover, the exact theoretical analysis as well as upper-bounds on the network symbol error rate performance are derived. In addition, the tradeoff between the number of communicating nodes and the timing synchronization errors is analyzed and provided as a network design guideline. With STNC, it is illustrated that cooperative diversity gains are fully exploited per node and significant performance improvements are achieved. It is concluded that the STNC scheme serves as a potential many-to-many cooperative communications scheme and that its scope goes much further beyond the generic source-relay-destination communications

    Reliable Inference from Unreliable Agents

    Get PDF
    Distributed inference using multiple sensors has been an active area of research since the emergence of wireless sensor networks (WSNs). Several researchers have addressed the design issues to ensure optimal inference performance in such networks. The central goal of this thesis is to analyze distributed inference systems with potentially unreliable components and design strategies to ensure reliable inference in such systems. The inference process can be that of detection or estimation or classification, and the components/agents in the system can be sensors and/or humans. The system components can be unreliable due to a variety of reasons: faulty sensors, security attacks causing sensors to send falsified information, or unskilled human workers sending imperfect information. This thesis first quantifies the effect of such unreliable agents on the inference performance of the network and then designs schemes that ensure a reliable overall inference. In the first part of this thesis, we study the case when only sensors are present in the system, referred to as sensor networks. For sensor networks, the presence of malicious sensors, referred to as Byzantines, are considered. Byzantines are sensors that inject false information into the system. In such systems, the effect of Byzantines on the overall inference performance is characterized in terms of the optimal attack strategies. Game-theoretic formulations are explored to analyze two-player interactions. Next, Byzantine mitigation schemes are designed that address the problem from the system\u27s perspective. These mitigation schemes are of two kinds: Byzantine identification schemes and Byzantine tolerant schemes. Using learning based techniques, Byzantine identification schemes are designed that learn the identity of Byzantines in the network and use this information to improve system performance. When such schemes are not possible, Byzantine tolerant schemes using error-correcting codes are developed that tolerate the effect of Byzantines and maintain good performance in the network. Error-correcting codes help in correcting the erroneous information from these Byzantines and thereby counter their attack. The second line of research in this thesis considers humans-only networks, referred to as human networks. A similar research strategy is adopted for human networks where, the effect of unskilled humans sharing beliefs with a central observer called \emph{CEO} is analyzed, and the loss in performance due to the presence of such unskilled humans is characterized. This problem falls under the family of problems in information theory literature referred to as the \emph{CEO Problem}, but for belief sharing. The asymptotic behavior of the minimum achievable mean squared error distortion at the CEO is studied in the limit when the number of agents LL and the sum rate RR tend to infinity. An intermediate regime of performance between the exponential behavior in discrete CEO problems and the 1/R1/R behavior in Gaussian CEO problems is established. This result can be summarized as the fact that sharing beliefs (uniform) is fundamentally easier in terms of convergence rate than sharing measurements (Gaussian), but sharing decisions is even easier (discrete). Besides theoretical analysis, experimental results are reported for experiments designed in collaboration with cognitive psychologists to understand the behavior of humans in the network. The act of fusing decisions from multiple agents is observed for humans and the behavior is statistically modeled using hierarchical Bayesian models. The implications of such modeling on the design of large human-machine systems is discussed. Furthermore, an error-correcting codes based scheme is proposed to improve system performance in the presence of unreliable humans in the inference process. For a crowdsourcing system consisting of unskilled human workers providing unreliable responses, the scheme helps in designing easy-to-perform tasks and also mitigates the effect of erroneous data. The benefits of using the proposed approach in comparison to the majority voting based approach are highlighted using simulated and real datasets. In the final part of the thesis, a human-machine inference framework is developed where humans and machines interact to perform complex tasks in a faster and more efficient manner. A mathematical framework is built to understand the benefits of human-machine collaboration. Such a study is extremely important for current scenarios where humans and machines are constantly interacting with each other to perform even the simplest of tasks. While machines perform best in some tasks, humans still give better results in tasks such as identifying new patterns. By using humans and machines together, one can extract complete information about a phenomenon of interest. Such an architecture, referred to as Human-Machine Inference Networks (HuMaINs), provides promising results for the two cases of human-machine collaboration: \emph{machine as a coach} and \emph{machine as a colleague}. For simple systems, we demonstrate tangible performance gains by such a collaboration which provides design modules for larger, and more complex human-machine systems. However, the details of such larger systems needs to be further explored

    Opportunistic communications in large uncoordinated networks

    Get PDF
    (English) The increase of wireless devices offering high data rate services limits the coexistence of wireless systems sharing the same resources in a given geographical area because of inter-system interference. Therefore, interference management plays a key role in permitting the coexistence of several heterogeneous communication services. However, classical interference management strategies require lateral information giving rise to the need for inter-system coordination and cooperation, which is not always practical. Opportunistic communications offer a potential solution to the problem of inter-system interference management. The basic principle of opportunistic communications is to efficiently and robustly exploit the resources available in a wireless network and adapt the transmitted signals to the state of the network to avoid inter-system interference. Therefore, opportunistic communications depend on inferring the available network resources that can be safely exploited without inducing interference in coexisting communication nodes. Once the available network resources are identified, the most prominent opportunistic communication techniques consist in designing scenario-adapted precoding/decoding strategies to exploit the so-called null space. Despite this, classical solutions in the literature suffer from two main drawbacks: the lack of robustness to detection errors and the need for intra-system cooperation. This thesis focuses on the design of a null space-based opportunistic communication scheme that addresses the drawbacks exhibited by existing methodologies under the assumption that opportunistic nodes do not cooperate. For this purpose, a generalized detection error model independent of the null-space identification mechanism is introduced that allows the design of solutions that exhibit minimal inter-system interference in the worst case. These solutions respond to a maximum signal-to-interference ratio (SIR) criterion, which is optimal under non-cooperative conditions. The proposed methodology allows the design of a family of orthonormal waveforms that perform a spreading of the modulated symbols within the detected null space, which is key to minimizing the induced interference density. The proposed solutions are invariant within the inferred null space, allowing the removal of the feedback link without giving up coherent waveform detection. In the absence of coordination, the waveform design relies solely on locally sensed network state information, inducing a mismatch between the null spaces identified by the transmitter and receiver that may worsen system performance. Although the proposed solution is robust to this mismatch, the design of enhanced receivers using active subspace detection schemes is also studied. When the total number of network resources increases arbitrarily, the proposed solutions tend to be linear combinations of complex exponentials, providing an interpretation in the frequency domain. This asymptotic behavior allows us to adapt the proposed solution to frequency-selective channels by means of a cyclic prefix and to study an efficient modulation similar to the time division multiplexing scheme but using circulant waveforms. Finally, the impact of the use of multiple antennas in opportunistic null space-based communications is studied. The performed analysis reveals that, in any case, the structure of the antenna clusters affects the opportunistic communication, since the proposed waveform mimics the behavior of a single-antenna transmitter. On the other hand, the number of sensors employed translates into an improvement in terms of SIR.(Catal脿) El creixement incremental dels dispositius sense fils que requereixen serveis d'alta velocitat de dades limita la coexist猫ncia de sistemes sense fils que comparteixen els mateixos recursos en una 脿rea geogr脿fica donada a causa de la interfer猫ncia entre sistemes. Conseq眉entment, la gesti贸 d'interfer猫ncia juga un paper fonamental per a facilitar la coexist猫ncia de diversos serveis de comunicaci贸 heterogenis. No obstant aix貌, les estrat猫gies cl脿ssiques de gesti贸 d'interfer猫ncia requereixen informaci贸 lateral originant la necessitat de coordinaci贸 i cooperaci贸 entre sistemes, que no sempre 茅s pr脿ctica. Les comunicacions oportunistes ofereixen una soluci贸 potencial al problema de la gesti贸 de les interfer猫ncies entre sistemes. El principi b脿sic de les comunicacions oportunistes 茅s explotar de manera eficient i robusta els recursos disponibles en una xarxa sense fils i adaptar els senyals transmesos a l'estat de la xarxa per evitar interfer猫ncies entre sistemes. Per tant, les comunicacions oportunistes depenen de la infer猫ncia dels recursos de xarxa disponibles que poden ser explotats de manera segura sense induir interfer猫ncia en els nodes de comunicaci贸 coexistents. Una vegada que s'han identificat els recursos de xarxa disponibles, les t猫cniques de comunicaci贸 oportunistes m茅s prominents consisteixen en el disseny d'estrat猫gies de precodificaci贸/descodificaci贸 adaptades a l'escenari per explotar l'anomenat espai nul. Malgrat aix貌, les solucions cl脿ssiques en la literatura sofreixen dos inconvenients principals: la falta de robustesa als errors de detecci贸 i la necessitat de cooperaci贸 intra-sistema. Aquesta tesi tracta el disseny d'un esquema de comunicaci贸 oportunista basat en l'espai nul que afronta els inconvenients exposats per les metodologies existents assumint que els nodes oportunistes no cooperen. Per a aquest prop貌sit, s'introdueix un model generalitzat d'error de detecci贸 independent del mecanisme d'identificaci贸 de l'espai nul que permet el disseny de solucions que exhibeixen interfer猫ncies m铆nimes entre sistemes en el cas pitjor. Aquestes solucions responen a un criteri de m脿xima relaci贸 de senyal a interfer猫ncia (SIR), que 茅s 貌ptim en condicions de no cooperaci贸. La metodologia proposada permet dissenyar una fam铆lia de formes d'ona ortonormals que realitzen un spreading dels s铆mbols modulats dins de l'espai nul detectat, que 茅s clau per minimitzar la densitat d鈥檌nterfer猫ncia indu茂da. Les solucions proposades s贸n invariants dins de l'espai nul inferit, permetent suprimir l'enlla莽 de retroalimentaci贸 i, tot i aix铆, realitzar una detecci贸 coherent de forma d'ona. Sota l鈥檃bs猫ncia de coordinaci贸, el disseny de la forma d'ona es basa 煤nicament en la informaci贸 de l'estat de la xarxa detectada localment, induint un desajust entre els espais nuls identificats pel transmissor i receptor que pot empitjorar el rendiment del sistema. Tot i que la soluci贸 proposada 茅s robusta a aquest desajust, tamb茅 s'estudia el disseny de receptors millorats fent 煤s de t猫cniques de detecci贸 de subespai actiu. Quan el nombre total de recursos de xarxa augmenta arbitr脿riament, les solucions proposades tendeixen a ser combinacions lineals d'exponencials complexes, proporcionant una interpretaci贸 en el domini freq眉encial. Aquest comportament asimpt貌tic permet adaptar la soluci贸 proposada a entorns selectius en freq眉猫ncia fent 煤s d'un prefix c铆clic i estudiar una modulaci贸 eficient derivada de l'esquema de multiplexat per divisi贸 de temps emprant formes d'ona circulant. Finalment, s鈥檈studia l'impacte de l'煤s de m煤ltiples antenes en comunicacions oportunistes basades en l'espai nul. L'an脿lisi realitzada permet concloure que, en cap cas, l'estructura de les agrupacions d'antenes tenen un impacte sobre la comunicaci贸 oportunista, ja que la forma d'ona proposada imita el comportament d'un transmissor mono-antena. D'altra banda, el nombre de sensors emprat es tradueix en una millora en termes de SIR.(Espa帽ol) El incremento de los dispositivos inal谩mbricos que ofrecen servicios de alta velocidad de datos limita la coexistencia de sistemas inal谩mbricos que comparten los mismos recursos en un 谩rea geogr谩fica dada a causa de la interferencia inter-sistema. Por tanto, la gesti贸n de interferencia juega un papel fundamental para facilitar la coexistencia de varios servicios de comunicaci贸n heterog茅neos. Sin embargo, las estrategias cl谩sicas de gesti贸n de interferencia requieren informaci贸n lateral originando la necesidad de coordinaci贸n y cooperaci贸n entre sistemas, que no siempre es pr谩ctica. Las comunicaciones oportunistas ofrecen una soluci贸n potencial al problema de la gesti贸n de las interferencias entre sistemas. El principio b谩sico de las comunicaciones oportunistas es explotar de manera eficiente y robusta los recursos disponibles en una red inal谩mbricas y adaptar las se帽ales transmitidas al estado de la red para evitar interferencias entre sistemas. Por lo tanto, las comunicaciones oportunistas dependen de la inferencia de los recursos de red disponibles que pueden ser explotados de manera segura sin inducir interferencia en los nodos de comunicaci贸n coexistentes. Una vez identificados los recursos disponibles, las t茅cnicas de comunicaci贸n oportunistas m谩s prominentes consisten en el dise帽o de estrategias de precodificaci贸n/descodificaci贸n adaptadas al escenario para explotar el llamado espacio nulo. A pesar de esto, las soluciones cl谩sicas en la literatura sufren dos inconvenientes principales: la falta de robustez a los errores de detecci贸n y la necesidad de cooperaci贸n intra-sistema. Esta tesis propone dise帽ar un esquema de comunicaci贸n oportunista basado en el espacio nulo que afronta los inconvenientes expuestos por las metodolog铆as existentes asumiendo que los nodos oportunistas no cooperan. Para este prop贸sito, se introduce un modelo generalizado de error de detecci贸n independiente del mecanismo de identificaci贸n del espacio nulo que permite el dise帽o de soluciones que exhiben interferencias m铆nimas entre sistemas en el caso peor. Estas soluciones responden a un criterio de m谩xima relaci贸n de se帽al a interferencia (SIR), que es 贸ptimo en condiciones de no cooperaci贸n. La metodolog铆a propuesta permite dise帽ar una familia de formas de onda ortonormales que realizan un spreading de los s铆mbolos modulados dentro del espacio nulo detectado, que es clave para minimizar la densidad de interferencia inducida. Las soluciones propuestas son invariantes dentro del espacio nulo inferido, permitiendo suprimir el enlace de retroalimentaci贸n sin renunciar a la detecci贸n coherente de forma de onda. En ausencia de coordinaci贸n, el dise帽o de la forma de onda se basa 煤nicamente en la informaci贸n del estado de la red detectada localmente, induciendo un desajuste entre los espacios nulos identificados por el transmisor y receptor que puede empeorar el rendimiento del sistema. A pesar de que la soluci贸n propuesta es robusta a este desajuste, tambi茅n se estudia el dise帽o de receptores mejorados usando t茅cnicas de detecci贸n de subespacio activo. Cuando el n煤mero total de recursos de red aumenta arbitrariamente, las soluciones propuestas tienden a ser combinaciones lineales de exponenciales complejas, proporcionando una interpretaci贸n en el dominio frecuencial. Este comportamiento asint贸tico permite adaptar la soluci贸n propuesta a canales selectivos en frecuencia mediante un prefijo c铆clico y estudiar una modulaci贸n eficiente derivada del esquema de multiplexado por divisi贸n de tiempo empleando formas de onda circulante. Finalmente, se estudia el impacto del uso de m煤ltiples antenas en comunicaciones oportunistas basadas en el espacio nulo. El an谩lisis realizado revela que la estructura de las agrupaciones de antenas no afecta la comunicaci贸n oportunista, ya que la forma de onda propuesta imita el comportamiento de un transmisor mono-antena. Por otro lado, el n煤mero de sensores empleado se traduce en una mejora en t茅rminos de SIR.DOCTORAT EN TEORIA DEL SENYAL I COMUNICACIONS (Pla 2013

    Opportunistic communications in large uncoordinated networks

    Get PDF
    (English) The increase of wireless devices offering high data rate services limits the coexistence of wireless systems sharing the same resources in a given geographical area because of inter-system interference. Therefore, interference management plays a key role in permitting the coexistence of several heterogeneous communication services. However, classical interference management strategies require lateral information giving rise to the need for inter-system coordination and cooperation, which is not always practical. Opportunistic communications offer a potential solution to the problem of inter-system interference management. The basic principle of opportunistic communications is to efficiently and robustly exploit the resources available in a wireless network and adapt the transmitted signals to the state of the network to avoid inter-system interference. Therefore, opportunistic communications depend on inferring the available network resources that can be safely exploited without inducing interference in coexisting communication nodes. Once the available network resources are identified, the most prominent opportunistic communication techniques consist in designing scenario-adapted precoding/decoding strategies to exploit the so-called null space. Despite this, classical solutions in the literature suffer from two main drawbacks: the lack of robustness to detection errors and the need for intra-system cooperation. This thesis focuses on the design of a null space-based opportunistic communication scheme that addresses the drawbacks exhibited by existing methodologies under the assumption that opportunistic nodes do not cooperate. For this purpose, a generalized detection error model independent of the null-space identification mechanism is introduced that allows the design of solutions that exhibit minimal inter-system interference in the worst case. These solutions respond to a maximum signal-to-interference ratio (SIR) criterion, which is optimal under non-cooperative conditions. The proposed methodology allows the design of a family of orthonormal waveforms that perform a spreading of the modulated symbols within the detected null space, which is key to minimizing the induced interference density. The proposed solutions are invariant within the inferred null space, allowing the removal of the feedback link without giving up coherent waveform detection. In the absence of coordination, the waveform design relies solely on locally sensed network state information, inducing a mismatch between the null spaces identified by the transmitter and receiver that may worsen system performance. Although the proposed solution is robust to this mismatch, the design of enhanced receivers using active subspace detection schemes is also studied. When the total number of network resources increases arbitrarily, the proposed solutions tend to be linear combinations of complex exponentials, providing an interpretation in the frequency domain. This asymptotic behavior allows us to adapt the proposed solution to frequency-selective channels by means of a cyclic prefix and to study an efficient modulation similar to the time division multiplexing scheme but using circulant waveforms. Finally, the impact of the use of multiple antennas in opportunistic null space-based communications is studied. The performed analysis reveals that, in any case, the structure of the antenna clusters affects the opportunistic communication, since the proposed waveform mimics the behavior of a single-antenna transmitter. On the other hand, the number of sensors employed translates into an improvement in terms of SIR.(Catal脿) El creixement incremental dels dispositius sense fils que requereixen serveis d'alta velocitat de dades limita la coexist猫ncia de sistemes sense fils que comparteixen els mateixos recursos en una 脿rea geogr脿fica donada a causa de la interfer猫ncia entre sistemes. Conseq眉entment, la gesti贸 d'interfer猫ncia juga un paper fonamental per a facilitar la coexist猫ncia de diversos serveis de comunicaci贸 heterogenis. No obstant aix貌, les estrat猫gies cl脿ssiques de gesti贸 d'interfer猫ncia requereixen informaci贸 lateral originant la necessitat de coordinaci贸 i cooperaci贸 entre sistemes, que no sempre 茅s pr脿ctica. Les comunicacions oportunistes ofereixen una soluci贸 potencial al problema de la gesti贸 de les interfer猫ncies entre sistemes. El principi b脿sic de les comunicacions oportunistes 茅s explotar de manera eficient i robusta els recursos disponibles en una xarxa sense fils i adaptar els senyals transmesos a l'estat de la xarxa per evitar interfer猫ncies entre sistemes. Per tant, les comunicacions oportunistes depenen de la infer猫ncia dels recursos de xarxa disponibles que poden ser explotats de manera segura sense induir interfer猫ncia en els nodes de comunicaci贸 coexistents. Una vegada que s'han identificat els recursos de xarxa disponibles, les t猫cniques de comunicaci贸 oportunistes m茅s prominents consisteixen en el disseny d'estrat猫gies de precodificaci贸/descodificaci贸 adaptades a l'escenari per explotar l'anomenat espai nul. Malgrat aix貌, les solucions cl脿ssiques en la literatura sofreixen dos inconvenients principals: la falta de robustesa als errors de detecci贸 i la necessitat de cooperaci贸 intra-sistema. Aquesta tesi tracta el disseny d'un esquema de comunicaci贸 oportunista basat en l'espai nul que afronta els inconvenients exposats per les metodologies existents assumint que els nodes oportunistes no cooperen. Per a aquest prop貌sit, s'introdueix un model generalitzat d'error de detecci贸 independent del mecanisme d'identificaci贸 de l'espai nul que permet el disseny de solucions que exhibeixen interfer猫ncies m铆nimes entre sistemes en el cas pitjor. Aquestes solucions responen a un criteri de m脿xima relaci贸 de senyal a interfer猫ncia (SIR), que 茅s 貌ptim en condicions de no cooperaci贸. La metodologia proposada permet dissenyar una fam铆lia de formes d'ona ortonormals que realitzen un spreading dels s铆mbols modulats dins de l'espai nul detectat, que 茅s clau per minimitzar la densitat d鈥檌nterfer猫ncia indu茂da. Les solucions proposades s贸n invariants dins de l'espai nul inferit, permetent suprimir l'enlla莽 de retroalimentaci贸 i, tot i aix铆, realitzar una detecci贸 coherent de forma d'ona. Sota l鈥檃bs猫ncia de coordinaci贸, el disseny de la forma d'ona es basa 煤nicament en la informaci贸 de l'estat de la xarxa detectada localment, induint un desajust entre els espais nuls identificats pel transmissor i receptor que pot empitjorar el rendiment del sistema. Tot i que la soluci贸 proposada 茅s robusta a aquest desajust, tamb茅 s'estudia el disseny de receptors millorats fent 煤s de t猫cniques de detecci贸 de subespai actiu. Quan el nombre total de recursos de xarxa augmenta arbitr脿riament, les solucions proposades tendeixen a ser combinacions lineals d'exponencials complexes, proporcionant una interpretaci贸 en el domini freq眉encial. Aquest comportament asimpt貌tic permet adaptar la soluci贸 proposada a entorns selectius en freq眉猫ncia fent 煤s d'un prefix c铆clic i estudiar una modulaci贸 eficient derivada de l'esquema de multiplexat per divisi贸 de temps emprant formes d'ona circulant. Finalment, s鈥檈studia l'impacte de l'煤s de m煤ltiples antenes en comunicacions oportunistes basades en l'espai nul. L'an脿lisi realitzada permet concloure que, en cap cas, l'estructura de les agrupacions d'antenes tenen un impacte sobre la comunicaci贸 oportunista, ja que la forma d'ona proposada imita el comportament d'un transmissor mono-antena. D'altra banda, el nombre de sensors emprat es tradueix en una millora en termes de SIR.(Espa帽ol) El incremento de los dispositivos inal谩mbricos que ofrecen servicios de alta velocidad de datos limita la coexistencia de sistemas inal谩mbricos que comparten los mismos recursos en un 谩rea geogr谩fica dada a causa de la interferencia inter-sistema. Por tanto, la gesti贸n de interferencia juega un papel fundamental para facilitar la coexistencia de varios servicios de comunicaci贸n heterog茅neos. Sin embargo, las estrategias cl谩sicas de gesti贸n de interferencia requieren informaci贸n lateral originando la necesidad de coordinaci贸n y cooperaci贸n entre sistemas, que no siempre es pr谩ctica. Las comunicaciones oportunistas ofrecen una soluci贸n potencial al problema de la gesti贸n de las interferencias entre sistemas. El principio b谩sico de las comunicaciones oportunistas es explotar de manera eficiente y robusta los recursos disponibles en una red inal谩mbricas y adaptar las se帽ales transmitidas al estado de la red para evitar interferencias entre sistemas. Por lo tanto, las comunicaciones oportunistas dependen de la inferencia de los recursos de red disponibles que pueden ser explotados de manera segura sin inducir interferencia en los nodos de comunicaci贸n coexistentes. Una vez identificados los recursos disponibles, las t茅cnicas de comunicaci贸n oportunistas m谩s prominentes consisten en el dise帽o de estrategias de precodificaci贸n/descodificaci贸n adaptadas al escenario para explotar el llamado espacio nulo. A pesar de esto, las soluciones cl谩sicas en la literatura sufren dos inconvenientes principales: la falta de robustez a los errores de detecci贸n y la necesidad de cooperaci贸n intra-sistema. Esta tesis propone dise帽ar un esquema de comunicaci贸n oportunista basado en el espacio nulo que afronta los inconvenientes expuestos por las metodolog铆as existentes asumiendo que los nodos oportunistas no cooperan. Para este prop贸sito, se introduce un modelo generalizado de error de detecci贸n independiente del mecanismo de identificaci贸n del espacio nulo que permite el dise帽o de soluciones que exhiben interferencias m铆nimas entre sistemas en el caso peor. Estas soluciones responden a un criterio de m谩xima relaci贸n de se帽al a interferencia (SIR), que es 贸ptimo en condiciones de no cooperaci贸n. La metodolog铆a propuesta permite dise帽ar una familia de formas de onda ortonormales que realizan un spreading de los s铆mbolos modulados dentro del espacio nulo detectado, que es clave para minimizar la densidad de interferencia inducida. Las soluciones propuestas son invariantes dentro del espacio nulo inferido, permitiendo suprimir el enlace de retroalimentaci贸n sin renunciar a la detecci贸n coherente de forma de onda. En ausencia de coordinaci贸n, el dise帽o de la forma de onda se basa 煤nicamente en la informaci贸n del estado de la red detectada localmente, induciendo un desajuste entre los espacios nulos identificados por el transmisor y receptor que puede empeorar el rendimiento del sistema. A pesar de que la soluci贸n propuesta es robusta a este desajuste, tambi茅n se estudia el dise帽o de receptores mejorados usando t茅cnicas de detecci贸n de subespacio activo. Cuando el n煤mero total de recursos de red aumenta arbitrariamente, las soluciones propuestas tienden a ser combinaciones lineales de exponenciales complejas, proporcionando una interpretaci贸n en el dominio frecuencial. Este comportamiento asint贸tico permite adaptar la soluci贸n propuesta a canales selectivos en frecuencia mediante un prefijo c铆clico y estudiar una modulaci贸n eficiente derivada del esquema de multiplexado por divisi贸n de tiempo empleando formas de onda circulante. Finalmente, se estudia el impacto del uso de m煤ltiples antenas en comunicaciones oportunistas basadas en el espacio nulo. El an谩lisis realizado revela que la estructura de las agrupaciones de antenas no afecta la comunicaci贸n oportunista, ya que la forma de onda propuesta imita el comportamiento de un transmisor mono-antena. Por otro lado, el n煤mero de sensores empleado se traduce en una mejora en t茅rminos de SIR.Postprint (published version

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modi铿乪d our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the 铿乪ld of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Spectrum measurement, sensing, analysis and simulation in the context of cognitive radio

    Get PDF
    The radio frequency (RF) spectrum is a scarce natural resource, currently regulated locally by national agencies. Spectrum has been assigned to different services and it is very difficult for emerging wireless technologies to gain access due to rigid spectmm policy and heavy opportunity cost. Current spectrum management by licensing causes artificial spectrum scarcity. Spectrum monitoring shows that many frequencies and times are unused. Dynamic spectrum access (DSA) is a potential solution to low spectrum efficiency. In DSA, an unlicensed user opportunistically uses vacant licensed spectrum with the help of cognitive radio. Cognitive radio is a key enabling technology for DSA. In a cognitive radio system, an unlicensed Secondary User (SU) identifies vacant licensed spectrum allocated to a Primary User (PU) and uses it without harmful interference to the PU. Cognitive radio increases spectrum usage efficiency while protecting legacy-licensed systems. The purpose of this thesis is to bring together a group of CR concepts and explore how we can make the transition from conventional radio to cognitive radio. Specific goals of the thesis are firstly the measurement of the radio spectrum to understand the current spectrum usage in the Humber region, UK in the context of cognitive radio. Secondly, to characterise the performance of cyclostationary feature detectors through theoretical analysis, hardware implementation, and real-time performance measurements. Thirdly, to mitigate the effect of degradation due to multipath fading and shadowing, the use of -wideband cooperative sensing techniques using adaptive sensing technique and multi-bit soft decision is proposed, which it is believed will introduce more spectral opportunities over wider frequency ranges and achieve higher opportunistic aggregate throughput.Understanding spectrum usage is the first step toward the future deployment of cognitive radio systems. Several spectrum usage measurement campaigns have been performed, mainly in the USA and Europe. These studies show locality and time dependence. In the first part of this thesis a spectrum usage measurement campaign in the Humber region, is reported. Spectrum usage patterns are identified and noise is characterised. A significant amount of spectrum was shown to be underutilized and available for the secondary use. The second part addresses the question: how can you tell if a spectrum channel is being used? Two spectrum sensing techniques are evaluated: Energy Detection and Cyclostationary Feature Detection. The performance of these techniques is compared using the measurements performed in the second part of the thesis. Cyclostationary feature detection is shown to be more robust to noise. The final part of the thesis considers the identification of vacant channels by combining spectrum measurements from multiple locations, known as cooperative sensing. Wideband cooperative sensing is proposed using multi resolution spectrum sensing (MRSS) with a multi-bit decision technique. Next, a two-stage adaptive system with cooperative wideband sensing is proposed based on the combination of energy detection and cyclostationary feature detection. Simulations using the system above indicate that the two-stage adaptive sensing cooperative wideband outperforms single site detection in terms of detection success and mean detection time in the context of wideband cooperative sensing
    corecore