5 research outputs found

    Maximum likelihood estimation of robust constrained Gaussian mixture models

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Graduate School of Engineering and Science of Bilkent University, 2013.Thesis (Ph. D.) -- Bilkent University, 2013.Includes bibliographical references leaves 155-170.Density estimation using Gaussian mixture models presents a fundamental trade off between the flexibility of the model and its sensitivity to the unwanted/unmodeled data points in the data set. The expectation maximization (EM) algorithm used to estimate the parameters of Gaussian mixture models is prone to local optima due to nonconvexity of the problem and the improper selection of parameterization. We propose a novel modeling framework, three different parameterizations and novel algorithms for the constrained Gaussian mixture density estimation problem based on the expectation maximization algorithm, convex duality theory and the stochastic search algorithms. We propose a new modeling framework called Constrained Gaussian Mixture Models (CGMM) that incorporates prior information into the density estimation problem in the form of convex constraints on the model parameters. In this context, we consider two different parameterizations where the first set of parameters are referred to as the information parameters and the second set of parameters are referred to as the source parameters. To estimate the parameters, we use the EM algorithm where we solve two optimization problems alternatingly in the E-step and the M-step. We show that the M-step corresponds to a convex optimization problem in the information parameters. We form a dual problem for the M-step and show that the dual problem corresponds to a convex optimization problem in the source parameters. We apply the CGMM framework to two different problems: Robust density estimation and compound object detection problems. In the robust density estimation problem, we incorporate the inlier/outlier information available for small number of data points as convex constraints on the parameters using the information parameters. In the compound object detection problem, we incorporate the relative size, spectral distribution structure and relative location relations of primitive objects as convex constraints on the parameters using the source parameters. Even with the propoper selection of the parameterization, density estimation problem for Gaussian mixture models is not jointly convex in both the E-step variables and the M-step variables. We propose a third parameterization based on eigenvalue decomposition of covariance matrices which is suitable for stochastic search algorithms in general and particle swarm optimization (PSO) algorithm in particular. We develop a new algorithm where global search skills of the PSO algorithm is incorporated into the EM algorithm to do global parameter estimation. In addition to the mathematical derivations, experimental results on synthetic and real-life data sets verifying the performance of the proposed algorithms are provided.Arı, ÇağlarPh.D

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion
    corecore