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ABSTRACT

MAXIMUM LIKELIHOOD ESTIMATION OF ROBUST
CONSTRAINED GAUSSIAN MIXTURE MODELS

Çağlar Arı

Ph.D. in Electrical and Electronics Engineering

Supervisors: Prof. Dr. Orhan Arıkan and Asst. Prof. Dr. Selim Aksoy

January, 2013

Density estimation using Gaussian mixture models presents a fundamental

trade off between the flexibility of the model and its sensitivity to the un-

wanted/unmodeled data points in the data set. The expectation maximization

(EM) algorithm used to estimate the parameters of Gaussian mixture models is

prone to local optima due to nonconvexity of the problem and the improper selec-

tion of parameterization. We propose a novel modeling framework, three differ-

ent parameterizations and novel algorithms for the constrained Gaussian mixture

density estimation problem based on the expectation maximization algorithm,

convex duality theory and the stochastic search algorithms. We propose a new

modeling framework called Constrained Gaussian Mixture Models (CGMM) that

incorporates prior information into the density estimation problem in the form

of convex constraints on the model parameters. In this context, we consider two

different parameterizations where the first set of parameters are referred to as the

information parameters and the second set of parameters are referred to as the

source parameters. To estimate the parameters, we use the EM algorithm where

we solve two optimization problems alternatingly in the E-step and the M-step.

We show that the M-step corresponds to a convex optimization problem in the

information parameters. We form a dual problem for the M-step and show that

the dual problem corresponds to a convex optimization problem in the source

parameters. We apply the CGMM framework to two different problems: Robust

density estimation and compound object detection problems. In the robust den-

sity estimation problem, we incorporate the inlier/outlier information available

for small number of data points as convex constraints on the parameters using

the information parameters. In the compound object detection problem, we in-

corporate the relative size, spectral distribution structure and relative location

relations of primitive objects as convex constraints on the parameters using the

source parameters. Even with the propoper selection of the parameterization,
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density estimation problem for Gaussian mixture models is not jointly convex

in both the E-step variables and the M-step variables. We propose a third pa-

rameterization based on eigenvalue decomposition of covariance matrices which is

suitable for stochastic search algorithms in general and particle swarm optimiza-

tion (PSO) algorithm in particular. We develop a new algorithm where global

search skills of the PSO algorithm is incorporated into the EM algorithm to do

global parameter estimation. In addition to the mathematical derivations, exper-

imental results on synthetic and real-life data sets verifying the performance of

the proposed algorithms are provided.

Keywords: Gaussian mixture models, expectation maximization, convex opti-

mization, duality, particle swarm optimization.



ÖZET

GÜRBÜZ KISITLI GAUSS KARIŞIM MODELLERİNİN
ENBÜYÜK OLABİLİRLİK KESTİRİMİ

Çağlar Arı

Elektrik ve Elektronik Mühendisliği, Doktora

Tez Yöneticileri: Prof. Dr. Orhan Arıkan ve Yrd. Doç. Dr. Selim Aksoy

Ocak, 2013

Gauss karışım modelleri ile dağılım kestirimi yaparken modelin esnekliği ile veri

kümesindeki istenmeyen/modellenmeyen veri noktalarına olan hassaslığı arasında

temel bir ikilem durumu ortaya çıkmaktadır. Uygun olmayan parametre seçimi

ve problemin içbükey olmamasından dolayı Gauss karışım modellerinin paramet-

relerinin kestirimi için kullanılan beklenti enbüyükleme (EM) yöntemi en iyi

parametreleri bulamayabilmektedir. Bu tezde, beklenti enbüyükleme yöntemi,

içbükey eşleklik (duality) teorisi ve rasgele arama yöntemlerini temel alan kısıtlı

Gauss karışım modelleri için yeni bir modelleme sistemi, üç farklı parametrizasyon

ve özgün yöntemler önerilmektedir. Kısıtlı Gauss karışım modelleri (CGMM)

olarak adlandırdığımız modelleme sisteminde dağılım kestirimi problemi hakkında

sahip olunan bilgiler model parametreleri üzerine içbükey kısıtlar koyularak kul-

lanılabilmetedir. Bu durum için bilgi parametreleri ve kaynak parametreleri

olarak ifade ettiğimiz iki parametrizasyon düşünülmektedir. Parametrelerin kes-

tirimi için kullandığımız EM yönteminin E-adımı ve M-adımında sıra ile iki

eniyileme problemi çözülmektedir. M-adımındaki problemin bilgi parametre-

leri cinsinden içbükey eniyileme problemi olduğu gösterilmektedir. M-adımı için

eşlek (dual) problem oluşturulup bu problemin ise kaynak parametreleri cinsin-

den içbükey eniyileme problemi olduğu gösterilmektedir. CGMM modelleme sis-

temi gürbüz dağılım kestirimi ve bileşik nesne bulma problemlerine uygulanmak-

tadır. Gürbüz dağılım kestirimi probleminde, az sayıda veri noktası için var

olan istenilen/aykırı nokta bilgileri bilgi parametreleri üzerine içbükey kısıtlar

koyarak modellenmektedir. Bileşik nesne bulma probleminde ise basit nesneler

hakkında sahip olduğumuz göreceli boyut, spektral dağılım yapısı ve göreceli yer

bilgileri kaynak parametreleri üzerine içbükey kısıtlar koyarak modellenmekte-

dir. Uygun parametre seçimi yapılsa dahi Gauss karışım modelleri ile dağılım

kestirimi problemi içbükey eniyileme problemine denk gelmemektedir. Genelde
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rasgele arama, özelde parçaçık sürüsü eniyileme (PSO) yöntemlerinin etkili kul-

lanılmasına olanak sağlamak için kovaryans matrislerinin özdeğer ayrıştırmasına

dayalı üçüncü bir parametrizasyon önerilmektedir. Evrensel parametre kestirimi

yapabilmek için PSO yönteminin evrensel arama becerilerini EM yöntemine ek-

lediğimiz yeni bir yöntem sunulmaktadır. Matematiksel analiz ve gösterimlere ek

olarak sentetik ve gerçek hayat veri kümeleri kullanılarak önerilen yöntemlerin

başarılı olduğu gösterilmektedir.

Anahtar sözcükler : Gauss karışım modelleri, beklenti enbüyükleme, içbükey eni-

yileme, eşleklik, parçacık sürüsü eniyileme.
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Chapter 1

Introduction

1.1 Objective and Contributions

Density estimation can be considered as the most general form of estimation

problems. It provides a probabilistic framework that allows us to formulate the

problem in a mathematically principled way where the principles such as the

maximum likelihood [1],[2], [3] and the maximum entropy [4], [5], [6], [7], [8] can

be used to estimate the problem parameters [9], [10], [11], [11], [12], [13], [14].

Gaussian mixture models [15], [16], [17], [18], [19] are very flexible density

models and have been widely used in speech processing [20], [21], [22], [23], image

processing [24], [25], [26], [27], [28], [29], [30], [31] computer vision [32], [33] and

pattern recognition [19], [18], [17]. The maximum likelihood is the most popular

and commonly used principle to estimate the parameters of Gaussian mixture

models [19], [22], [17]. However, the negative log-likelihood function for Gaussian

mixture models is not a convex function of the parameters. Thus, there is no

algorithm that is guaranteed to find the globally optimal parameter estimates

[34], [35], [36].

The expectation maximization (EM) algorithm and its variants [37], [38], [39]

are the most commonly used algorithms to estimate the parameters of Gaussian
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mixture models. The EM algorithm is a very general and popular algorithm

used for doing maximum likelihood estimation of the parameters in models with

hidden variables. The fundamental idea behind the EM algorithm is to use an

upper bound function on the negative log-likelihoods of the observed variables

by introducing distributions over the hidden variables. This bound is a function

of the negative log-likelihoods of the joint distributions of both the hidden and

the observed variables and the introduced distributions over the hidden variables.

The EM algorithm consists of two steps called the E-step and the M-step. In the

E-step, the bound function is minimized over the introduced distributions over

the hidden variables while holding the parameters found in the previous iteration

fixed. In the M-step, the bound function is minimized over the parameters while

holding the introduced distributions found in the E-step fixed. This procedure

is then repeated until a fixed point of the algorithm corresponding to a local

optimum is reached. This method is guaranteed to monotonically decrease the

negative log-likelihood and to converge to a local minimum [37], [38].

There are two major problems which prevent the effective use of the EM algo-

rithm for Gaussian mixture models. First, the EM algorithm does not address the

question of parameterization. There are two commonly used parameterizations

for Gaussian mixture models. The most common way is to use the probabilities,

the mean vectors and the covariance matrices of Gaussian components for param-

eterization [19], [22], [17] which we refer to as the source parameterization. An

alternative way is to use the log probabilities, information vectors and informa-

tion matrices (inverse covariance matrices) for parameterization [37], [40], [41],

[42] which we refer to as the information parameters. Considering that the orig-

inal objective function was not a convex function of the parameters, one expects

to have a convex optimization problem with the proper selection of the param-

eterization for the M-step where the bound can easily be minimized over the

parameters. The second problem is that the EM algorithm does not address the

dual problems for the M-step which correspond to convex optimization problems

[36] for alternative parameterizations.

Density estimation using Gaussian mixture models presents a fundamental
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trade off between the flexibility of the model and its sensitivity to the un-

wanted/unmodeled data points in the data set. The most common approach

to tackle these problems is to incorporate the prior knowledge about the problem

in the form of prior distributions over the parameters [43], [44], [45], [46], [42] to

encode preferences about different parameter settings. In practice, it is hard to

come up with prior distributions that will encode the desired interrelationships

between the parameters. Furthermore, this is a very indirect way of formulating

the parameter relationships.

Another important problem with the density estimation using Gaussian mix-

ture models is that the number of parameters required for the covariance matrices

grows quadratically with the dimension of the data set. This is a common problem

encountered in domains such as speech recognition, image processing, computer

vision and pattern recognition where the dimensionality of the data is often high

and the size of the data set is relatively small. To overcome this problem, re-

searchers often constrain the Gaussian mixture parameters to decrease the num-

ber of independent parameters. For instance, in speech recognition researchers

generally use diagonal covariance matrices with several Gaussian components

rather than fewer Gaussian components with full covariance matrices [22], [21],

[23]. In image processing, computer vision and pattern recognition, it is desirable

to limit the number of independent parameters by taking advantage of the inde-

pendences between the subsets of the variables using the domain knowledge. For

example, zero entries in the information (inverse covariance) matrices correspond

to conditional independence relations between the variables given the rest of the

variables [40], [47], [3] and there are lots of algorithms trying to estimate the spar-

sity pattern of the information matrices automatically [40], [48], [49], [50], [51],

[52]. Similarly, zero entries in the covariance matrices correspond to marginal

independence relations between the variables [47], [3] and such restrictions are

often used in speech recognition, computer vision and pattern recognition [53],

[54], [33], [55], [56], [57] and there are lots of algorithms that try to estimate the

sparsity pattern of the covariance matrices automatically [58], [59], [60], [61].

Similar problems due to the relatively small size of the available data sets arise

in density adaptation problems with Gaussian mixture models. For instance, in
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speech recognition previously learned Gaussian mixture models are needed to be

adapted to different speakers or environmental conditions using relatively small

amount of new data samples [62], [63], [64], [65], [66], [67], [68]. In this context,

the new mean vectors of the Gaussian components are constrained to be an

(unknown) affine transformation of the previously learned mean vectors [62], [69],

[70], [66]. Moreover, this idea can also be extended to the diagonal and arbitrary

covariance covariance matrices where the new covariance matrices are constrained

to be an (unknown) affine transformation of the previously learned covariance

matrices [71], [66], [53]. Algorithms based on linear regression are proposed to

estimate the constrained mean vectors, constrained covariance matrices, and their

corresponding affine transformations [62], [69], [70], [71], [66], [53].

In the first part of this thesis, we present a novel constrained Gaussian mix-

ture model framework that incorporates the prior information about the problem

directly as convex constraints on the model parameters. The proposed frame-

work can handle convex constraints either on the information parameters or on

the source parameters (but it cannot handle the both simultaneously). Putting

constraints on the model parameters allows us a more direct way to encode the

interrelationships between the model parameters. We show that the M-step for

the EM algorithm corresponds to a convex optimization problem in the informa-

tion parameters, and additional convex inequality and affine equality constraints

on the information parameters can be handled by solving a constrained convex

optimization problem. Furthermore, using the convex duality theory, we present

an unconstrained dual problem for the M-step which corresponds to a convex

optimization problem in the source parameters. Hence, if the constraints on the

parameters of the Gaussian mixture models can be represented as convex in-

equality and affine equality constraints on the source parameters, we can solve

the constrained convex dual optimization problem for the M-step to handle the

convex constraints on the source parameters. The initial version of the proposed

framework described in this part is also presented in [72].

In many problems, the data points of interest are observed as part of a larger

set of observations where some of the points do not follow the assumed restricted

parametric distribution. We refer to the data points being distributed according
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to the assumed distribution as the inliers and the rest of the data points as the

outliers. In practice, it is often hard to know the distribution of the outliers. In

parametric density models, the common way to detect the outliers is to select a

threshold level for the log-likelihood function and classify the data points below

the selected threshold as the outliers and the data points above the threshold

value as the inliers. However, instead of trying different threshold values, it is

desirable to find the threshold value using inlier/outlier information available for

few data points.

In the second part of this thesis, we present a probabilistic framework for the

robust estimation of the Gaussian mixture models. We assume that the inliers

are distributed according to a Gaussian mixture model. We present an EM algo-

rithm so that when the posterior distributions of outliers given the data points

are constrained to take only 0 − 1 binary values and the likelihoods of the data

points given they are outliers are assumed to be equal to a constant value, we

can determine the inliers and the outliers without any additional information

about the outliers in the E-step, and we can estimate the information parameters

of Gaussian mixture density modeling the inliers in the M-step. Furthermore,

we incorporate the inlier/outlier information available for small number of data

points as affine inequality constraints on the information parameters and esti-

mate both the consistent information parameters and the constant value for the

likelihoods of the data points given they are outliers simultaneously by solving a

constrained convex optimization problem for the M-step. The initial version of

the model described in this part is also partly described in [72].

Even with the proper selection of the parameterization, density estimation

problem for Gaussian mixture models is not jointly convex in both the E-step

variables and the M-step variables. Hence the EM algorithm is prone to local

optima. The common approach is to run the EM algorithm many times from

different initial configurations and to use the result corresponding to the highest

log-likelihood value. However, even with some heuristics that have been pro-

posed to guide the initialization, this approach is usually far from providing an

acceptable solution especially with increasing dimensions of the data space. Fur-

thermore, using the results of other algorithms such as k-means [20], [73] for
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initialization is also often not satisfactory because there is no mechanism that

can measure how different these multiple initializations are from each other. In

addition, this is a very indirect approach as multiple EM procedures that are

initialized with seemingly different values might still converge to similar local op-

tima. Consequently, this approach may not explore the solution space effectively

using multiple independent runs.

Researchers dealing with similar problems have increasingly started to use

population-based stochastic search algorithms [74], [75], [76] where different po-

tential solutions are allowed to interact with each other. These approaches enable

multiple candidate solutions to simultaneously converge to possibly different op-

tima by making use of the interactions. Genetic algorithm (GA) [77], [78], [79],

[80], differential evolution (DE) [81], [82], and particle swarm optimization (PSO)

[83], [84] have been the most common population-based stochastic search algo-

rithms used for the estimation of some form of GMMs. Although many different

versions of these algorithms have been proposed for various optimization prob-

lems, their applications in GMM estimation share some common properties.

The general GA framework creates successive generations of candidate solu-

tions having improved goodness values by applying reproduction operators and

selection mechanisms. Contrary to the classical use of binary string represen-

tations, the GA variants for problems that involve continuous parameters like

in GMM estimation represent the candidate solutions as sets of real numbers

[85],[86], [87], [88],[89]. A GA procedure usually consists of four basic stages:

initialization, fitness assignment, reproduction, and selection. A population of

candidate solutions are randomly generated during initialization. Then, a fitness

function such as the sum of squared error [89] or the likelihood function [85],

[86],[88] is used to assign a goodness value to each candidate solution. Candidate

solutions with high fitness values are selected for reproduction in a stochastic

manner. New candidate solutions are created from the selected solutions called

parents using crossover and mutation operators. Crossover determines which

parts of the chosen parents will be copied into new candidate solutions. Alpha

blended crossover operators [85], [88], [89] are used with real-coded parameters

6



where some convex combination of the parents are formed. Adding a small ran-

dom vector to the parent is commonly used as the mutation operator [85], [89].

In the selection phase, a new population is formed by replacing existing solutions

with poor fitness values with newly created ones.

DE is another population-based stochastic search algorithm that is very sim-

ilar to real-coded GAs. After similar initialization and fitness assignment steps,

the mutation operator involves the formation of a mutant vector by adding the

weighted differences of two randomly selected candidate solutions to another ran-

domly selected candidate solution, and the crossover stage takes some parts of

the mutant vector and some parts of a candidate solution to form a new vector

considered for selection [90].

PSO is a relatively newer optimization technique that has also been used

for GMM estimation. In PSO, candidate solutions are called particles where

each particle consists of a position vector that encodes the parameters and a

velocity vector that determines the new position in the parameter space in the

next iteration. The velocity vectors are updated using the particles’ current

velocity, the difference between its personal best position and its current position,

and the difference between the global best position and its current position in a

stochastic manner [91], [92], [93], [94]. The personal best and global best are

selected according to the positions achieving the highest fitness values in the

personal history of the candidate solution of interest and in the histories of all

candidate solutions, respectively.

Even though these approaches have been shown to perform better than non-

stochastic alternatives such as k-means and fuzzy c-means, the interaction mech-

anism that forms the basis of the power of the stochastic search algorithms has

also limited the use of these methods due to some inherent assumptions in the

candidate solution parameterization. For example, the crossover and mutation

operators in GA and DE, and the update operations in PSO involve random-

ized addition, swapping, and perturbation of the individual parameters of the

candidate solutions. However, randomized modification of individual elements

of a covariance matrix independently as in the mutation and update operations
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does not guarantee the result to be a valid (i.e., symmetric and positive definite)

covariance matrix. Likewise, partial exchanges of parameters between two candi-

date solutions as in crossover operations lead to similar problems. Hence, these

problems confined the related work to either use no covariance structure (i.e.,

implicitly use identity matrices centered around the respective means) [89], [90],

[91], [92], [94] or constrain the covariances to be diagonal [85],[93]. Consequently,

most of these approaches were limited to the use of only the mean vectors in the

candidate solutions and to the minimization of the sum of squared errors as in

the k-means setting instead of the maximization of a full likelihood function.

Exceptions where both mean vectors and full covariance matrices were used in

candidate solutions include [86], [87] where EM was used for the actual local opti-

mization by fitting Gaussians to data in each iteration and a GA was used only to

guide the global search by selecting individual Gaussian components from existing

candidate solutions in the reproduction steps. However, treating each Gaussian

component as a whole in the search process and fitting it locally using the EM

iterations may not explore the whole solution space effectively especially in higher

dimensions. Another example is [88] where two GA alternatives for the estima-

tion of multidimensional GMMs were proposed. The first alternative encoded the

covariance matrices for d-dimensional data using d+ d2 elements where d values

corresponded to the standard deviations and d2 values represented a correlation

matrix. The second alternative used d runs of a GA for estimating 1D GMMs

followed by d runs of EM starting from the results of the GAs. Experiments using

3D synthetic data showed that the former alternative was not successful and the

latter performed better. We can conclude that full exploitation of the power of

GMMs involving arbitrary covariance matrices estimated using stochastic search

algorithms necessitates new parameterizations where the individual parameters

are independently modifiable so that the resulting matrices remain valid covari-

ance matrices after the stochastic updates and have bounded ranges so that they

can be searched within a finite solution space.

Another important problem that has been largely ignored in the application of

stochastic search algorithms to GMM estimation problems in the pattern recog-

nition literature is identifiability. In general, a parametric family of probability
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density functions is identifiable if distinct values of the parameters determine

distinct members of the family [15], [19]. For mixture models, the identifiabil-

ity problem exists when there is no prior information that allows discrimination

between its components. When the component densities belong to the same

parametric family (e.g., Gaussian), the mixture density with K components is

invariant under the K! permutations of the component labels (indices). Conse-

quently, the likelihood function becomes invariant under the same permutation,

and this invariance leads to K! equivalent modes, corresponding to equivalence

classes on the set of mixture parameters. This lack of uniqueness is not a cause for

concern for the iterative computation of the maximum likelihood estimates using

the EM algorithm, but can become a serious problem when the estimates are it-

eratively computed using simulations when there is the possibility that the labels

(order) of the components may be switched during different iterations [15], [19].

Considering the fact that most of the search algorithms depend on the designed

interaction operations, performances of the operations that assume continuity or

try to achieve diversity cannot work as intended, and the discontinuities in the

search space will make it harder for the search algorithms to find directions of

improvement. In an extreme case, the algorithms will fluctuate among different

solutions in the same equivalence class, hence, among several equivalent modes of

the likelihood function, and will have significant convergence issues. This problem

is known as “label switching” in the statistics literature for the Bayesian estima-

tion of mixture models using Markov chain Monte Carlo (MCMC) strategies.

The label switching corresponds to the interchanging of the parameters of some

of the mixture components and the invariance of the likelihood function as well

as the posterior distribution for a prior that is symmetric in the components un-

der such permutations [19]. The label switching and the associated identifiability

problem have been well-investigated in several Bayesian estimation studies. Pro-

posed solutions include artificial identifiability constraints that involve relabeling

of the output of the MCMC sampler based on some component parameters (e.g.,

sorting of the components based on their means for 1D data) [19], deterministic

relabeling algorithms that select a relabeling at each iteration that minimizes the

posterior expectation of some loss function [95], [96], and probabilistic relabel-

ing algorithms that take into consideration the uncertainty in the relabeling that
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should be selected on each iteration of the MCMC output [97].

Even though the label switching problem also applies to the stochastic search

procedures, only a few pattern recognition studies (e.g., only [88], [89] among

the ones discussed above) mention its existence during GMM estimation. In

particular, Tohka et al. [88] ensured that the components were ordered based on

their means in each iteration. This ordering was possible because 1D data were

used in the experiments but such artificial identifiability constraints are not easy

to establish for multivariate data. Since they have an influence on the resulting

estimates, these constraints are also known to lead to over- or under-estimation

[19] and create a bias [95]. Chang et al. [89] proposed a greedy solution that

sorted the components of a candidate solution based on the distances of the

mean vectors of that solution to the mean vectors of a reference solution that

achieved the highest fitness value. However, such heuristic orderings depend on

the ordering of the components of the reference solution that is also arbitrary and

ambiguous.

It is clear that a formulation that involves unique, independently modifiable,

and bounded parameters is needed for effective utilization of stochastic search al-

gorithms for the maximum likelihood estimation of unrestricted Gaussian mixture

models.

In the third part of this thesis, we present a parameterization based on eigen-

value decomposition of covariance matrices which is suitable for stochastic search

algorithms in general, and particle swarm optimization (PSO) algorithm in par-

ticular. We develop a new algorithm where global search skills of the PSO algo-

rithm is incorporated into the EM algorithm to do global parameter estimation.

In addition to the mathematical derivations, experimental results on synthetic

and real-life data sets verifying the performance of the proposed algorithms are

provided.

Our major contributions in this part are twofold: we present a novel pa-

rameterization for arbitrary covariance matrices where the individual parameters

can be independently modified in a stochastic manner during the search process,

and describe an optimization formulation for resolving the identifiability problem
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for the mixtures. Our first contribution, the parameterization, uses eigenvalue

decomposition, and models a covariance matrix in terms of its eigenvalues and

Givens rotation angles extracted using QR factorization of the eigenvector ma-

trices via a series of Givens rotations. We show that the resulting parameters

are independently modifiable and are bounded so they can be naturally used in

different kinds of stochastic global search algorithms. We also describe an algo-

rithm for ordering the eigenvectors so that the parameters of individual Gaussian

components are uniquely identifiable. Unlike the existing work that use only the

means [89], [90], [91], [92], [94] or means and standard deviations alone [85], [93]

in the candidate solutions, this parameterization allows the use of full covariance

matrices in the GMM estimation.

As our second major contribution in this part, we propose an algorithm for

ordering of the Gaussian components within a candidate solution for obtaining a

unique correspondence between two candidate solutions during their interactions

for parameter updates throughout the stochastic search. The correspondence

identification problem is formulated as a minimum cost network flow optimization

problem where the objective is to find the correspondence relation that minimizes

the sum of Kullback-Leibler divergences between pairs of Gaussian components,

one from each of the two candidate solutions. Our method can be considered as a

deterministic relabeling algorithm according to the categorization of label switch-

ing solutions as discussed above. We illustrate the proposed parameterization and

identifiability solutions using PSO for density estimation. Earlier versions of this

part are also described in [98], [99], [100],

One of the most challenging problems of the remote sensing image analy-

sis is the compound object detection problem. Recently available multispectral

channels in very high spatial resolution (VHR) images contain a large number of

intrinsically heterogeneous structures. We refer to these structures as compound

objects. For instance, different kinds of residential areas, commercial areas, and

industrial areas which are comprised of various spatial arrangements of primitive

objects such as buildings and roads can be considered as compound objects.

There has been a great deal of research in computer vision on the issue of
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object representation with a widespread agreement on the object models that are

comprised of various spatial arrangements of primitive objects or parts. Repre-

sentation of compound objects as a collection of spatially related primitive objects

or parts has a long history in computer vision [101], [32], [102], [103], [104], [33],

[105]. There are two commonly used approaches for object recognition which

can simply be classified as probabilistic [104], [105], [55], and deterministic [106],

[107] methods. In these methods, first, candidate primitive objects locations and

scales are determined using methods for extracting distinctive invariant features

from images that can be used to perform reliable matchings between the primitive

objects [108], [109], [110]. Second, additional set of local features [111], [32] are

extracted around the found candidate primitive object locations. Third, these

local features, their locations and scales are put into a some cost function [107],

[106] or log-likelihood ratio test function [104], [32] to determine if the compound

object of interest is present.

These methods are reported to work well in commercial image databases for

the detection of objects such as faces, pedestrians, bicycles, cars, etc [106], [32],

[105]. These objects consist of distinctive primitive objects and the proposed

algorithms heavily rely on methods for extracting distinctive invariant features

to find the candidate primitive object locations. These assumptions do not hold

for high-resolution remote sensing images that contain a large number of primitive

objects which do not generate distinctive invariant features. Moreover proposed

methods can only handle simple geometric relations like left to/right to or nearby

[106], [105]. On the other hand, remote sensing images contain tens or hundreds

of similar primitive objects as shown in Figure 1.1 and the main distinguishing

factor between different compound objects are the different spatial arrangements

of the primitive objects.

In the fourth part of this thesis, we present a compound object detection

algorithm as an application to the robust constrained Gaussian mixture models.

We incorporate the relative size, spectral distribution structure, relative location

relations of primitive objects and the independence relations between the location

and spectral parts as convex constraints on the source parameters. We formulated

the detection problem as the identification of the required number (learned from
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Figure 1.1: Compound structures in WorldView-2 images of Ankara and Ku-
sadasi, Turkey.

the reference compound objects) of pixels which are relatively close and have

similar spectral and spatial arrangement properties to the primitive objects. The

initial version of the algorithm described in this part is also presented in [72]

1.1.1 Summary of Contributions

The main contributions of this thesis are as follows. As our first contribution, we

propose a constrained Gaussian mixture model framework which allows us to in-

corporate prior information about the problem in the form of convex constraints

on the parameters. We study the information and the source parameterizations

of Gaussian mixture models, and show their relationship using the convex duality

theory. Moreover, we provide convex primal and dual problems for the M-step

suitable for adding convex constraints on the parameters. As our second contri-

bution, we propose a probabilistic model for the robust estimation of Gaussian

mixture models which incorporates the inlier/outlier information available for
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small number of data points as convex constraints on the parameters. As our

third contribution, we present a novel algorithm where global search skills of the

particle swarm optimization algorithm is incorporated into the EM algorithm to

do global parameter estimation. As our fourth contribution, we present a new

detection algorithm for the compound object detection problem based on robust

constrained Gaussian mixture models. The initial versions of the algorithms de-

scribed in this thesis were also published in [100], [72], [98], [99].

1.2 Organization of the Thesis

The organization of the thesis is as follows.

In Chapter 2, we summarize the necessary mathematical background and

introduce the notations used for subsequent developments in this thesis. We

describe mathematical principles drawn primarily from two areas: parameter

estimation in exponential family models, and convex optimization and duality

theory.

In Chapter 3, we consider the constrained Gaussian mixture models which

serves as the fundamental modeling framework for the robust density estimation

and the compound object detection problems. In this Chapter we discuss the

source parameterization and the information parameterization of the Gaussian

mixture models and provide an expectation maximization algorithm where convex

constraints on the parameters can be handled by solving convex optimization

problems for the M-step.

In Chapter 4, we describe a probabilistic model for the robust estimation

of Gaussian mixture models which incorporates the inlier/outlier information

available for small number of data points as convex constraints on the parameters.

In Chapter 5, we present a stochastic search algorithm framework for the

global optimization of the Gaussian mixture model parameters. We describe a

new parameterization for the covariance matrices and present a novel algorithm
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where global search skills of the particle swarm optimization algorithm is in-

corporated into the expectation maximization algorithm to do global parameter

estimation.

In Chapter 6, we describe a novel algorithm for compound object detection

based on robust constrained Gaussian mixture models.

In Chapter 7, we summarize our conclusions and plans for future work.
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Chapter 2

Background

This Chapter summarizes the necessary mathematical background and introduces

the notations used for subsequent developments in this thesis. We use mathe-

matical principles drawn primarily from two areas: parameter estimation in ex-

ponential family models, and convex optimization and duality theory.

Most of the standard discrete and continuous distributions used in practice,

such as the Bernoulli, multinomial, Gaussian, exponential, Poisson, etc., and

more complicated probabilistic models including fully observed Gaussian mixture

models, Bayesian and Markov Networks can be represented in exponential family

form [41], [42], [3], [17]. Exponential families and their various properties have

been extensively studied and used in statistics, pattern recognition and machine

learning [112], [113], [114], [115], [41], [42], [3]. Exponential families provide a gen-

eral framework for the selection of different parameterizations of distributions by

defining different sufficient statistics [7]. Thus, different parameterizations, their

geometric structure and various other properties have been extensively studied

in the information geometry literature [113], [112], [114], [115]. The exponential

family framework also addresses the maximum likelihood (ML) [1], [2], [3] pa-

rameter estimation problem for alternative parameterizations and shows which

parameterizations lead to easy estimation problems [3], [41], [42] that correspond

to convex optimization problems.
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Furthermore, estimation of the parameters of additional distributions, such as

Gaussian mixture models, that do not belong to the exponential family but can be

modeled as marginalized form of an exponential family distribution such as fully

observed Gaussian mixture models, can be performed using popular algorithms

like the expectation maximization (EM) algorithm [37]. Moreover, using the

formalism of exponential families provides us a general framework where various

important results can be derived with ease.

Optimization formulations are integral to many disciplines of engineering and

science [36], [35], [116], [117], [118], [119], [79], [81], [120], [121], [122], [123], [124],

[74], [75], [76], [125], [80], [82], [126], [127]. Convex optimization [36], [35], [116],

[128], [129], [34] uses the ideas from convex analysis [130], [131] which at a sim-

plistic level is the study of properties of convex functions and convex sets. With

the advancement of powerful algorithms [36], [132], [118], [133], [134], [134], [135],

[136], [137], [138], [139] and software packages [140], [141], [142], [143] for spec-

ifying and solving convex optimization problems, this class of problems can be

solved globally and efficiently. Furthermore, convex analysis and duality theory of

which there are various closely related forms (Fenchel/Legendre and Lagrangian

duality) [144], [145], plays a significant role in the analysis of optimization prob-

lems. What is more, duality theory not only introduces conceptual insights to the

optimization problems but also provides important practical methods for devel-

oping optimization algorithms. There exists a huge literature on convex optimiza-

tion and convex optimization based heuristics for solving nonconvex optimization

problems [36], [35], [116], [128], [129], [34].

There are strong connections between exponential family distributions and

convex optimization. For instance, maximum entropy distributions subject to lin-

ear constraints take exponential family form [4], [5], [6], [8], [7]. Moreover, there

exist two different parameterizations called the natural and the moment parame-

terizations for a given exponential family distribution which are connected via the

Fenchel duality relation [5] between the log partition and the entropy functions

[5]. This duality relation (or more precisely the gradients of the log partition

and the negative entropy functions) provides mappings between the two param-

eterizations. Furthermore, the maximum likelihood (ML) [1], [2], [3] and the
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maximum entropy (ME) [4], [5], [6], [7], [8] parameter estimation problems are

related through Lagrangian duality. In this case, the maximum likelihood prob-

lems correspond to a convex optimization problem in the natural parameters as

optimization variables and the maximum entropy problems lead to a convex opti-

mization problem in the moment parameters as optimization variables. Mappings

between the natural and the moment parameters are provided by the gradients

of the log partition and the entropy functions due to the Fenchel duality relation.

Convexity of the parameter estimation problems for exponential families

breaks down in the existence of hidden (unobserved) variables. The expecta-

tion maximization algorithm [37], which can be interpreted as doing alternating

optimization on a surrogate bound function [38], is widely used for parameter

estimation problems with hidden variables. In such estimation problems, Fenchel

duality provides a mathematically principled way to obtain the bound function

on the log-likelihood of the marginal distribution of the observed variables as a

function of the log-likelihood of joint distribution of both observed and hidden

variables. What is more, convex optimization provides an explanation for why pa-

rameter estimation problems for exponential family distributions are easier using

such bounds.

The following Sections briefly summarize the key ideas and notations used

to present the main mathematical results in this thesis. The notation used to

describe the optimization problems with very basic definitions and properties of

convex sets and functions are introduced in Section 2.1. Section 2.2 presents the

Fenchel/Legendre conjugate function and the Lagrangian duality. The maximum

likelihood and the maximum entropy principles used for parameter estimation

are given in Section 2.3. Exponential family distributions and their important

properties used in this thesis are described in Section 2.4.
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2.1 Optimization Problems

Optimization in general and convex optimization in particular is of central im-

portance in this thesis. There are lots different notations and definitions used

in the optimization literature [36], [130], [132], [131], [128], [129]. In this thesis

we follow the notation used by [36]. Furthermore, properties of convex sets and

functions are heavily used in this thesis. We will give the definitions and describe

the properties that play significant roles. For the rest, we will cite the relevant

sources. We use the optimization and convex optimization problem definitions

given in [36].

Definition 1. An optimization problem has the form

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m

subject to hi(x) = 0, i = 1, . . . , p (2.1)

where the vector x ∈ Rn is called the optimization variable, and the function

f0 : Rn → R is called the objective function or cost function. The functions

fi : Rn → R, i = 1, . . . ,m are called the inequality constraint functions and

the inequalities fi(x) ≤ bi, i = 1, . . . ,m are called the inequality constraints. The

constants bi, i = 1, . . . ,m are called limits or bounds on the inequality constraints.

The functions hi : Rn → R, i = 1, . . . , p are called the equality constraint functions

and the equalities hi(x) = 0, i = 1, . . . , p are called the equality constraints. A

vector x∗ is called optimal, or an optimal solution of the problem in (2.1), if it

has the smallest objective value among all vectors that satisfy the constraints.

In practice, optimization problems sometimes arise as maximization of some

objective function. Maximization problems can be put into the form in (2.1) as

minimization of the negative of the objective function.
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2.1.1 Convex Optimization Problems

Before we define the special class of optimization problems called convex opti-

mization problems, first we will give simple definitions of convex sets and convex

functions.

Definition 2. Let S denote a set. If for any x, y ∈ S and any λ where 0 ≤ λ ≤
1, we have

λx + (1− λ)y ∈ S, (2.2)

set S is convex.

Definition 3. Let f : Rn → R be a function. If the domain of f (dom f) is a

convex set and if for all x, y ∈ dom f , and λ where 0 ≤ λ ≤ 1, we have

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y), (2.3)

function f is convex.

The inequality in (2.3) extends to integrals where λ is replaced by a continuous

function of x. This general form is widely known as the Jensen’s inequality.

Definition 4. Let x be a random vector with pdf p(x) ≥ 0 taking values in the

sample space Ωx where
∫

Ωx
p(x)dx = 1. A function f : Rn → R is convex, if it

satisfies the Jensen’s inequality

f
(∫

Ωx

p(x)xdx
)
≤
∫

Ωx

p(x)f(x)dx, (2.4)

f(E[x]) ≤ E[f(x)]. (2.5)

Another useful inequality is the Holder’s inequality

Definition 5. Holder’s inequality∫
f(x)g(x)dx ≤

(∫
|f(x)|pdx

)1/p(∫
|f(x)|qdx

)1/q

(2.6)

Finally, we define convex optimization problems using convex objective and

constraint functions.
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Definition 6. Optimization problems where the convex objective function is mini-

mized or concave objective function is maximized subject to constraints where the

inequality constraint functions are convex and the equality constraint functions

are affine are defined as convex optimization problems.

2.2 Convex Duality

2.2.1 Fenchel Duality

Definition 7. The Fenchel conjugate function of f : Rn → R is f ∗ : Rn → R,

where f ∗ is defined as

f ∗(ν) = sup
θ∈dom f

θTν − f(θ). (2.7)

The values ν ∈ Rn where the supremum is finite determines the domain of the

conjugate function. The conjugate function f ∗ of differentiable f is also known

as the Legendre transform of f where

f ∗(ν) = [θTν − f(θ)]ν=∇θf(θ). (2.8)

Corollary 1. By definition, since f ∗(ν) is a supremum of affine functions of ν,

it is always convex, even if f(θ) is not a convex function of θ [36].

In addition, if f is also convex and its epigraph is a closed set, then the

conjugate of the conjugate function is equal to the original function, i.e., f ∗∗ = f

[36], [130]. In this case, for any θ and ν, f(θ) and f ∗(ν) are related through the

Fenchel inequality.

Definition 8. The Fenchel-Young inequality is given as

f ∗(ν) + f(θ)− θTν ≥ 0. (2.9)
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Furthermore, the Fenchel inequality holds with equality when we have

∇θf(θ) = ν and ∇νf
∗(ν) = θ. This follows from the definition of the conju-

gate function. Note that the gradients ∇θf(θ) and ∇νf
∗(ν) also provide gradient

mappings between the parameters θ and ν. In particular, ∇θf(θ) maps θ to ν,

whereas ∇νf
∗(ν) provides an inverse mapping from ν to θ.

2.2.2 Lagrangian Duality

Definition 9. Consider an optimization problem of the form (2.1). Assume

that the domain of the problem domP =
(⋂m

i=0 dom fi
)
∩
(⋂p

i=1 dom hi
)

is

nonempty and let p∗ denote the optimal value. Lagrangian L : Rn×Rm×Rp → R
of the problem (2.1) is defined as

L(x, λ, ν) = f0(x) +
∑
i

λi(fi(x)− bi) +
∑
i

νihi(x) (2.10)

where dom L = dom P × Rm × Rp. The variables λi, i = 1, . . . ,m and νi,

i = 1, . . . , p are called the Lagrange multipliers or dual variables.

Definition 10. The Lagrange dual function g : Rm × Rp → R is defined as the

minimum value of the Lagrangian (2.10) over x for any λ and ν:

g(λ, ν) = inf
x∈dom P

L(x, λ, ν). (2.11)

Corollary 2. The dual function g(λ, ν) in (2.11) is a concave function of λ and

ν since it is defined as the infimum of affine functions of λ and ν.

Definition 11. The Lagrange dual optimization problem of (2.1) is defined as

maximize g(λ, ν)

subject to λ ≥ 0. (2.12)

Corollary 3. The Lagrange dual optimization problem in (2.12) is a convex op-

timization problem since a concave objective function is to be maximized and the

constraints are convex.
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2.3 Parameter Estimation

In this Section, we will introduce two popular principles called the maximum

likelihood (ML) [1], [2], [3] and the maximum entropy (ME) [4], [5], [6], [7], [8]

used for parameter estimation.

In estimation problems, we are given a data set of N random vectors X =

{x1, . . . ,xN}, X ∈ ΩX , corresponding to a random sample from an unknown

distribution. In general, it is convenient to use the empirical distribution of the

data set X .

Definition 12. Empirical density p̃(x) of a set of N observations X =

{x1, . . . ,xN} is defined as

p̃(x) =
N∑
j=1

1

N
δ(x − xj) (2.13)

where for xj ∈ Ωxj , δ(x − xj) denotes the Dirac delta function for continuous

sample space and Kronecker delta function for discrete sample space.

Similarly, we often use averages of some function of the data points X which

are addressed as empirical moments.

Definition 13. For a specified statistics function φ : Ωx → Rd, the expected

statistics with respect to the empirical distribution p̃(x), i.e., Ep̃(x)[φ(x)], is de-

fined as the empirical moment.

2.3.1 Maximum Likelihood Principle

Suppose we are given a data set of N random vectors X = {x1, . . . ,xN} ∈ ΩX

corresponding to a random sample from a parametric probability density function

p(X|θ) ∈ F belonging to a family of probability distributions F parametrized by

the parameter θ ∈ Cθ where Cθ is called the parameter space and denotes the

values the parameter θ can take so that p(X|θ) ∈ F is a valid distribution. When
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p(X|θ) is considered as a function of the parameter θ, it is called the likelihood

function, and is denoted by L(θ|X ) as

L(θ|X ) = p(X|θ). (2.14)

In general, it is more convenient to work with the log-likelihood function `(θ|X )

as

`(θ|X ) = log p(X|θ). (2.15)

Definition 14. The maximum likelihood principle [1], [2], [3] states that the best

estimate θ̂ of the parameter θ maximizes the log-likelihood `(θ|X ) of the data X
as

θ̂ = arg max
θ

`(θ|X ) (2.16)

where there is an implicit constraint θ ∈ Cθ incorporated into the domain of the

objective function `(θ|X )

`(θ|X ) =

log p(X|θ), if θ ∈ Cθ,

−∞, otherwise.
(2.17)

If the data set of random vectors X are independent and distributed accord-

ing to parametric probability density functions p(xj|θj), log-likelihood function

`(Θ|X ) can be simplified as follows

`(θ|X ) = log p(X|θ)

= log p(x1, . . . ,xN |θ1, . . . , θN)

= log
N∏
j=1

p(xj|θj)

=
N∑
j=1

log p(xj|θj)

=
N∑
j=1

`(θj|xj) (2.18)
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In practice, the data set of the random vectors X are independent and identically

distributed (i.i.d.) according to the probability density function p(x|θ). This

further simplifies (2.18) as

`(θ|X ) =
N∑
j=1

log p(xj|θj)

=
N∑
j=1

log p(xj|θ)

=
N∑
j=1

`(θ|xj). (2.19)

In this thesis, we will generally consider the optimization problem corresponding

to the ML parameter estimation for an i.i.d. data set X of N random vectors in

the following form

minimize − 1

N

N∑
j=1

`(θ|xj) (2.20)

where the distribution parameter θ is the optimization variable and the log-

likelihood of the j’th data point xj is denoted by `(θ|xj) = log p(xj|θ).

2.3.2 Maximum Entropy Principle

In this Section, we will introduce the maximum entropy principle used for param-

eter estimation. First we will give simple definitions of the entropy function and

the Kullback-Leibler (KL) divergence. Entropy is used as a measure of random-

ness or uncertainty for probability distributions and KL divergence is a metric

used to measure similarity between two probability distributions [146], [147], [8].

Definition 15. Given a probability distribution p(x) defined on some sample

space Ωx, the (differential) entropy [8] is defined as

H(p(x)) = −
∫

Ωx

p(x) log p(x)dx. (2.21)

For discrete spaces Ωx, dx is taken to be a counting measure so that the equation

is written with a sum rather than an integral.
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Definition 16. The relative entropy or Kullback-Leibler divergence between two

probability distributions p(x) and q(x) defined on some sample space Ωx is defined

as

D(p||q) =

∫
Ωx

p(x) log
p(x)

q(x)
dx. (2.22)

Suppose we are given a data set of N random vectors X = {x1, . . . ,xN} where

all random vectors take values in the same sample space Ωx , i.e., xj ∈ Ωx for

j = 1, . . . , N . Let φ : Ωx → Rd denote the statistics function and Ep̃(x)[φ(x)] = νs

denote the empirical moment where the expectation is taken with respect to

the empirical distribution of the data set denoted by p̃. Consider a parametric

probability density function p(x|ν) ∈ F belonging to a family of probability

distributions F parametrized by the moment parameter ν = Ep(x|ν)[φ(x)]. Let

Cν denote the realizable moment parameter space.

Definition 17. The maximum entropy (ME) principle [4], [5], [6], [8], [7] states

that the best estimate ν̂ of the parameter ν maximizes the entropy H(ν) of the

distribution p(x|ν) subject to the linear moment constraints ν = νs as

ν̂ = arg max
ν=νs

H(ν) (2.23)

where there is an implicit constraint ν ∈ Cν incorporated into the domain of the

objective function H(ν)

H(ν) =

H(ν), if ν ∈ Cν ,

−∞, otherwise.
(2.24)

Here ν ∈ Rd is the optimization variable and ν = νs corresponds to the linear

moment constraints on ν. In other words, the ME principle aims to find the

moment parameter estimate ν̂ that leads to the least informative distribution

p(x|ν) among the family of distributions F that is consistent with the specified

moment constraints ν = νs.
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2.4 Exponential Family Models

Exponential family models are of central importance to this thesis. The distribu-

tion of the fully observed Gaussian mixture models [41], [42] can be represented

in exponential family form. Hence, the marginal distribution of the observed

variables can be viewed as a marginal distribution of an exponential family dis-

tribution. Using the exponential family framework with duality theory illumi-

nates various connections between different parameterizations of Gaussian mix-

ture models. In addition, it provides conceptual insights for the bound function

used in the expectation maximization algorithm to do parameter estimation.

A broad class of probabilistic models can be represented in exponential family

form [41], [42], [3], [148], [149], [150], [151], [152], [44], [47], [153]. Exponential

family models have lots of nice features and are studied extensively in the statis-

tics literature [112], [113], [114], [115]. In this thesis, we are mainly interested

in parameter estimation problem for Gaussian mixture models. Hence we will

describe a minimum set of properties of exponential family models that are im-

portant for the parameter estimation. In Section 2.4.1 we will define exponential

family distributions and introduce the natural and the moment parameters. In

Section 2.4.2 we will show that the log partition function is a convex function of

the natural parameters and the gradient of the log partition function provides a

mapping from the natural parameters to the moment parameters. In Section 2.4.3

we derive the Fenchel duality relation between the log partition and the entropy

functions. In Section 2.4.4 we will introduce the maximum likelihood (ML) and

the maximum entropy (ME) principles for parameter estimation and in Section

2.4.5 we will show that the ML and the ME problems are dual problems using

Lagrangian duality. In Section 2.4.6 we will introduce multinomial and Gaussian

distributions.
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2.4.1 Exponential Family Distributions

Definition 18. A set F of parametrized distributions over a random vector x

taking values in some sample space Ωx of the form

p(x|θ) = exp(θTφ(x)− Φ(θ)) (2.25)

is called exponential family where θ ∈ Rn are called the natural parameters, φ :

Ωx → Rn are called the sufficient statistics, θTφ(x) denote the Euclidean inner

product in Rn and Φ(θ) is called the log partition function

Φ(θ) = log

∫
x∈Ωx

exp(θTφ(x))dx (2.26)

which serves to normalize the distribution to 1. For discrete spaces, dx is taken to

be a counting measure so that log partition Φ(θ) is written with a sum rather than

an integral. We denote the set of all parameters θ where Φ(θ) is well-defined with

Cθ = {θ ∈ Rn|Φ(θ) < ∞}. For regular exponential family F = {p(x|θ)|θ ∈ Cθ},
the set of parameters Cθ is an open convex set in Rn.

Expected value of sufficient statistic function φ : Ωx → Rn is defined to be

the moment of the probability distribution p(x|θ) ∈ F . Associated with the

sufficient statistic function φ(x) ∈ Rn, there is a moment parameter ν ∈ Rn

which is defined by the expectation

ν = Ep(x|θ)[φ(x)]. (2.27)

We denote the set of all realizable moment parameters with Cν = {ν ∈ Rd|ν =

Ep(x|θ)[φ(x)], p(x|θ) ∈ F}.

2.4.2 Log Partition and Entropy Functions

We can see the relation between the moment parameters ν ∈ Cν and the natural

parameters θ ∈ Cθ using the moment generating property of the log partition

function Φ(θ).

28



Proposition 1. Gradient of the log partition function Φ(θ) with respect to natural

parameters θ is equal to the moment parameters ν.

Proof.

∇θΦ(θ) =

∫
x∈Ωx

φ(x) exp(θTφ(x))dx∫
x̂∈Ωx

exp(θTφ(x̂))dx̂

=

∫
x∈Ωx

φ(x) exp(θTφ(x))dx

exp log
∫

x̂∈Ωx
exp(θTφ(x̂))dx̂

=

∫
x∈Ωx

φ(x) exp(θTφ(x))dx

exp Φ(θ)

=

∫
x∈Ωx

φ(x) exp(θTφ(x)− Φ(θ))dx

=Ep(x|θ)[φ(x)]

=ν (2.28)

Notice that the gradient of the log partition function ∇θΦ(θ) provides a map-

ping ∇θΦ : Cθ → Cν from the natural parameters θ ∈ Cθ to the moment parame-

ters ν ∈ Cν . This property implies that the moment parameters can also be used

to characterize exponential family distributions.

As we will make it clear later, from the maximum likelihood estimation point

of view, the most important property of the log partition function Φ(θ) is its

being a convex function of the natural parameters θ.

Proposition 2. The log partition function Φ(θ) is a convex function of the nat-

ural parameters θ.

Proof. To prove that the log partition function Φ(θ) is a convex function of the

natural parameters θ, we show Φ(αθ1 + (1−α)θ2) ≤ αΦ(θ1) + (1−α)Φ(θ2) using
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the Holder’s inequality (2.6).

Φ(αθ1 + (1− α)θ2) = log

∫
x∈Ωx

exp
(
(αθ1 + (1− α)θ2)Tφ(x)

)
dx

= log

∫
x∈Ωx

exp
(
αθT1 φ(x) + (1− α)θT2 φ(x)

)
dx

= log

∫
x∈Ωx

exp
(
αθT1 φ(x)

)
exp

(
(1− α)θT2 φ(x)

)
dx

≤ log
[( ∫

x∈Ωx

exp
(α
α
θT1 φ(x)

)
dx
)α

(∫
x∈Ωx

exp
(1− α

1− α
θT2 φ(x)

)
dx
)1−α]

= log
[( ∫

x∈Ωx

exp(θT1 φ(x))dx
)α

(∫
x∈Ωx

exp(θT2 φ(x))dx
)1−α]

= α log
(∫

x∈Ωx

exp(θT1 φ(x))dx
)

+ (1− α) log
(∫

x∈Ωx

exp(θT2 φ(x))dx
)

= αΦ(θ1) + (1− α)Φ(θ2) (2.29)

2.4.3 Fenchel Duality

There is a close relationship between the entropy function and the log parti-

tion function. In particular, the log partition function and the negative entropy

function are Fenchel conjugate functions.

Proposition 3. The log partition function Φ(θ) and the negative entropy function

H(ν) are Fenchel conjugate functions

−H(ν) = sup
θ∈dom Φ

θTν − Φ(θ) (2.30)

and

Φ(θ) = sup
ν∈domH

θTν +H(ν). (2.31)
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Proof. First we notice that the entropy of exponential family distributions as an

affine function of the moment parameters ν can be written as

H(ν) = −Ep(x|θ)[log p(x|θ)]

= −Ep(x|θ)[θTφ(x)− Φ(θ)]

= −θTν + Φ(θ) (2.32)

We can rewrite the entropy equation (2.32) as follows:

Φ(θ)−H(ν)− θTν = 0 (2.33)

Here, we notice that equation (2.33) actually corresponds to the Fenchel-Young

inequality in (2.9) between the log partition function Φ(θ) and the negative of

the entropy function H(ν) holding with equality. Recall from the relation in (2.8)

that equation (2.30) achieves the supremum when ν = ∇θΦ(θ) and we showed

the moment generating property of the log partition function in Proposition 1,

i.e., we have ν = ∇θΦ(θ). Hence, the Fenchel conjugacy relation (2.30) is true.

For (2.31), recall from Proposition 2 that the log partition function Φ(θ) is a

convex function of θ, thus we conclude that the conjugate of the negative entropy

function is the log partition function, i.e., (−H(ν))∗ = Φ(θ)∗∗ = Φ(θ).

As a result we can write the Fenchel inequality for the log partition function

Φ(θ) and the negative entropy function −H(ν).

Corollary 4. The log partition function Φ(θ) and the entropy function H(ν)

satisfy the following inequality

Φ(θ)−H(ν)− θTν ≥ 0 (2.34)

for all θ, ν.

Proposition 4. Fenchel duality relations between the log partition function Φ(θ)

and the entropy function H(ν) can be written as

H(ν) = inf
θ∈dom Φ

Φ(θ)− θTν (2.35)
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and

Φ(θ) = sup
ν∈domH

H(ν) + νT θ (2.36)

Proof. For the relation (2.35) we have

−H(ν) = sup
θ∈dom Φ

θTν − Φ(θ)

H(ν) = − sup
θ∈dom Φ

θTν − Φ(θ)

= inf
θ∈dom Φ

−θTν + Φ(θ)

= inf
θ∈dom Φ

Φ(θ)− θTν (2.37)

For the relation (2.36), since (2.36) is same as (2.31), the statement is correct.

As shown in Proposition 2 and Corollary 1, the log partition function Φ(θ)

is a convex function of θ and the negative entropy function, −H(ν), is a convex

function of ν. Since the Fenchel-Young inequality holds with equality in (2.33) as

discussed in Definition 7, the natural parameters θ and the moment parameters ν

are related through gradient pairs ∇θΦ(θ),−∇νH(ν). In particular the gradient

of the log partition function ∇θΦ(θ) provides a mapping ∇Φ : Cθ → Cν from the

natural parameters θ ∈ Cθ to the moment parameters ν ∈ Cν and the gradient

of the negative entropy function −∇νH(ν) provides a mapping −∇H : Cν → Cθ
from the moment parameters ν ∈ Cν to the natural parameters θ ∈ Cθ.

2.4.4 Parameter Estimation for Exponential Family

2.4.4.1 ML Estimation

We consider the exponential family F of distributions p(x|θ) ∈ F over a random

vector x taking values in the sample space Ωx parameterized by the natural

parameters θ ∈ Rn with the sufficient statistic function φ : Ωx → Rn. Given a

data set X = {x1, . . . ,xN} of N independent and identically distributed (i.i.d.)

random vectors corresponding to random samples from the distribution p(x|θ) ∈
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F , our objective is to find the maximum likelihood (ML) estimate θ̂ ∈ Rn of the

natural parameters θ. The ML estimation problem can be written in minimization

form (2.20) as

θ̂ = arg min
θ

− 1

N

N∑
j=1

`(θ|xj). (2.38)

For exponential family distributions p(x|θ) ∈ F , the individual log-likelihoods

`(θ|xj) can be expressed as

`(θ|xj) = log exp
(
θTφ(xj)− Φ(θ)

)
= θTφ(xj)− Φ(θ). (2.39)

The overall objective function is then given by

− 1

N

N∑
j=1

`(θ|xj) = − 1

N

N∑
j=1

(
θTφ(xj)− Φ(θ)

)
= Φ(θ)− θT

( 1

N

N∑
j=1

φ(xj)
)

= Φ(θ)− θTνs (2.40)

where νs = 1
N

∑N
j=1 φ(xj) denote the empirical moments.

Now, we can write the corresponding optimization problem as

minimize Φ(θ)− θTνs (2.41)

where θ ∈ Rn is the optimization variable. There is an implicit constraint θ ∈ Cθ
denoting the convex set of parameter values where the log partition function Φ(θ)

is well-defined incorporated into the domain of Φ(θ).

Proposition 5. The maximum likelihood estimation problem (2.41) for exponen-

tial family distributions p(x|θ) ∈ F is a convex optimization problem in optimiza-

tion variables θ.

Proof. As shown in Proposition 2, the log partition function defined over the

convex set Cθ is a convex function of θ. Notice that −θTνs is a linear function

of θ, and since convex function plus a linear function is convex [36], we conclude

that the maximum likelihood (ML) problem in (2.41) is a convex optimization

problem in the variable θ.
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2.4.4.2 ME Estimation

We consider the family F of distributions p(x|ν) ∈ F over a random vector x

taking values in the sample space Ωx parameterized by the moment parameters

ν ∈ Rn with the sufficient statistic function φ : Ωx → Rn where ν = Ep(x|ν)[φ(x)].

Given a data set X = {x1, . . . ,xN} of N random vectors taking values in the

same sample space Ωx with empirical moment νs = 1
N

∑N
j=1 φ(xj), our objective

is to find the maximum entropy (ME) (2.23) estimate ν̂ ∈ Rn of the moment

parameters ν as

ν̂ = arg max
ν=νs

H(ν). (2.42)

We can write the corresponding optimization problem as

maximize H(ν)

subject to ν = νs (2.43)

where ν ∈ Rn is the optimization variable.

2.4.5 Lagrangian Duality

Here we will show the Lagrangian duality relation between the maximum likeli-

hood estimation and the maximum entropy estimation problems for exponential

family distributions. The Lagrangian duality relation is as follows: Minimization

of the negative log-likelihood in the natural parameters and the maximization

of the entropy in the moment parameters subject to equality constraints on the

moment parameters are Lagrange dual optimization problems.

Proposition 6. The maximum likelihood estimation problem in (2.41) and the

maximum entropy estimation problem in (2.43) are Lagrange dual optimization

problems.

Proof. The Lagrange dual function of the problem in (2.41) is the constant p∗

where

p∗ = inf
θ∈dom Φ

Φ(θ)− θTνs. (2.44)
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Now let us reformulate the problem in (2.41) as

minimize Φ(θ)− θ̄Tνs
subject to θ̄ = θ (2.45)

Here we introduced new variables θ̄ ∈ Rn, as well as new equality constraints

θ̄ = θ. The problems in (2.41) and (2.45) are clearly equivalent. The Lagrangian

L : Rn × Rn × Rn → R of the reformulated problem in (2.45) is

L(θ, θ̄, ν) = Φ(θ)− θ̄Tνs + νT (θ̄ − θ) (2.46)

where the variables ν ∈ Rn are the Lagrange multipliers.

To find the Lagrange dual function we minimize L over θ and θ̄. The Lagrange

dual function g : Rn → R is

g(ν) = inf
θ∈dom Φ, θ̄∈Rn

L(θ, θ̄, ν)

= inf
θ∈dom Φ, θ̄∈Rn

(
Φ(θ)− θ̄Tνs + νT (θ̄ − θ)

)
. (2.47)

The Lagrangian L is seperable in θ and θ̄, therefore, it can be infimized separately

over θ and θ̄.

g(ν) = inf
θ∈dom Φ

(
Φ(θ)− νT θ

)
+ inf

θ̄∈Rn

(
− θ̄Tνs + νT θ̄

)
= inf

θ∈dom Φ

(
Φ(θ)− θTν

)
+ inf

θ̄∈Rn

(
− θ̄Tνs + θ̄Tν

)
= inf

θ∈dom Φ

(
Φ(θ)− θTν

)
+ inf

θ̄∈Rn

(
θ̄T (ν − νs)

)
. (2.48)

Using the Fenchel duality relation (2.35) between the log partition function Φ(θ)

and the entropy function H(ν), i.e.,

H(ν) = inf
θ∈dom Φ

Φ(θ)− θTν (2.49)

we have

g(ν) = inf
θ∈dom Φ

(
Φ(θ)− θTν

)
+ inf

θ̄∈Rn

(
θ̄T (ν − νs)

)
=H(ν) + inf

θ̄∈Rn
θ̄T (ν − νs). (2.50)
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Notice that Lagrangian is linear in θ̄ so g(ν) = −∞ unless ν − νs = 0. So the

dual function g(ν) is

g(ν) =

H(ν), if ν = νs

−∞, otherwise
(2.51)

Thus, the Lagrange dual of the reformulated problem can be expressed as

maximize H(ν)

subject to ν = νs (2.52)

which is same as the maximum entropy problem in (2.43).

Now we will show that the Lagrangian dual of the maximum entropy (ME)

problem in (2.43) corresponds to the maximum likelihood (ML) problem in (2.41).

Since both ME and ML problems are convex, we can take the dual of the ME

problem and get the ML problem. The Lagrangian L : Rn × Rn → R of the

problem in (2.52) is

L(ν, θ) = H(ν) + θT (ν − νs) (2.53)

where the variables θ ∈ Rn are the Lagrange multipliers.

To find the Lagrange dual function we maximize L over ν. The Lagrange dual

function g : Rn → R is

g(θ) = sup
ν∈domH

L(ν, θ)

g(θ) = sup
ν∈domH

(
H(ν) + θT (ν − νs)

)
= sup

ν∈domH

(
H(ν) + νT θ

)
− θTνs

=Φ(θ)− θTνs. (2.54)

So the dual of the maximum entropy problem is the maximum likelihood problem

minimize Φ(θ)− θTνs. (2.55)

where θ ∈ Rn is the optimization variable.

Corollary 5. We can find the ML estimates of the natural parameters and the

ME estimates of the moment parameters via solving convex optimization prob-

lems.
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2.4.6 Multinomial and Gaussian Distributions

In this Section we will introduce the multinomial and Gaussian distributions

(which are used as building blocks of Gaussian mixture models) within the ex-

ponential family formulation. First, we will introduce the commonly used pa-

rameterizations used for these distributions. Then, we will provide their repre-

sentations in the exponential family form and describe the relations between the

natural and the moment parameterizations induced by the exponential family

representation and the commonly used parameterizations.

2.4.6.1 Multinomial Distribution

The multinomial distribution is one of the most widely used discrete multidimen-

sional distributions in machine learning and statistics [42], [154], [151], [150], [3].

In this thesis we will only use one dimensional multinomial distributions; hence,

to avoid clutter here we restrict our treatment to the one dimensional case. We

consider a discrete (multinomial) random variable y taking values in the sam-

ple space Ωy = {1, . . . , K} with source parameters α corresponding to a set of

probabilities {α1, . . . , αK}. We can write the probability density function p(y|α)

as

p(y|α) =
K∏
k=1

α
δ(y=k)
k (2.56)

where δ(y = k) denotes the Kronecker delta function which is equal to 1 when y

takes the value k and 0 otherwise.

Notice that to be a valid probability density function, probabilities α should

sum to 1, i.e.,
∑K

k=1 αk = 1. However this leads to an over complete representa-

tion. To overcome this problem, we parametrize the probability density function
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p(y|α) using the first K − 1 components of α.

p(y|α) =
K∏
k=1

α
δ(y=k)
k

=
K−1∏
k=1

α
δ(y=k)
k α

δ(y=K)
K

=
K−1∏
k=1

α
δ(y=k)
k

(
1−

K−1∑
i=1

αi
)(1−

∑K−1
i=1 δ(y=i)

)
= p(y|α̂) (2.57)

Where p(y|α̂) uses only the first K − 1 probabilities as parameters α̂ where α̂ =

{α1, . . . , αK−1}.

We would like to represent the multinomial distribution p(y|α̂) in in the fol-

lowing exponential family form

p(y|θy) = exp
(
θTy φy(y)− Φ(θy)

)
(2.58)

where θy ∈ RK−1 denotes the natural parameters, φy : Ωy → RK−1 denotes

the sufficient statistic function and Φ(θy) denotes the log partition function. To

obtain exponential family form p(y|θy), we rewrite p(y|α̂) as

p(y|α̂) = exp log
K−1∏
k=1

α
δ(y=k)
k

(
1−

K−1∑
i=1

αi
)((1−

∑K−1
i=1 δ(y=i))

)

= exp
(K−1∑
k=1

δ(y = k) logαk +
(
1−

K−1∑
i=1

δ(y = i)
)

log(1−
K−1∑
i=1

αi)
)

= exp
(K−1∑
k=1

δ(y = k) logαk + log(1−
K−1∑
i=1

αi)

−
K−1∑
k=1

δ(y = k) log(1−
K−1∑
i=1

αi)
)

= exp
(K−1∑
k=1

δ(y = k) log
αk

(1−
∑K−1

i=1 αi)
+ log(1−

K−1∑
i=1

αi)
)

= exp
(K−1∑
k=1

log
αk

(1−
∑K−1

i=1 αi)
δ(y = k)− log(1−

K−1∑
i=1

αi)
−1
)

(2.59)
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We select the sufficient statistic function φy : Ωy → RK−1 as

φy(y) = (δ(y = 1), . . . , δ(y = K − 1))T

which leads to the natural parameters θy ∈ RK−1 as

θy = (log
α1

(1−
∑K−1

i=1 αi)
, . . . , log

αK−1

(1−
∑K−1

i=1 αi)
)T

and the log partition function Φ(θy)

Φ(θy) = log(1 +
K−1∑
k=1

exp θy=k)

where we used the following relation

log(1−
K−1∑
k=1

αk)
−1 = log(

1−
∑K−1

j=1 αj +
∑K−1

k=1 αk

1−
∑K−1

k=1 αk
)

= log(1 +
K−1∑
k=1

αk

1−
∑K−1

j=1 αj
)

= log(1 +
K−1∑
k=1

exp log
αk

1−
∑K−1

j=1 αj
)

= log(1 +
K−1∑
k=1

exp θy=k) (2.60)

Then we can rewrite Eq. (2.59) in terms of θy as

p(y|θy) = exp
(K−1∑
k=1

θy=kδ(y = k)− log(1 +
K−1∑
k=1

exp θy=k)
)

(2.61)

To summarize, we can represent the multinomial distribution in exponential

family form

p(y|θy) = exp
(
θTy φy(y)− Φ(θy)

)
with the natural parameters θy ∈ RK−1, sufficient statistic function φy : Ωy →
RK−1 and the log partition function Φ(θy) where

θy = (θy=1, . . . , θy=K−1)T (2.62)
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φy(y) = (δ(y = 1), . . . , δ(y = K − 1))T (2.63)

Φ(θy) = log(1 +
K−1∑
k=1

exp θy=k) (2.64)

Now, we will derive the moment parameters induced by the sufficient statistic

function (2.63) and the entropy function induced by the log partition function

(2.64).

As shown in Proposition 1, we have seen that it is possible to obtain the mo-

ment parameters νy as a function of the natural parameters θy, and the gradient

of the log partition function (2.64) provides a mapping ∇θyΦ : θy → νy. We

can obtain the moment parameters νy by taking the gradient of the log partition

function (2.64) with respect to θy. For the partial derivatives ∂Φ(θy)

∂θy=k
we have

∂Φ(θy)

∂θy=k

=
exp θy=k

1 +
∑K−1

i=1 exp θy=k

(2.65)

= νy=k (2.66)

By noticing

log νy=k = θy=k + log
(
1 +

K−1∑
i=1

exp θy=i

)−1

log νy=k − log
(
1 +

K−1∑
i=1

exp θy=i

)−1
= θy=k (2.67)

and using the relation we found in (2.60) where

log
(
1 +

K−1∑
i=1

exp θy=i

)
= log(1−

K−1∑
k=1

νy=k)
−1

we have

θy=k = log
νy=k

1−
∑K−1

i=1 νy=i

(2.68)

Now we will derive the corresponding entropy function H(νy) for the multinomial

distribution. As shown in the Fenchel duality relations between the log partition
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function and the entropy function in (2.32), (2.35), the entropy function can be

written as

H(νy) = inf
θy

Φ(θy)− θTy νy

= [Φ(θy)− θTy νy]νy=∇θyΦ(θy)

= [log
(
1 +

K−1∑
i=1

exp θy=i

)
−

K−1∑
k=1

θy=kνy=k]θy=k=log
νy=k

1−
∑K−1
i=1

νy=i

= log
(
1 +

K−1∑
k=1

exp log
νy=k

1−
∑K−1

i=1 νy=i

)
−

K−1∑
k=1

log(
νy=k

1−
∑K−1

i=1 νy=i

)νy=k

= log
(
1 +

K−1∑
i=1

νy=k

1−
∑K−1

i=1 νy=i

)
−

K−1∑
k=1

log(
νy=k

1−
∑K−1

i=1 νy=i

)νy=k

= log
(1−

∑K−1
i=1 νy=i +

∑K−1
i=1 νy=i

1−
∑K−1

i=1 νy=i

)
−

K−1∑
k=1

log(
νy=k

1−
∑K−1

i=1 νy=i

)νy=k

= log(1−
K−1∑
i=1

νy=i)
−1 −

K−1∑
k=1

νy=k log νy=k

−
K−1∑
k=1

νy=k log(1−
K−1∑
i=1

νy=i)
−1

= −
K−1∑
k=1

νy=k log νy=k + (1−
K−1∑
k=1

νy=k) log(1−
K−1∑
i=1

νy=i)
−1

= −
K−1∑
k=1

νy=k log νy=k − (1−
K−1∑
k=1

νy=k) log(1−
K−1∑
k=1

νy=k) (2.69)
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2.4.6.2 Gaussian Distribution

The most common way of parameterizing the Gaussian distribution is in terms

of the mean vector µ = E[x] and covariance matrix Σ = E[(x − µ)(x − µ)T ]. In

terms of these parameters, the Gaussian distribution is defined as follows [42], [3]

Definition 19. A random vector x with the sample space Ωx = Rd has a Gaus-

sian distribution with mean µ ∈ Rd and covariance matrix Σ ∈ Sd++ if its pdf is

given by

p(x|µ,Σ) = N(x|µ,Σ) (2.70)

=
1

(2π)d/2|Σ|1/2
exp

(
− 1

2
(x − µ)TΣ−1(x − µ)

)
(2.71)

The parameterization of Gaussian distribution in terms of the mean vector µ

and the covariance matrix Σ in (2.71) is referred to as the source form and the

parameters µ, Σ are called the source parameters.

An alternative popular parameterization of the Gaussian distribution is pro-

vided by the information form [42], [3]

Definition 20. A random vector x with the sample space Ωx = Rd has a

Gaussian distribution with information vector m ∈ Rd and information matrix

S ∈ Sd++ if its pdf is given by

p(x|m,S) = N(x|m,S) (2.72)

= exp
(
mTx + tr(−1

2
SxxT ) +

1

2
log |S| − 1

2
mTS−1m− d

2
log 2π

)
(2.73)

The parameterization of Gaussian distribution in terms of the information vector

m and the information matrix S in (2.73) is referred to as the information form

and the parameters m, S are called the information parameters.

Gaussian distribution belongs to exponential family and the source parameters

are closely related to the moment parameters while information parameters are

closely related to the natural parameters.
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We can represent the Gaussian distribution in information form N(x|m,S)

(2.73) in exponential family form as

p(x|θx) = N(x|m,S)

= exp
(
mTx + tr(−1

2
SxxT ) +

1

2
log |S| − 1

2
mTS−1m− d

2
log 2π

)
= exp

(
mTx + tr(−1

2
SxxT )−

(
− 1

2
log |S|+ 1

2
mTS−1m+

d

2
log 2π

))
= exp(θTxφx(x)− Φ(θx)) (2.74)

where sufficient statistic function Φx : Rd → Rd × Kd+, Kd+ = {vec(R) ∈
Rd(d+1)/2 | R ∈ Sd+}, is

φx(x) = (xT , vec(xxT )T )T (2.75)

which induces the natural parameters θx ∈ Rd × Kd−, Kd− = {vec(−1
2
S) ∈

Rd(d+1)/2 | S ∈ Sd+}, as

θx = (mT , vec(−1

2
S)T )T (2.76)

and the log partition function Φ : Rd×Kd−− → R, Kd−− = {vec(−1
2
S) | S ∈ Sd++},

is

Φ(θx) = −1

2
log |S|+ 1

2
mTS−1m+

d

2
log 2π (2.77)

which leads to the moment parameters ν ∈ Rd ×Kd+, as

νx = (µT , vec(Σ + µµT )T )T (2.78)

where the moment parameters correspond to the expected values of the sufficient

statistic function, i.e., νx = Ep(x|θ)[φx(x)].

We can see the relation between the information parameters m,S and the
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source parameters µ,Σ by noticing

N(x|µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

(
− 1

2
(x − µ)TΣ−1(x − µ)

)
= exp

(
− 1

2
xTΣ−1x + xTΣ−1µ− 1

2
µTΣ−1µ+

1

2
log |Σ−1| − d

2
log 2π

)
= exp

(
tr(−1

2
Σ−1xxT ) + (Σ−1µ)Tx − 1

2
(Σ−1µ)TΣ(Σ−1µ)

+
1

2
log |Σ−1| − d

2
log 2π

)
= exp

(
(Σ−1µ)Tx + tr(−1

2
Σ−1xxT ) +

1

2
log |Σ−1|

− 1

2
(Σ−1µ)TΣ(Σ−1µ)− d

2
log 2π

)
= exp

(
mTx + tr(−1

2
SxxT ) +

1

2
log |S| − 1

2
mTS−1m− d

2
log 2π

)
(2.79)

where we have m = Σ−1µ, S = Σ−1 and µ = S−1m, Σ = S−1.

We can show the same parameter relations using the moment generating prop-

erty of the log partition function, i.e., ∇θxΦ(θx) = νx . Notice that

∇θxΦ(θx) =

[
∇mΦ(m,S)

∇vec(− 1
2
S)Φ(m,S)

]
(2.80)

We have

∇mΦ(m,S) = S−1m

= µ (2.81)

and

∇− 1
2
SΦ(m,S) = S−1 + S−1mmTS−1

= Σ + µµT (2.82)

We can find the entropy function H(νx) = 1
2

log |Σ|+ d
2

log(2πe) using the Fenchel
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duality relation. To avoid cluttered derivation, we will use the information pa-

rameters m,S and the source parameters µ,Σ.

H(νx) = inf
θx∈dom Φ

Φ(θx)− θTx νx

=
[
Φ(θx)− θTx νx

]
∇θx Φ(θx )=νx

=
[
− 1

2
log |S|+ 1

2
mTS−1m+

d

2
log 2π −mTµ

− tr(−1

2
S(Σ + µµT ))

]
m=Σ−1µ,S=Σ−1

= −1

2
log |Σ−1|+ 1

2
(Σ−1µ)TΣ(Σ−1µ) +

d

2
log 2π − (Σ−1µ)Tµ

− tr(−1

2
Σ−1(Σ + µµT ))

=
1

2
log |Σ|+ 1

2
µTΣ−1µ+

d

2
log 2π − µTΣ−1µ+

1

2
tr(Σ−1Σ)

+
1

2
tr(Σ−1µµT )

=
1

2
log |Σ|+ 1

2
µTΣ−1µT +

1

2
µTΣ−1µT − µTΣ−1µT +

d

2
log 2π

+
1

2
tr(Σ−1Σ)

=
1

2
log |Σ|+ d

2
log 2π +

d

2

=
1

2
log |Σ|+ d

2
log 2π +

d

2
log(e)

=
1

2
log |Σ|+ d

2
log(2πe) (2.83)
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Chapter 3

Constrained Gaussian Mixture

Models

3.1 Introduction

In this Chapter we consider the constrained Gaussian mixture models which

serves as the fundamental modeling framework for the robust density estimation

and the compound object detection problems described in the following Chapters.

We consider two different parameterizations which we refer to as the informa-

tion parameterization and the source parameterization. In constrained Gaussian

mixture models, our objective is to obtain the maximum likelihood estimates

of Gaussian mixture model parameters satisfying convex inequality and affine

equality constraints. To estimate the parameters we use the expectation maxi-

mization algorithm which consists of two steps called the E-step and the M-step.

In the E-step, we compute the posterior distributions of the hidden variables

given the observed variables while in the M-step we optimize the expected joint

log-likelihood of the observed and the hidden variables over the model parame-

ters. As our first contribution, we show that the M-step for the Gaussian mixture

models correspond to a convex optimization problem in the information param-

eters and we can handle the convex constraints on the information parameters
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by solving a constrained convex optimization problem. We refer to this problem

as the primal problem for the M-step. As our second contribution, we form the

Lagrangian dual problem of the primal problem for the M-step and show that it

corresponds to an equality constrained convex optimization problem in the source

parameters. As our third contribution, we provide an unconstrained version of

the dual problem and show that the optimal parameter estimates are the same.

Then we show that we can handle the convex constraints on the source param-

eters by solving the convex dual problem. The unifying idea in this Chapter is

that we can handle convex constraints on the Gaussian mixture parameters by

solving convex optimization problems for the M-step.

The organization of this Chapter is as follows. In Section 3.2 we derive a repre-

sentation for the joint distribution of the Gaussian mixture models in exponential

family form. In Section 3.3 we consider the maximum likelihood estimation prob-

lem for Gaussian mixture models. We introduce the expectation maximization

(EM) algorithm, and show that the M-step corresponds to a convex optimization

problem in the natural parameters. Then, we form the Lagrangian dual problem

which corresponds to an equality constrained convex optimization problem in the

moment parameters. Afterwards, we provide an unconstrained dual problem and

show that the optimal parameter estimates are the same. Lastly, we express the

primal convex optimization problem for the M-step in terms of the information

parameters and the dual convex optimization problem for the M-step in terms of

the source parameters. In Section 3.4 we summarize the constrained Gaussian

mixture model framework and the EM algorithm used to estimate the parame-

ters. Example constraints and the conclusions are given in Sections 3.5 and 3.6,

respectively.

3.2 Gaussian Mixture Models

We consider the family F of distributions of Gaussian mixture models with K

Gaussian components denoted by p(x, y|θ) ∈ F over d dimensional continuous
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random vector x ∈ Rd and a multinomial random variable y ∈ {1, . . . , K} pa-

rameterized with the natural parameters θ ∈ Cθ, Cθ = RK−1 × ⊗Kk=1Rd × Kd− in

exponential family form as

p(x, y|θ) = exp(θTφ(x, y)− Φ(θ, y)) (3.1)

The marginal distribution of y denoted by p(y|θy) can be written in exponential

family form as

p(y|θy) = exp
(
θTy φy(y)− Φ(θy)

)
(3.2)

where θy ∈ RK−1 denotes the natural parameters, φy : Ωy → RK−1 denotes the

sufficient statistic function and Φ(θy) denotes the log partition function.

Conditioned on the value of the multinomial variable y = k, the conditional

distribution p(x|y = k, θx|y=k) of d dimensional random vector x ∈ Rd is a

Gaussian with the natural parameters θx|y=k ∈ Rd ×Kd−.

p(x|y = k, θx|y=k) = p(x|θx|y=k) (3.3)

Gaussian distributions can be written in exponential family form as follows

p(x|θx|y=k) = exp
(
θTx|y=kφx(x)− Φ(θx|y=k)

)
for k = 1, . . . , K (3.4)

where the natural parameters of the kth Gaussian is denoted with θx|y=k ∈ Rd ×
Kd−, sufficient statistic function is denoted with φx : Rd → Rd × Kd+ and the log

partition function is denoted by Φ(θx|y=k).

The joint distribution p(x, y|θ) is given by

p(x, y|θ) = p(y|θy)p(x|y, θx|y) (3.5)

To form the joint distribution, we write the conditional distribution p(x|y, θx|y)
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of Gaussian x given multinomial y as follows

p(x|y, θx|y) =
K−1∏
k=1

p(x|θx|y=k)
δ(y=k)p(x|θx|y=K)

(
1−

∑K−1
i=1 δ(y=i)

)

=
K∏
k=1

p(x|θx|y=k)
δyk

= exp log
K∏
k=1

p(x|θx|y=k)
δyk

= exp
( K∑
k=1

δyk log p(x|θx|y=k)
)

(3.6)

where to avoid cluttered notation, we defined the constrained vector δy of delta

functions as follows

δy = (δ(y = 0), . . . , δ(y = K − 1), (1−
K−1∑
i=1

δ(y = i)))T (3.7)

Now to get a compact conditional exponential family representation we substitute

exponential family represention of the k’th Gaussian in (3.4) for p(x|θx|y=k). Then

we have

p(x|y, θx|y) = exp

( K∑
k=1

δyk
(
θTx|y=kφx(x)− Φ(θx|y=k)

))

= exp
( K∑
k=1

θTx|y=k

(
δykφx(x)

)
−

K∑
k=1

δykΦ(θx|y=k)
)

= exp
( K∑
k=1

θTx|y=kφx|y=k(x, y)−
K∑
k=1

δykΦ(θx|y=k)
)

= exp
(
θTx|yφx|y(x, y)−

K∑
k=1

δykΦ(θx|y=k)
)

= exp
(
θTx|yφx|y(x, y)− Φ(θx|y, y)

)
(3.8)

Hence, we can write the conditional distribution p(x|y, θx|y) of Gaussian x given

multinomial y in exponential family form as

p(x|y, θx|y) = exp
(
θTx|yφx|y(x, y)− Φ(θx|y, y)

)
(3.9)
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where the natural parameters θx|y are

θx|y = (θTx|y=1, . . . , θ
T
x|y=K)T (3.10)

sufficient statistic function φx|y(x, y) is

φx|y(x, y) =
(
(δy1φx(x))T , . . . , (δyKφx(x))T

)T
=
(
φx|y=1(x, y), . . . , φx|y=K(x, y)

)T
(3.11)

and the log partition function Φ(θx|y, y) is

Φ(θx|y, y) =
K∑
k=1

δykΦ(θx|y=k) (3.12)

Given the multinomial and conditional Gaussian distributions in exponential

family form, p(y|θy) and p(x|y, θx|y), we can write the joint distribution p(x, y|θ)
in exponential family form as follows

p(x, y|θ) = p(y|θy)p(x|y, θx|y)

= exp(θTy φy(y)− Φ(θy)) exp
(
θTx|yφx|y(x, y)− Φ(θx|y, y)

)
= exp

(
θTy φy(y) + θTx|yφx|y(x, y)− Φ(θy)− Φ(θx|y, y)

)
= exp

(
θTy φy(y) + θTx|yφx|y(x, y)− (Φ(θy) + Φ(θx|y, y))

)
= exp(θTφ(x, y)− Φ(θ, y)) (3.13)

where for the natural parameters we have θ = (θTy , θ
T
x|y)

T , for the sufficient statis-

tic function we have φ(x, y) = (φy(y)T , φx|y(x, y)T )T and Φ(θ, y) = Φ(θy) +

Φ(θx|y, y) is the log partition function.

3.3 Maximum Likelihood Estimation

In density estimation problems with Gaussian mixture models, we are given a

data set X = {x1, . . . ,xN} of N data points and the corresponding multino-

mial variables Y = {y1, . . . , yN} are treated as hidden variables. Given a data

set X = {x1, . . . ,xN} of N independent and identically distributed (i.i.d.) ran-

dom vectors corresponding to random samples from the marginal distribution
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p(x|θ) =
∑K

k=1 p(x, y = k|θ), our objective is to find the maximum likelihood

(ML) estimate θ̂ ∈ Cθ of the natural parameters θ ∈ Cθ. The ML estimation

problem can be written in minimization form in 2.20 as

θ̂ = arg min
θ

− 1

N

N∑
j=1

`(θ|xj) (3.14)

3.3.1 Expectation Maximization Algorithm

The expectation maximization algorithm is a very general and popular algorithm

used for doing maximum likelihood estimation of the parameters in models with

hidden variables. The fundamental idea behind the expectation maximization

algorithm is to use an upper bound function F (Q, θ) on the negative log likeli-

hoods, −`(θ|xj) for j = 1, . . . , N , of the observed variables, X = {x1, . . . ,xN},
by introducing distributions Q = {q(y1), . . . , q(yn)} over the hidden variables

Y = {y1, . . . , yN}. The bound function F (Q, θ) is a function of the negative log

likelihoods, −`(θ|xj, yj) for j = 1, . . . , N , of the joint distributions of both the

hidden, Y , and the observed variables, X , and the introduced distributions Q
over the hidden variables Y .

The expectation maximization algorithm consists of two steps called the E-

step and the M-step. In the E-step, the bound function F (Q, θt−1) is minimized

over the introduced distributions Q over the hidden variables Y while holding the

parameters ,θt−1, found in the previous iteration t− 1 fixed.

Qt = arg min
Q

F (Q, θt−1) (3.15)

In the M-step, the bound function F (Qt, θ) is minimized over the parameters θ

while holding the distributions, Qt, found in the E-step fixed.

θt = arg min
θ

F (Qt, θ) (3.16)
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3.3.2 Bound on Log-likelihood

Fenchel conjugate duality relation between the logsum and the negative entropy

function provides a mathematically principled way to bound the log likelihoods

of the marginal distributions with a bound function which is a function of the log

likelihoods of the joint distributions and distributions over hidden variables.

Definition 21. The logsum function Φ(`(y)) = log
∑K

k=1 exp `(y = k) and the

negative entropy function −H(q(y)) =
∑K

k=1 q(y = k) log q(y = k) are Fenchel

conjugate dual functions and they satisfy the Fenchel inequality [36], [130]

Φ(`(y))−H(q(y)) ≥
K∑
k=1

q(y = k)`(y = k) (3.17)

log
K∑
k=1

exp `(y = k) +
K∑
k=1

q(y = k) log q(y = k) ≥
K∑
k=1

q(y = k)`(y = k) (3.18)

We can find the upper bound function by using the Fenchel inequality relation

between the logsum and the negative entropy functions in (3.18) by substituting

`(y) = log p(x, y|θ) as follows

log
K∑
k=1

exp log p(x, y = k|θ) +
K∑
k=1

q(y = k) log q(y = k)

≥
K∑
k=1

q(y = k) log p(x, y = k|θ)

log
K∑
k=1

p(x, y = k|θ) +
K∑
k=1

q(y = k) log q(y = k)

≥
K∑
k=1

q(y = k) log p(x, y = k|θ)

log p(x|θ) +
K∑
k=1

q(y = k) log q(y = k) ≥
K∑
k=1

q(y = k) log p(x, y = k|θ)

− log p(x|θ)−
K∑
k=1

q(y = k) log q(y = k) ≤ −
K∑
k=1

q(y = k) log p(x, y = k|θ)

(3.19)
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Hence we have

− log p(x|θ) ≤ −
K∑
k=1

q(y = k) log p(x, y = k|θ) +
K∑
k=1

q(y = k) log q(y = k)

(3.20)

Using the inequality (3.20) we define the bound function F (q(yj), θ) on the

negative log-likelihood of individual observed variables −`(θ|xj) as follows

−`(θ|xj) = − log p(xj|θ)

≤ −
K∑
k=1

q(yj = k) log p(xj, yj = k|θ) +
K∑
k=1

q(yj = k) log q(yj = k)

= F (q(yj), θ) (3.21)

Bound function F (q(yj), θ) is function of the parameters θ and the unknown

distribution q(yj). We will write the bound function in two different forms that

provides us two different insights.

3.3.3 E-step

To get an insight for the E-step, we rewrite the bound function in 3.21 as function

of the negative log-likelihood of the observed variables, −`(θ|xj) = − log p(xj|θ),
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and the distributions over hidden variables q(yj). Notice that

F (q(yj), θ) = −
K∑
k=1

q(yj = k) log p(xj, yj = k|θ) +
K∑
k=1

q(yj = k) log q(yj = k)

= −
K∑
k=1

q(yj = k) log p(yj = k|xj, θ)p(yj = k|θ)

+
K∑
k=1

q(yj = k) log q(yj = k)

= −
K∑
k=1

q(yj = k) log
p(yj = k|xj, θ)p(yj = k|θ)

q(yj = k)

= −
K∑
k=1

q(yj = k) log
p(yj = k|xj, θ)
q(yj = k)

−
K∑
k=1

q(yj = k) log p(xj|θ)

=
K∑
k=1

(
q(yj = k) log

q(yj = k)

p(yj = k|xj, θ)

)
− log p(xj|θ)

= KL(q(yj)||p(yj|xj, θ))− `(θ|xj) (3.22)

Then the overall bound function F (Q, θ) is

F (Q, θ) =
1

N

N∑
j=1

(
KL(q(yj)||p(yj|xj, θ))− `(θ|xj)

)

=
1

N

N∑
j=1

KL(q(yj)||p(yj|xj, θ))−
1

N

N∑
j=1

`(θ|xj)

= KLN(Q||p(Y|X , θ)) + `N(θ|X ) (3.23)

where we defined

KLN(Q||p(Y|X , θ)) =
1

N

N∑
j=1

KL(q(yj)||p(yj|xj, θ)) (3.24)

and

`N(θ|X ) = − 1

N

N∑
j=1

`(θ|xj) (3.25)

In the E-step, we minimize the bound function

F (Q, θ(t−1)) = KLN(Q||p(Y|X , θ(t−1))) + `N(θ(t−1)|X )
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with respect to the distributions over the hidden variables Q = {q(y1), . . . , q(yN)}
for fixed parameters θ(t−1). Notice that `N(θ(t−1)|X ) does not depend on Q, there-

fore, the E-step in the EM algorithm can be interpreted as minimizing the dif-

ference between the sum of the negative log-likelihoods of the observed variables,

`N(θ(t−1)|X ), and the bound function F (Q, θ(t−1)) which can be seen by looking

at the following

`N(θ(t−1)|X ) ≤ F (Q, θ(t−1))

= KLN(Q||p(Y|X , θ(t−1))) + `N(θ(t−1)|X ) (3.26)

Since E-step simply corresponds to minimizing the KL divergence term

KLN(Q||p(Y|X , θ(t−1))), we can write the E-step as follows

Qt = arg min
Q

KLN(Q||p(Y|X , θ(t−1))) (3.27)

Furthermore, setting the distributions over hidden variables q(yj) to the posterior

distributions p(yj|xj, θ(t−1)) not only minimizes the sum of KL divergence terms

but also makes the sum zero. In other words we have

KLN(Q||p(Y|X , θ(t−1))) = 0 for q(yj) = p(yj|xj, θ(t−1)), j = 1, . . . , N (3.28)

Thus after the E-step, the original objective function `N(θ(t−1)|X ) and the bound

function F (p(Y|X , θ(t−1)), θ(t−1)) becomes equal because we have

`N(θ(t−1)|X ) ≤ F (Q, θ(t−1))

= KLN(p(Y|X , θ(t−1))||p(Y|X , θ(t−1))) + `N(θ(t−1)|X )

= 0 + `N(θ(t−1)|X )

= `N(θ(t−1)|X ) (3.29)

3.3.4 Primal Problem for the M-step

To get an insight for the M-step, we rewrite the bound function in 3.21 as function

of joint negative log-likelihoods, − log p(xj, yj|θ) as follows

F (q(yj), θ) = −
K∑
k=1

q(yj = k) log p(xj, yj = k|θ) +
K∑
k=1

q(yj = k) log q(yj = k)

= Eq(yj)[− log p(xj, yj|θ)]−H(q(yj)) (3.30)
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Then the overall bound function F (Q, θ) can be written as

F (Q, θ) =
1

N

N∑
j=1

(
Eq(yj)[− log p(xj, yj|θ)]−H(q(yj))

)
=

1

N

N∑
j=1

Eq(yj)[− log p(xj, yj|θ)] +
1

N

N∑
j=1

−H(q(yj))

= EQ[− log p(X ,Y|θ)] +HN(Q) (3.31)

where we defined

EQ[− log p(X ,Y|θ)] =
1

N

N∑
j=1

Eq(yj)[− log p(xj, yj|θ)] (3.32)

and

HN(Q) =
1

N

N∑
j=1

−H(q(yj)) (3.33)

In the M-step, we minimize the bound function

F (Q(t), θ) = EQ(t) [− log p(X ,Y|θ)] +HN(Q(t))

with respect to the parameters θ for fixed distribution over hidden variables

Q(t). Notice that HN(Q(t)) does not depend on the parameters θ, therefore,

the M-step in the EM algorithm can be interpreted as minimizing sum of the

expected negative log-likelihoods of both the observed and the hidden variables,

EQ(t) [− log p(X ,Y|θ)]. Thus we can write the M-step as follows

θt = arg min
θ

EQ(t) [− log p(X ,Y|θ)] (3.34)

Considering the Gaussian mixture distribution in exponential family form

p(x, y|θ) ∈ F , expected joint negative log-likelihoods Eq(yj)[− log p(xj, yj|θ)] can

be expressed as
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Eq(yj)[− log p(xj, yj|θ)] = Eq(yj)[− log exp
(
θTφ(xj, yj)− Φ(θ, yj)

)
]

= Eq(yj)[−θTφ(xj, yj) + Φ(θ, yj)]

= Eq(yj)[−θTφ(xj, yj)] + Eq(yj)[Φ(θ, yj)]

= −θTEq(yj)[φ(xj, yj)] + Eq(yj)[Φ(θ, yj)]

= Eq(yj)[Φ(θ, yj)]− θT
(
Eq(yj)[φ(xj, yj)]

)
= Eq(yj)[Φ(θy) + Φ(θx|y, yj)]

− θTy (Eq(yj)[φy(yj)])−
K∑
k=1

θTx|y=k(Eq(yj)[φx|y=k(xj, yj)])

= Eq(yj)[Φ(θy) +
K∑
k=1

δyjkΦ(θx|y=k)]

−
K−1∑
k=1

θy=kEq(yj)[δyjk]−
K∑
k=1

θTx|y=k(Eq(yj)[δyjkφx(xj)])

= Φ(θy) +
K∑
k=1

Eq(yj)[δyjk]Φ(θx|y=k)

−
K−1∑
k=1

θy=kEq(yj)[δyjk]−
K∑
k=1

θTx|y=kEq(yj)[δyjk]φx(xj)

= Φ(θy) +
K∑
k=1

q(yj = k)Φ(θx|y=k)

−
K−1∑
k=1

θy=kq(yj = k)−
K∑
k=1

θTx|y=kq(yj = k)φx(xj)

(3.35)

By substituting the individual terms in (3.35), we can write the
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EQ[− log p(X ,Y|θ)] as follows

=
1

N

N∑
j=1

(
Eq(yj)[− log p(xj, yj|θ)]

)
=

1

N

N∑
j=1

(
Φ(θy) +

K∑
k=1

q(yj = k)Φ(θx|y=k)

−
K−1∑
k=1

θy=kq(yj = k)−
K∑
k=1

θTx|y=kq(yj = k)φx(xj)
)

= Φ(θy) +
K∑
k=1

( 1

N

N∑
j=1

q(yj = k)
)

Φ(θx|y=k)

−
K−1∑
k=1

θy=k

( 1

N

N∑
j=1

q(yj = k)
)
−

K∑
k=1

θTx|y=k

( 1

N

N∑
j=1

q(yj = k)φx(xj)
)

= Φ(θy) +
K∑
k=1

αskΦ(θx|y=k)−
K−1∑
k=1

θy=kνsy=k −
K∑
k=1

αskθ
T
x|y=kνsx|y=k (3.36)

where αsk = 1
N

∑N
j=1 q(yj = k) for k = 1, . . . , K denote the expected empirical

probabilities of Gaussian components, νsy=k = αsk for k = 1, . . . , K − 1 denote

the expected empirical moments of y, νsx|y=k = 1
αskN

∑N
j=1 q(yj = k)φx(xj) for

k = 1, . . . , K denote the expected empirical moments of x|y.

Now, we can write the optimization problem for the M-step as

minimize Φ(θy) +
K∑
k=1

αskΦ(θx|y=k)−
K−1∑
k=1

θy=kνsy=k −
K∑
k=1

αskθ
T
x|y=kνsx|y=k

(3.37)

where θ ∈ Rn is the optimization variable. There is an implicit constraint θ ∈ Cθ
denoting the convex set of parameter values where the log partition function Φ(θ)

is well-defined incorporated into the domain of the Φ(θ).

Proposition 7. The bound minimization problem in 3.37 corresponding to the

M-step for Gaussian mixture models parameterized by the natural parameters θ,

is a convex optimization problem in optimization variables θ.

Proof. As shown in Proposition 2, log partition functions Φ(θy), Φ(θx|y=1),

. . .,Φ(θx|y=K) are convex in θ and nonnegative combinations of convex functions,
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Φ(θy) +
∑K

k=1 αskΦ(θx|y=k), defined over the convex set Cθ is convex function of

θ [36]. Notice that −
∑K−1

k=1 θy=kνsy=k−
∑K

k=1 αskθ
T
x|y=kνsx|y=k is a linear function

of θ and since convex function plus a linear function is convex [36], we conclude

that the bound minimization problem in 3.37 is a convex optimization problem

in variables θ.

3.3.5 Dual Problem for the M-step

We have seen that the M-step corresponds to convex optimization problem in

natural parameters θ. Now we will form the Lagrange dual optimization problem

which will correspond to a convex optimization problem in moment parameters

ν.

The Lagrange dual function of the problem in (3.37) is the constant p∗ where

p∗ = inf
θ∈dom Φ

Φ(θy) +
K∑
k=1

αskΦ(θx|y=k)−
K−1∑
k=1

θy=kνsy=k −
K∑
k=1

αskθ
T
x|y=kνsx|y=k.

(3.38)

Now let us reformulate the problem in (3.37) as

minimize Φ(θy) +
K∑
k=1

αskΦ(θx|y=k)− θ̄y
T
νsy −

K∑
k=1

αskθ̄
T
x|y=kνsx|y=k

subject to θ̄y = θy

αskθ̄x|y=k = αskθx|y=k for k = 1, . . . , K (3.39)

Here we introduced new variables θ̄ ∈ Rn, as well as new equality constraints

θ̄y = θy and αskθ̄x|y=k = αskθx|y=k for k = 1, . . . , K. Here we assume that αsk’s

are positive real numbers. The only reason for using scaled equality constraints

αskθ̄x|y=k = αskθx|y=k instead of unscaled equality constraints θ̄x|y=k = θx|y=k

is to avoid the rescaling of the Lagrange multipliers (dual variables in the dual

problem) which would lead to a cluttered derivation. The problems in (3.37) and

(3.39) are clearly equivalent. The Lagrangian L : Rn × Rn × Rn → R of the
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reformulated problem in (3.39) is

L(θ, θ̄, ν) =Φ(θy) +
K∑
k=1

αskΦ(θx|y=k)− θ̄y
T
νsy −

K∑
k=1

αskθ̄
T
x|y=kνsx|y=k

+ νTy (θ̄y − θy) +
K∑
k=1

νTx|y=k

(
αskθ̄x|y=k − αskθx|y=k

)
(3.40)

where the variables ν = (νTy , ν
T
x|y=1, . . . , ν

T
x|y=K)T ∈ Rn are the Lagrange multi-

pliers.

To find the Lagrange dual function we minimize L over θ and θ̄. The Lagrange

dual function g : Rn → R is

g(ν) = inf
θ∈dom Φ,θ̄∈Rn

L(θ, θ̄, ν)

= inf
θ∈dom Φ,θ̄∈Rn

Φ(θy) +
K∑
k=1

αskΦ(θx|y=k)− θ̄y
T
νsy −

K∑
k=1

αskθ̄
T
x|y=kνsx|y=k

+ νTy (θ̄y − θy) +
K∑
k=1

αskν
T
x|y=k

(
θ̄x|y=k − θx|y=k

)
. (3.41)

The Lagrangian L is separable in θ and θ̄, therefore it can be infimized separately

over θ and θ̄.

g(ν) = inf
θ∈dom Φ

Φ(θy)− θTy νy +
K∑
k=1

αsk
(
Φ(θx|y=k)− θTx|y=kνx|y=k

)
+ inf

θ̄∈Rn
θ̄Ty (νy − νsy) +

K∑
k=1

αskθ̄
T
x|y=k(νx|y=k − νsx|y=k). (3.42)

Using the Fenchel duality relations (2.35) between the log partition func-

tions Φ(θy),Φ(θx|y=1), . . . ,Φ(θx|y=K) and the entropy functions H(νy), H(νx|y=1),

. . . , H(νx|y=K), i.e.,

H(ν) = inf
θ∈dom Φ

Φ(θ)− θTν (3.43)

we have

g(ν) =H(νy) +
K∑
k=1

αskH(νx|y=k)

+ inf
θ̄∈Rn

θ̄Ty (νy − νsy) +
K∑
k=1

αskθ̄
T
x|y=k(νx|y=k − νsx|y=k). (3.44)
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Notice that Lagrangian is linear in θ̄y, θ̄x|y=1, . . . , θ̄x|y=K so g(ν) = −∞ unless

νy − νsy = 0, νx|y=k − νsx|y=k = 0, . . . , νx|y=k − νsx|y=k = 0. So the dual function

g(ν) is

g(ν) =

H(νy) +
∑K

k=1 αskH(νx|y=k), if ν = νs

−∞, otherwise
(3.45)

Thus, the Lagrange dual of the reformulated problem can be expressed as

maximize H(νy) +
K∑
k=1

αskH(νx|y=k)

subject to ν = νs (3.46)

Because of the equality constraints ν = νs, the dual problem (3.46) is not

suitable for adding new constraints on the moment parameters ν. Hence we will

reformulate the dual as an unconstrained optimization problem like the primal ex-

pected maximum likelihood problem (3.37) which has the same optimum solution

as

maximize H(νy) +
K∑
k=1

αskH(νx|y=k) + νTy θsy +
K∑
k=1

αskν
T
x|y=kθsx|y=k

(3.47)

where the moment parameters ν = (νTy , ν
T
x|y=1, . . . , ν

T
x|y=K)T ∈ Rn are the opti-

mization variables and the expected empirical natural parameters are denoted by

θs = (θTsy, θ
T
sx|y=1, . . . , θ

T
sx|y=K)T .

Proposition 8. The optimum solutions of the expected maximum likelihood prob-

lem in (3.37) and the unconstrained dual problem in (3.47) leads to same optimal

parameters.

Proof. Notice that both problems are unconstrained optimization problems so

we can solve both problems by setting the gradients of the corresponding ob-

jective functions w.r.t to the corresponding optimization variables to zero. We

will use the gradient mapping properties of the log partition functions and the

negative entropy functions given in (2.8). Recall that The gradient of the log
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partition function w.r.t to the natural parameters equals to the moment param-

eters, i.e.,∇θΦ(θ) = ν, and the gradient of the negative entropy function w.r.t.

the moment parameters equals to the natural parameters, i.e., −∇νH(ν) = θ.

We start by taking the gradient of the expected maximum likelihood problem in

(3.37) and setting it to the zero where we have

∇θ

(
Φ(θy) +

K∑
k=1

αskΦ(θx|y=k)− θTy νsy −
K∑
k=1

αskθ
T
x|y=kνsx|y=k

)
= 0

∇θy

(
Φ(θy)− θTy νsy

)
∇θx|y=1

(
αs1Φ(θx|y=1)− αs1θTx|y=1νsx|y=1

)
...

∇θx|y=K

(
αsKΦ(θx|y=K)− αsKθTx|y=Kνsx|y=K

)

 =


0

0
...

0


which can be written as

∇θyΦ(θy)

∇θx|y=1
Φ(θx|y=1)
...

∇θx|y=K
Φ(θx|y=K)

 =


νsy

νsx|y=1

...

νsx|y=K

 (3.48)

Since ∇θyΦ(θy) = νy and ∇θx|y=k
Φ(θx|y=k) = νx|y=k. we have
νy

νx|y=1

...

νx|y=K

 =


νsy

νsx|y=1

...

νsx|y=K

 (3.49)

Hence setting gradient equal to zero leads to νy = νsy and νx|y=k = νsx|y=k for

k = 1, . . . , K.

Now we take the gradient of the objective function of the unconstrained dual
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problem in (3.47) and set it to zero

∇ν

(
H(νy) +

K∑
k=1

αskH(νx|y=k) + νTy θsy +
K∑
k=1

αskν
T
x|y=kθsx|y=k

)
= 0

∇νy

(
H(νy) + νTy θsy

)
∇νx|y=1

(
αs1H(νx|y=1) + αs1ν

T
x|y=1θsx|y=1

)
...

∇νx|y=K

(
αsKH(νx|y=K) + αsKν

T
x|y=Kθsx|y=K

)

 =


0

0
...

0


which can be written as

∇νyH(νy)

∇νx|y=1
H(νx|y=1)
...

∇νx|y=K
H(νx|y=K)

 =


−θsy
−θsx|y=1

...

−θsx|y=K

 (3.50)

Since ∇νyH(νy) = −θy and ∇νx|y=k
H(νx|y=k) = −θx|y=k. we have

θy

θx|y=1

...

θx|y=K

 =


θsy

θsx|y=1

...

θsx|y=K

 (3.51)

Hence setting gradient equal to zero leads to θy = θsy and θx|y=k = θsx|y=k

for k = 1, . . . , K. Since expected sufficient statistics νsy, νsx|y=1, . . . , νsx|y=K and

θsy, θsx|y=1, . . . , θsx|y=K are related through the parameter relations, the found

optimum parameters, θy, θx|y=1, . . . , θx|y=K and νy, νx|y=1, . . . , νx|y=K are related

through the parameter relations hence we conclude that the optimum solutions of

the expected maximum likelihood problem in (3.37) and the unconstrained dual

problem in (3.47) leads to same optimal parameters.

3.3.6 Parameterizations for the M-step

In this Section, we will express the primal problem for the M-step as a con-

vex optimization problem in terms of the information parameters and the dual

problem for the M-step as a convex optimization problem in terms of the source

parameters.
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3.3.6.1 Primal Problem for the M-step in Information Form

We can write the objective function of the problem in (3.37) in terms of the

information parameters η,m1, S1, . . . ,mK , SK . As discussed in (2.77) and (2.83),

we have the expressions for the log partition functions in terms of the information

parameters. We write the natural parameters θ in terms of the information

parameters η,m1, S1, . . . ,mK , SK as

θy = η (3.52)

θx|y=k = (mT
k , vec(−

1

2
Sk)

T )T for k = 1, . . . , K (3.53)

and the expected empirical moment parameters νsy, νsx|y=1, . . . , νsx|y=K in terms

of the source parameters αs, µs1,Σs1, . . . , µsK ,ΣsK as

νsy = αs (3.54)

νsx|y=k = (µTsk, vec(Σsk + µskµ
T
sk)

T )T for k = 1, . . . , K (3.55)

For the log partition functions we have

Φ(θy) = log(1 +
K−1∑
k=1

exp ηk) (3.56)

Φ(θx|y=k) = −1

2
log |Sk|+

1

2
mT
k S
−1
k mk +

d

2
log 2π (3.57)

and for the inner product terms we have

θTy νsy = ηTαs

=
K−1∑
k=1

ηkαsk (3.58)

θTx|y=kνsx|y=1 = (mT
k , vec(−

1

2
Sk)

T )(µTsk, vec(Σsk + µskµ
T
sk)

T )T

= mT
k µsk + tr

(
(−1

2
Sk)(Σsk + µskµ

T
sk)
)

= mT
k µsk −

1

2
tr
(
Sk(Σsk + µskµ

T
sk)
)

(3.59)

We can write the convex optimization problem for the M-step in terms of the
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information parameters as

minimize log(1 +
K−1∑
k=1

exp ηk) +
K∑
k=1

αsk
(
− 1

2
log |Sk|+

1

2
mT
k S
−1
k mk +

d

2
log 2π

)
−

K−1∑
k=1

ηkαsk −
K∑
k=1

αsk
(
mT
k µsk −

1

2
tr(Sk(Σsk + µskµ

T
sk))
)

(3.60)

where η ∈ RK−1, mk ∈ Rd, Sk ∈ Sd+ for k = 1, . . . , K are the optimization

variables. The expected empirical probabilities

αsk =
1

N

N∑
j=1

q(yj = k), k = 1, . . . , K

the expected empirical means

µsk =
1

αskN

N∑
j=1

q(yj = k)xj, k = 1, . . . , K

and the expected empirical covariance matrices

Σsk =
1

αskN

N∑
j=1

q(yj = k)xjx
T
j − µskµTsk, k = 1, . . . , K

are the problem parameters which were calculated apriori after the E-step.

Notice that this is an unconstrained optimization problem and the values

of the optimization variables depend on the values of the expected sufficient

statistics αsk,µsk and Σsk for k = 1, . . . , K.

3.3.6.2 Dual Problem for the M-step in Source Form

We can write the objective function of the problem in (3.47) in terms of the source

parameters α, µ1,Σ1, . . . , µK ,ΣK . As discussed in (2.69) and (2.83), we have the

expressions for the entropy functions in terms of the source parameters. We write

the moment parameters ν in terms of the source parameters α, µ1,Σ1, . . . , µK ,ΣK
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as

νy = α (3.61)

νx|y=k = (µTk , vec(Σk + µkµ
T
k )T )T for k = 1, . . . , K (3.62)

and the expected empirical natural parameters θsy, θsx|y=1, . . . , θsx|y=K in terms

of the information parameters ηs,ms1, Ss1, . . . ,msK , SsK as

θsy = ηs (3.63)

θsx|y=k = (mT
sk, vec(−

1

2
Ssk)

T )T for k = 1, . . . , K (3.64)

For the entropy functions we have

H(νy) = −
K−1∑
k=1

αk logαk − (1−
K−1∑
k=1

αk) log(1−
K−1∑
k=1

αk) (3.65)

H(νx|y=k) =
1

2
log |Σk|+

d

2
log(2πe) (3.66)

and for the inner product terms we have

νTy θsy = αTηs

=
K−1∑
k=1

αkηsk (3.67)

νTx|y=kθsx|y=1 = (µTk , vec(Σk + µkµ
T
k )T )(mT

sk, vec(−
1

2
Ssk)

T )T

= µTkmsk + tr
(
(Σk + µkµ

T
k )(−1

2
Ssk)

)
= µTkmsk −

1

2
tr(ΣkSsk)−

1

2
tr(µkµ

T
k Ssk)

= µTkmsk −
1

2
tr(ΣkSsk)−

1

2
µTk Sskµk (3.68)

Hence we can write the convex optimization problem in (3.47) as

maximize −
K−1∑
k=1

αk logαk − (1−
K−1∑
k=1

αk) log(1−
K−1∑
k=1

αk)

+
K∑
k=1

αsk
(1

2
log |Σk|+

d

2
log(2πe)

)
+

K−1∑
k=1

αkηsk +
K∑
k=1

αsk
(
µTkmsk −

1

2
tr(ΣkSsk)−

1

2
µTk Sskµk

)
(3.69)
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where α ∈ RK−1, µk ∈ Rd, Σk ∈ Sd+ for k = 1, . . . , K are the optimization

variables and the expected empirical information parameters denoted by

ηsk = log
αsk

1−
∑K−1

i=1 αsi
, k = 1, . . . , K − 1

msk = Σ−1
sk µsk, k = 1, . . . , K

Ssk = Σ−1
sk , k = 1, . . . , K

are the problem parameters which were calculated apriori after the E-step using

the expected empirical probabilities

αsk =
1

N

N∑
j=1

q(yj = k), k = 1, . . . , K

the expected empirical means

µsk =
1

αskN

N∑
j=1

q(yj = k)xj, k = 1, . . . , K

and the expected empirical covariance matrices

Σsk =
1

αskN

N∑
j=1

q(yj = k)xjx
T
j − µskµTsk, k = 1, . . . , K

.

Notice that this is an unconstrained optimization problem and the values of

the optimization variables depend on the values of the expected empirical natural

parameters ηsk,msk and Ssk for k = 1, . . . , K.

3.4 Constrained Gaussian Mixture Model Frame-

work

3.4.1 Problem Definition

We consider the family F of distributions of Gaussian mixture models with K

Gaussian components denoted by p(x, y|θ) ∈ F over d dimensional continous
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random vector x ∈ Rd and a multinomial random variable y ∈ {1, . . . , K}
parametrized with the information parameters θ = {η,m1, S1, . . . ,mK , SK} where

η ∈ RK−1, mk ∈ Rd, Sk ∈ Sd+ for k = 1, . . . , K.

In density estimation problems with constrained Gaussian mixture models,

we are given a data set X = {x1, . . . ,xN} of N independent and identically

distributed (i.i.d.) random vectors corresponding to random samples from the

marginal distribution p(x|θ) =
∑K

k=1 p(x, y = k|θ). In addition, we are given a set

of constraints denoted by C which either can be formulated as convex constraints

in the information parameters θ = {η,m1, S1, . . . ,mK , SK} or can be formulated

as convex constraints in the source parameters ν = {α, µ1,Σ1, . . . , µK ,ΣK} where

α ∈ RK−1, µk ∈ Rd, Σk ∈ Sd+ for k = 1, . . . , K. In other words, we assume that

the given set of constraints C can be expressed as convex constraints either in

terms of the information parameters θ or the source parameters ν. Our objective

is to find the maximum likelihood (ML) estimate θ̂ of the model parameters θ

satisfying the constraints in C. The ML estimation problem can be written in

minimization form in 2.20 as

θ̂ = arg min
θ∈C

− 1

N

N∑
j=1

`(θ|xj) (3.70)

3.4.2 Expectation Maximization Algorithm

We use the expectation maximization algorithm to solve the maximum likelihood

estimation problem in (3.70). In the E-step, we calculate the distributions Q over

hidden variables Y by solving the following optimization problem

Qt = arg min
Q

KLN(Q||p(Y|X , θ(t−1))) (3.71)

For the M-step we either solve the primal problem where the optimzation

variables are the information parameters θ = {η,m1, S1, . . . ,mK , SK} or solve

the dual problem where the optimization variables are the source parameters

ν = {α, µ1,Σ1, . . . , µK ,ΣK} and then calculate the information parameters θ

from the source parameters ν. If the constraint set C can be formulated as con-

vex constraints using the information parameters θ = {η,m1, S1, . . . ,mK , SK}, we
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solve the primal problem for the M-step. In the primal problem for the M-step

we compute the information parameters θ = {η,m1, S1, . . . ,mK , SK} subject to

constraints θ ∈ Cθ where the constraint set is denoted by Cθ which consists of the

constraints in C expressed in terms of the information parameters θ by solving

the following optimization problem

minimize log(1 +
K−1∑
k=1

exp ηk) +
K∑
k=1

αsk
(
− 1

2
log |Sk|+

1

2
mT
k S
−1
k mk +

d

2
log 2π

)
−

K−1∑
k=1

ηkαsk −
K∑
k=1

αsk
(
mT
k µsk −

1

2
tr(Sk(Σsk + µskµ

T
sk))
)

subject to (η,m1, S1, . . . ,mK , SK) ∈ Cθ (3.72)

where η ∈ RK−1, mk ∈ Rd, Sk ∈ Sd+ for k = 1, . . . , K are the optimization

variables and Cθ denotes the convex constraint set including convex inequality

and affine equality constraints. The expected empirical probabilities

αsk =
1

N

N∑
j=1

qt(yj = k), k = 1, . . . , K

the expected empirical means

µsk =
1

αskN

N∑
j=1

qt(yj = k)xj, k = 1, . . . , K

and the expected empirical covariance matrices

Σsk =
1

αskN

N∑
j=1

qt(yj = k)xjx
T
j − µskµTsk, k = 1, . . . , K

are the problem parameters which were calculated apriori after the E-step.

On the other hand, if the constraint set C can be formulated as convex

constraints using the source parameters ν = {α, µ1,Σ1, . . . , µK ,ΣK}, we solve

the dual problem for the M-step and then find the information parameters

θ = {η,m1, S1, . . . ,mK , SK} using the parameter conversion formulas where

ηk = log αk
1−

∑K−1
i=1 αi

for k = 1, . . . , K − 1, mk = Σ−1
k µk, Sk = Σ−1

k for

k = 1, . . . , K. In the dual problem for the M-step we compute the source pa-

rameters ν = {α, µ1,Σ1, . . . , µK ,ΣK} subject to constraints ν ∈ Cν where the
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constraint set is denoted by Cν which consists of the constraints in C expressed in

terms of the source parameters ν by solving the following optimization problem

maximize −
K−1∑
k=1

αk logαk − (1−
K−1∑
k=1

αk) log(1−
K−1∑
k=1

αk)

+
K∑
k=1

αsk
(1

2
log |Σk|+

d

2
log(2πe)

)
+

K−1∑
k=1

αkηsk +
K∑
k=1

αsk
(
µTkmsk −

1

2
tr(ΣkSsk)−

1

2
µTk Sskµk

)
subject to (α, µ1,Σ1, . . . , µK ,ΣK) ∈ Cν (3.73)

where α ∈ RK−1, µk ∈ Rd, Σk ∈ Sd+ for k = 1, . . . , K are the optimization

variables and Cν denotes the convex constraint set including convex inequality

and affine equality constraints. The expected empirical information parameters

are denoted by

ηsk = log
αsk

1−
∑K−1

i=1 αsi
, k = 1, . . . , K − 1

msk =Σ−1
sk µsk, k = 1, . . . , K

Ssk =Σ−1
sk , k = 1, . . . , K

which were calculated apriori after the E-step using the expected empirical prob-

abilities

αsk =
1

N

N∑
j=1

qt(yj = k), k = 1, . . . , K

the expected empirical means

µsk =
1

αskN

N∑
j=1

qt(yj = k)xj, k = 1, . . . , K

and the expected empirical covariance matrices

Σsk =
1

αskN

N∑
j=1

qt(yj = k)xjx
T
j − µskµTsk, k = 1, . . . , K
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3.5 Example Constraints

In this Section, we will discuss various practical scenarios and show how different

parameter dependency relations can be formulated as convex constraints either

on the information or the source parameters of Gaussian mixture models.

First we will consider example cases which can be formulated as convex con-

straints using the information parameters.

• Known null entries (i, j) ∈ I in the information matrices Sk ∈ Sd+ (Sk � 0)

for k = 1, . . . , K corresponding to the conditional independence relations

[40], [47], [3] between the pair of random variables indexed by i, j can be for-

mulated as linear equality and convex inequality constraints in the variables

S1, . . . , SK as

Si,jk = 0 for (i, j) ∈ I, k = 1, . . . , K

Sk � 0 for k = 1, . . . , K (3.74)

• We can constrain any information matrix Sk ∈ Sd+ to be diagonal and put

nonnegative known upper bounds and lower bounds, ui,i ≥ li,i ≥ 0, (i, i) ∈ I
on the diagonal entries. These constraints have been considered as desired

properties of the covariance matrices in speech recognition [22], [21], [23].

They can be handled in our framework using linear equality and convex

inequality constraints in the variables S1, . . . , SK as

Si,jk = 0 for i 6= j

Si,ik ≥ li,i for (i, i) ∈ I

Si,ik ≤ ui,i for (i, i) ∈ I

Sk � 0 for k = 1, . . . , K (3.75)

• We can constrain any information matrix Sk ∈ Sd+ to be diagonal and be

related to a known diagonal information matrix S̃k ∈ Sd+ via an unknown

affine transformation modeled with nonnegative variables a1, . . . , ad. These

constraints have been considered as desired properties of the covariance
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matrices in speech recognition [71], [66], [53]. They can be handled in our

framework using linear equality and convex inequality constraints in the

variables Sk, a1, . . . , ad as

Si,jk = 0 for i 6= j

Si,ik = aiS̃
i,i
k for i = 1, . . . , d

Sk � 0

ai ≥ 0 for i = 1, . . . , d (3.76)

• The constraint Sk = AS̃kA
T describes a relation where an arbitrary infor-

mation matrix Sk ∈ Sd+ is related to a known arbitrary information matrix

S̃k ∈ Sd+ via an unknown affine transformation A ∈ Rd×m. This constraint

have been considered as a desired property of the covariance matrices in

speech recognition [53]. This constraint does not correspond to an affine

equality constraint in the variables Sk, A and since it is not affine it can-

not be handled in our framework. However its semi-definite programming

(SDP) relaxation Sk � AS̃kA
T corresponds to a convex inequality constraint

in the variables Sk, A [36].

Next we will consider example cases which can be formulated as convex con-

straints using the source parameters.

• We can constrain any mean vector µk ∈ Rd to be related to a known vector

µ̃k ∈ Rm via an unknown affine transformation A ∈ Rd×m, b ∈ Rm. This

constraint have been considered as a desired property of the mean vectors

in speech recognition [62], [69], [70], [71], [66]. It can be handled in our

framework using linear equality constraints in the variables µk, A, b as

µk = Aµ̃k + b (3.77)

• We can constrain the difference of the mean vectors µi ∈ Rd, µj ∈ Rd to be

equal to the known displacement vectors d̃ij ∈ Rd plus unknown deviation

vectors tij ∈ Rd where the l1 norm of the deviation vectors are constrained

to be less than a known positive number u > 0 for i = 1, . . . , K − 1,
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j = i + 1, . . . , K using affine equality and convex inequality constraints in

the variables µ1, . . . , µk, t1,2, . . . , tK,K−1 as

µi + d̃ij = µj + tij for i = 1, . . . , K − 1, j = i+ 1, . . . , K

||tij||1 ≤ u for i = 1, . . . , K − 1, j = i+ 1, . . . , K (3.78)

• Known null entries (i, j) ∈ I in the covariance matrices Σk ∈ Sd+ (Σk � 0)

for k = 1, . . . , K corresponding to the marginal independence relations [47],

[3], between the pair of random variables indexed by i, j can be formu-

lated as linear equality constraints and convex inequality constraints in the

variables Σ1, . . . ,ΣK as

Σi,j
k = 0 for (i, j) ∈ I, k = 1, . . . , K

Σk � 0 for k = 1, . . . , K (3.79)

• We can constrain any covariance matrix Σk ∈ Sd+ to be block diagonal, such

as

Σk =

[
Σ1
k 0

0 Σ2
k

]
where Σ1

k ∈ Sm+ , Σ2
k ∈ Sd−m+ and put limits on their corresponding

eigenvalues where the eigenvalue limits are known nonnegative numbers,

λ̃1
max,k ≥ λ̃1

min,k ≥ 0 using linear equality and convex inequality constraints

in the variables Σk as

Σij
k = 0 for i = 1, . . . ,m, j = m+ 1, . . . , d

Σij
k = 0 for i = m+ 1, . . . , d, j = 1, . . . ,m

Σ1
k � λ̃1

max,kIm

Σ1
k � λ̃1

min,kIm

Σ2
k � λ̃2

max,kId−m

Σ2
k � λ̃2

min,kId−m

Σk � 0 (3.80)

• We can constrain any covariance matrix Σk ∈ Sd+ to be diagonal and put

nonnegative known upper and lower bounds, ui,i ≥ li,i ≥ 0, (i, i) ∈ I on
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the diagonal entries. These constraints have been considered as desired

properties of the covariance matrices in speech recognition [22], [21], [23].

They can be handled in our framework using linear equality and convex

inequality constraints in the variables Σ1, . . . ,ΣK as

Σi,j
k = 0 for i 6= j

Σi,i
k ≥ li,i for (i, i) ∈ I

Σi,i
k ≤ ui,i for (i, i) ∈ I

Σk � 0 for k = 1, . . . , K (3.81)

• We can constrain any covariance matrix Σk ∈ Sd+ to be diagonal and be

related to a known diagonal covariance matrix Σ̃k ∈ Sd+ via an unknown

affine transformation modeled with nonnegative variables a1, . . . , ad. These

constraints have been considered as desired properties of the covariance

matrices in speech recognition [71], [66], [53]. They can be handled in our

framework using linear equality and convex inequality constraints in the

variables Σk, a1, . . . , ad as

Σi,j
k = 0 for i 6= j

Σi,i
k = aiΣ̃

i,i
k for i = 1, . . . , d

Σk � 0

ai ≥ 0 for i = 1, . . . , d (3.82)

• The constraint Σk = AΣ̃kA
T describes a relation where an arbitrary co-

variance matrix Σk ∈ Sd+ is related to a known arbitrary covariance matrix

Σ̃k ∈ Sd+ via an unknown affine transformation A ∈ Rd×m. This constraint

have been considered as a desired property of the covariance matrices in

speech recognition [53]. This constraint does not correspond to an affine

equality constraint in the variables Σk, A and since it is not affine it cannot

be handled in our framework. However, its SDP relaxation Σk � AΣ̃kA
T

corresponds to a convex inequality constraint in the variables Σk, A [36].
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3.6 Conclusions

A novel constrained Gaussian mixture model framework (CGMM) is proposed to

handle the affine equality and convex inequality constraints on either the infor-

mation or the source parameters. The expectation maximization (EM) algorithm

used to estimate the parameters are explained in detail. We have shown that the

primal problem for the M-step corresponds to a convex optimization problem in

the information parameters and we can handle convex constraints on the infor-

mation parameters by solving a constrained convex optimization problem. Then,

we have developed an unconstrained dual convex optimization problem for the

M-step which is convex in the source parameters and suitable for adding new

constraints on the source parameters. Thus, we can handle convex constraints

on the source parameters by solving the dual convex optimization problem. The

unifying idea in this Chapter is that we can handle affine equality and convex in-

equality constraints on either the information or the source parameters by solving

a constrained convex optimization problem for the M-step. Moreover, we have

shown that many parameter relations of practical importance can be formulated

as convex constraints either using the information or the source parameters.
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Chapter 4

Robust Gaussian Mixture Models

4.1 Introduction

In many problems, the data points of interest are observed as part of a larger

set of observations where some of the points do not follow the assumed restricted

parametric distribution. We refer to the data points being distributed according

to the assumed distribution as inliers and the rest of the data points as outliers.

In practice, it is hard to know the outlier distributions and hence it is important

to have flexible models that make as few assumptions as possible. Furthermore,

in outlier detection problems with Gaussian mixture models one needs to select

a threshold level so that given new data points, he/she can determine which

data points are the outliers. This is time consuming work and it is desirable to

automatically determine the threshold level using inlier and outlier information

available for few data points.

In this Chapter, we first study a general probabilistic mixture model where

initially we assume that we know both the inlier and the outlier distributions.

Then, we show that in the E-step of the expectation maximization (EM) al-

gorithm, if we constrain the posteriors distributions to take binary values and

assume that the likelihood of any data point being an outlier is a constant value,

we do not need any other additional information to detect the outliers. Second,

76



as an example to the constrained Gaussian mixture model framework, we develop

a robust Gaussian mixture model where inlier/outlier information available few

data points are incorporated as convex constraints on the information parame-

ters. Using this model we show that we can simultaneously learn both the model

parameters that are consistent with this information and determine the threshold

value needed to determine the outliers.

The organization of this Chapter is as follows. In Section 4.2 we study a gen-

eral probabilistic mixture model. In Section 4.3, as an application to constrained

Gaussian mixture model framework, we develop a robust Gaussian mixture model

where inlier/outlier information available few data points are incorporated as con-

vex constraints on the information parameters. We illustrate the capabilities of

the proposed model on two-dimensional data set in Section 4.4. Conclusions are

provided in Section 4.5.

4.2 General Robust Model

In many problems, the data points of interest are observed as part of a larger

set of observations where some of the points do not follow the assumed restricted

parametric distribution p(x|θ) parameterized by the parameters θ. We refer to

the data points being distributed according to the assumed distribution as inliers

and the rest of the data points as outliers. We assume that a given set of N

data points X = {x1, . . . ,xN} where xj ∈ Rd are independent and identically

distributed according to a robust mixture probability density function on Rd

indexed by the set of parameters Θ = {θ, ψ, β}. For the data points X , we have

a set of N hidden inlier Bernoulli variables O = {o1, . . . , oN} where oj ∈ {0, 1}
denotes whether the data point xj is an inlier or not with probability β ∈ [0, 1].

The inliers are distributed according to the parametric distribution p(x|θ) and

the outliers are distributed according to the parametric distribution p(x|ψ). The
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robust mixture probability density function p(x|Θ) can be written as

p(x|Θ) =
1∑

m=0

p(x, o = m|Θ)

=
1∑

m=0

p(o = m|Θ)p(x|o = m,Θ)

= p(o = 0|Θ)p(x|o = 0,Θ) + p(o = 1|Θ)p(x|o = 1,Θ)

= p(o = 0|β)p(x|o = 0, ψ) + p(o = 1|β)p(x|o = 1, θ)

= (1− β)p(x|o = 0, ψ) + (β)p(x|o = 1, θ). (4.1)

4.2.1 Maximum Likelihood Estimation

Given a data set X = {x1, . . . ,xN} of N independent and identically distributed

(i.i.d.) random vectors corresponding to random samples from the marginal dis-

tribution p(x|Θ) =
∑1

m=0 p(x, o = m|Θ), our objective is to find the maximum

likelihood (ML) estimate Θ̂ of the parameters Θ. The ML estimation problem

can be written in minimization form in (2.20) as

Θ̂ = arg min
Θ

`N(Θ|X ) (4.2)

where we used `N(Θ|X ) = − 1
N

∑N
j=1 `(Θ|xj).

4.2.2 Expectation Maximization Algorithm

To estimate the parameters, we use the expectation maximization (EM) algorithm

which consists of two steps called the E-step and the M-step, and uses a bound

function F (R,Θ) which is a function of the model parameters Θ and the set of

introduced distributions R = {r(o1), . . . , r(oN)} over the hidden inlier indicator

variables O. The EM algorithm and the derivation of the bound functions are

discussed in detail in Sections 3.3.1 and 3.3.2. In the E-step of iteration t, the

bound function F (R,Θt−1) is minimized over the introduced set of distributions

R while holding the parameters, Θt−1, found in the previous iteration t− 1 fixed
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as

Rt = arg min
R

F (R,Θt−1). (4.3)

In the M-step of iteration t, the bound function F (Rt,Θ) is minimized over the

parameters Θ while holding the distributions, Rt, found in the E-step fixed as

Θt = arg min
Θ

F (Rt,Θ). (4.4)

4.2.3 E-step

Following the ideas discussed in Section 3.3.3, we express the bound function

F (R,Θ) as

F (R,Θ) = KLN(R||p(O|X ,Θ)) + `N(Θ|X ) (4.5)

where we defined

KLN(R||p(O|X ,Θ)) =
1

N

N∑
j=1

KL(r(oj)||p(oj|xj,Θ)). (4.6)

In the E-step, we minimize the bound function F (R,Θ) over the introduced set

of distributions R while holding the parameters Θ fixed. Thus, we can write the

corresponding optimization problem as

R = arg min
R

KLN(R||p(O|X ,Θ)) + `N(Θ|X ) (4.7)

As discussed in detail in Section 3.3.3, for the optimum solution the intro-

duced distribution should be equal to the posterior distribution, i. e., r(oj) =

p(oj|xj,Θ). To calculate the posterior distributions p(oj|xj,Θ), we need to know

the outlier distributions p(xj|oj = 0, ψ) and the outlier probabilities 1− β which

is proportional to the number of outliers.

4.2.4 Constrained E-step

We have seen that for the general case we need to know the outlier distributions

p(xj|oj = 0, ψ) and the outlier probabilities 1 − β to calculate the posterior
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distributions p(oj|xj,Θ) for the E-step. However in practice it is hard to know

the outlier distributions. In the proof of the Propositions 9 and 10 we will show

that if we constrain the values that the introduced distributions can take to be

binary, and assume that the likelihoods of the data points given they are outliers,

p(xj|oj = 0, ψ), are equal, then an optimum solution of the constrained E-step can

be calculated without any additional information about the outlier distributions

p(xj|oj = 0, ψ). To make it easier to see, we expand the bound F (R,Θ) as

F (R,Θ) = KLN(R||p(O|X ,Θ)) + `N(Θ|X )

=
1

N

N∑
j=1

1∑
m=0

r(oj = m) log
r(oj = m)

p(oj = m|xj,Θ)p(xj = m|Θ)

=
1

N

N∑
j=1

1∑
m=0

r(oj = m) log
r(oj = m)

p(xj|oj = m,Θ)p(oj = m|Θ)

=
1

N

N∑
j=1

1∑
m=0

r(oj = m) log r(oj = m) (4.8)

− 1

N

N∑
j=1

1∑
m=0

r(oj = m) log p(xj|oj = m,Θ) (4.9)

− 1

N

N∑
j=1

1∑
m=0

r(oj = m) log p(oj = m|β). (4.10)

Proposition 9. If the introduced distribution R can take only binary values, i.e.,

r(oj) ∈ {0, 1} for j = 1, . . . , N , the number of inliers is a known fixed number

Ñ , i.e.,
∑N

j=1 r(oj = 1) = Ñ .Furthermore, if the likelihoods of the data points

given they are outliers are equal to a constant p̃, i.e., p(xj|oj = 0, ψ) = p̃ for

j = 1, . . . , N , then setting r(oj = 1) = 1 for the Ñ biggest log p(xj|oj = 1, θ)

values and r(oj = 1) = 0 for the rest corresponds to an optimum solution of the

optimization problem in (4.7).

Proof. We use Term1,Term2 and Term3 to address (4.8), (4.9) and (4.10), respec-

tively. We can rewrite the Term1 using the relations r(oj = 0) = 1 − r(oj = 1)

80



for j = 1, . . . , N as

Term1 =
1

N

N∑
j=1

(
1− r(oj = 1)

)
log
(
1− r(oj = 1)

)
+ r(oj = 1) log r(oj = 1)

(4.11)

Binary constraints r(oj) ∈ {0, 1} make Term1 zero because 0 log 0 = 1 log 1 = 0.

Similarly, we can rewrite the Term3 using the relations r(oj = 0) = 1− r(oj = 1)

for j = 1, . . . , N as

Term3 = − 1

N

N∑
j=1

(
1− r(oj = 1)

)
log
(
1− β

)
+ r(oj = 1) log β

= − log
(
1− β

)
− 1

N

N∑
j=1

r(oj = 1) log
β

1− β
(4.12)

Substituting β = Ñ
N

, 1− β = N−Ñ
N

and
∑N

j=1 r(oj = 1) = Ñ we have

Term3 = − log
(N − Ñ

N

)
− Ñ

N
log

Ñ

N − Ñ

= −N − Ñ
N

log(
N − Ñ
N

)− Ñ

N
log(

Ñ

N
) (4.13)

Hence Term3 is constant. Similarly, we can rewrite Term2 using the relations

r(oj = 0) = 1− r(oj = 1) for j = 1, . . . , N as

Term2 = − 1

N

N∑
j=1

(
1− r(oj = 1)

)
log p(xj|oj = 0, ψ) + r(oj = 1) log p(xj|oj = 1, θ)

= − 1

N

N∑
j=1

log p(xj|oj = 0, ψ)− 1

N

N∑
j=1

r(oj = 1) log
p(xj|oj = 1, θ)

p(xj|oj = 0, ψ)

(4.14)

Substituting p(xj|oj = 0, ψ) = p̃ for j = 1, . . . , N , we have

Term2 = − 1

N

N∑
j=1

log p̃− 1

N

N∑
j=1

r(oj = 1) log
p(xj|oj = 1, θ)

p̃
(4.15)

Sum of all terms (Term1,Term2 and Term3) is an affine function of r(oj = 1)

for j = 1, . . . , N . Ignoring the constant parts, we can find the solution to the
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problem in 4.7 by solving

minimize − 1

N

N∑
j=1

r(oj = 1) log p(xj|oj = 1, θ)

subject to
N∑
j=1

r(oj = 1) = Ñ

r(oj = 1) ∈ {0, 1} for j = 1, . . . , N (4.16)

The objective is linear in r(oj = 1)’s and they are constrained to sum to Ñ . Thus

setting r(oj = 1) = 1 for the Ñ biggest log p(xj|oj = 1, θ) values and r(oj = 1) = 0

for the rest corresponds to an optimum solution of the optimization problem in

4.7. For a more detailed proof based on the linear programming relaxation of the

optimization problem in (4.16), we refer to [36].

Proposition 10. If the introduced distribution R can take only binary values,

i.e., r(oj) ∈ {0, 1} for j = 1, . . . , N , and the likelihoods of the data points given

they are outliers are equal to a constant p̃, i.e., p(xj|oj = 0, ψ) = p̃ for j =

1, . . . , N , then setting r(oj = 1) = 1 for the positive log
(β)p(xj |oj=1,θ)

(1−β)p̃
values and

r(oj = 1) = 0 for the rest corresponds to an optimum solution of the optimization

problem in 4.7.

Proof. We use Term1, Term2 and Term3 to address 4.8, 4.9 and 4.10, respectively.

Binary constraints r(oj) ∈ {0, 1} make Term1 zero because 0 log 0 = 1 log 1 = 0.

For the Term3, we have

Term3 = − log
(
1− β

)
− 1

N

N∑
j=1

r(oj = 1) log
β

1− β
(4.17)

For the Term2, we have

Term2 = − 1

N

N∑
j=1

log p̃− 1

N

N∑
j=1

r(oj = 1) log
p(xj|oj = 1, θ)

p̃
(4.18)

Sum of all terms (Term1,Term2 and Term3) is an affine function of r(oj = 1)

for j = 1, . . . , N . Ignoring the constant parts, we can find the solution to the

82



problem in 4.7 by solving

minimize − 1

N

N∑
j=1

r(oj = 1) log
(β)p(xj|oj = 1, θ)

(1− β)p̃

subject to
N∑
j=1

r(oj = 1) ≤ N

r(oj = 1) ∈ {0, 1} for j = 1, . . . , N (4.19)

The objective is linear in r(oj = 1)’s. Furthermore we are minimizing the sum

of the negative log-likelihood ratios which is equivalent to the maximization of

the sum of the log-likelihood ratios. Since only positive values increases the sum

we only want to have positive log-likelihood ratios. Thus setting r(oj = 1) = 1

for the positive log
(β)p(xj |oj=1,θ)

(1−β)p̃
values and r(oj = 1) = 0 for the rest corresponds

to an optimum solution of the optimization problem in 4.7. For a more detailed

proof based on the linear programming relaxation of the optimization problem in

(4.19), we refer to [36].

4.3 Robust Gaussian Mixture Models

4.3.1 Problem Definition

We are given a set of N data points X = {x1, . . . ,xN} where xj ∈ Rd are

independent and distributed according to a robust Gaussian mixture probability

density function on Rd indexed by the set of parameters Θ = {θin, θout, θr}. For

the data points X , we have a set of N hidden inlier Bernoulli variables O =

{o1, . . . , oN} where oj ∈ {0, 1} denotes whether the data point xj is an inlier

denoted by oj = 1 or not with probability exp θr
1+exp θr

∈ [0, 1]. The outliers are

assumed to be equally likely where log p(xj|oj = 0, θout) = θout. The inliers are

distributed according to the Gaussian mixture distribution p(xj|oj = 1, θin) with

K components parametrized by θin = {η,m1, S1, . . . ,mK , SK} where η ∈ RK−1,

mk ∈ Rd, Sk ∈ Sd+ for k = 1, . . . , K are the information parameters. Hence, for

the data points X , we also have a set of N hidden multinomial variables Y =
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{y1, . . . , yN} where yj ∈ {1, . . . , K} denotes the index of the Gaussian components

for the data point xj. The robust mixture probability density function p(x|Θ)

can be written as

p(x|Θ) = (
1

1 + exp θr
)p(x|o = 0, θout) + (

exp θr
1 + exp θr

)
K∑
k=1

p(x, y = k|o = 1, θin)

(4.20)

Moreover, we have a data set Xin = {xin,1, . . . ,xin,Nin} of Nin data points known

to be inliers and a data set Xout = {xout,1, . . . ,xout,Nout} of Nout data points known

to be outliers. We form affine inequality constraints on the parameters to ensure

that the inlier data points Xin have higher and the outlier data points Xout have

lower log-likelihood values than the threshold value θout− θr. For any inlier data

point xin,i, we would like to have

log
(
p(xin,i|oin,i = 1, θin)p(oin,i = 1)

)
> log

(
p(xin,i|oin,i = 0)p(oin,i = 0)

)
log
(
p(xin,i|oin,i = 1, θin)

)
> log

(
p(xin,i|oin,i = 0)

)
− log

(p(oin,i = 1)

p(oin,i = 0)

)
which is equal to

log
( K∑
k=1

p(xin,i, yin,i = k|oin,i = 1, θin)
)
> θout − θr (4.21)

Similarly for any outlier data point xout,i, we would like to have

log
( K∑
k=1

p(xout,i, yout,i = k|oout,i = 1, θin)
)
≤ θout − θr (4.22)

Notice that for any data point xj, we have

p(yj = k|xj, oj = 1, θin) =
p(xj, yj = k|oj = 1, θin)∑K

m=1 p(xj, yj = m|oj = 1, θin)
, k = 1, . . . , K (4.23)

Hence we have K equalities for log
(∑K

m=1 p(xj, yj = m|oj = 1, θin)
)

as

log
( K∑
m=1

p(xj, yj = m|oj = 1, θin)
)

= log p(xj, yj = k|oj = 1, θin)− log p(yj = k|xj, oj = 1, θin), k = 1, . . . , K

(4.24)
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When we expand log p(xj, yj = k|oj = 1, θin), we get tr
(
Sk(−1

2
xjx

T
j )
)

+ mT
k xj

plus some additional terms. To handle both inliers and outliers, we need to have

both greater than and less than equal to constraints on the parameters. For these

constraints to be convex, they have be affine in the parameters. To form affine

constraints, we use K additional variables c1, . . . , cK , ck ∈ R for k = 1, . . . , K in

place of those additional terms. The inequality constraints denoted by C are as

tr
(
Sk(−

1

2
xin,ix

T
in,i)
)

+mT
k xin,i + ck

− log p(yin,i = k|xin,i, oin,i = 1, θin) > θout − θr, k = 1, . . . , K, i = 1, . . . , Nin

(4.25)

tr
(
Sk(−

1

2
xout,ix

T
out,i)

)
+mT

k xout,i + ck

− log p(yout,i = k|xout,i, oout,i = 1, θin) ≤ θout − θr, k = 1, . . . , K, i = 1, . . . , Nout

(4.26)

Our objective is to find the maximum likelihood (ML) estimate Θ̂ of the

parameters Θ. The ML estimation problem can be written in minimization form

in 2.20 as

minimize − 1

N

N∑
j=1

`(Θ|xj)

subject to (Θ, c1, . . . , cK) ∈ C (4.27)

where Θ, c1, . . . , cK are the optimization variables and Xin and Xout are the opti-

mization parameters used in the constraint set C which are assumed be known.

4.3.2 Expectation Maximization Algorithm

We use the EM algorithm to solve the maximum likelihood estimation problem

in (4.27). In the E-step, we compute the posterior distributions.
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E-step

qt(yj) =
p(xj, yj|oj = 1, θt−1

in )∑K
i=1 p(xj, yj = i|oj = 1, θt−1

in )
for j = 1, . . . , N (4.28)

rt(oj = 1) =

1, if Eqt(yj)[log p(xj, yj|oj = 1, θt−1
in )] +H(qt(yj)) > θt−1

out − θt−1
r

0, o.w.

for j = 1, . . . , N (4.29)

In the M-step we compute the information parameters θin = {η,m1, S1, . . . ,mK , SK}
and the constant outliers log-likelihood value denoted by θout and log-ratio of the

outlier probabilities denoted by θr subject to the affine inequality constraints

ensuring that the inlier data points have higher and the the outlier data points

have lower log-likelihood values than the threshold value θout − θr by solving the

following optimization problem

M-step

minimize log(1 +
K−1∑
k=1

exp ηk) +
K∑
k=1

αsk
(
− 1

2
log |Sk|+

1

2
mT
k S
−1
k mk +

d

2
log 2π

)
−

K−1∑
k=1

ηkαsk −
K∑
k=1

αsk
(
mT
k µsk −

1

2
tr(Sk(Σsk + µskµ

T
sk))
)

+ log(1 + exp θr)− θrβ

subject to

tr
(
Sk(−

1

2
xin,ix

T
in,i)
)

+mT
k xin,i + ck − log qt(yin,i = k) ≥ θout − θr,

for k = 1, . . . , K, i = 1, . . . , Nin (4.30)

tr
(
Sk(−

1

2
xout,ix

T
out,i)

)
+mT

k xout,i + ck − log qt(yout,i = k) ≤ θout − θr,

for k = 1, . . . , K, i = 1, . . . , Nout (4.31)

where η,m1, S1, . . . ,mK , SK , c1, . . . , cK , θr, θout are the optimization variables. For

each k, the inequality constraints in 4.30 are affine in the optimization variables

mk, Sk, ck, θout, θr ensuring that the inlier data points xin,i for i = 1, . . . , Nin have

higher log-likelihood values than the threshold value θout − θr. Similarly, for

each k, the inequality constraints in 4.31 are affine in the optimization variables
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mk, Sk, ck, θout, θr ensuring that the outlier data points xout,i for i = 1, . . . , Nout

have lower log-likelihood values than the threshold value θout− θr. The expected

empirical probabilities

αsk =
1

N

N∑
j=1

rt(oj = 1)qt(yj = k), k = 1, . . . , K

the expected empirical means

µsk =
1

αskN

N∑
j=1

rt(oj = 1)qt(yj = k)xj, k = 1, . . . , K

the expected empirical covariance matrices

Σsk =
1

αskN

N∑
j=1

rt(oj = 1)qt(yj = k)xjx
T
j − µskµTsk, k = 1, . . . , K

the expected empirical inlier probabilities

β =
1

N

∑
j=1

rt(oj = 1)

the posterior probabilities for the inliers Xin and the outliers Xout denoted by

qt(yin,i) =
p(xin,i, yin,i|oin,i = 1, θt−1

in )∑K
k=1 p(xin,i, yin,i = k|oin,i = 1, θt−1

in )
,

and

qt(yout,i) =
p(xout,i, yout,i|oout,i = 1, θt−1

in )∑K
k=1 p(xout,i, yout,i = k|oout,i = 1, θt−1

in )

respectively, are the problem parameters which were calculated apriori after the

E-step.

4.4 Experiments

To illustrate the capabilities of the proposed model, we consider a simple exam-

ple for the robust constrained GMM estimation problem using a two dimensional

synthetic data set. We generated a random GMM with K = 3 Gaussian com-

ponents. Then, we sampled 300 data points from the generated GMM and 100

data points from a uniform distribution [0, 100]2.
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We have considered four cases. In the first case, we used the standard EM

algorithm on the whole data set consisting of 400 data points. For the rest of the

three cases, we used the proposed EM algorithm for robust constrained GMM.

We have selected two inlier data points and four outlier data points. In all of

the three cases, two inliers data points are kept the same. For the second case,

we have selected four outlier data points at the corners which are assumed to be

the least informative. For the third and the fourth cases, we have selected four

outlier data points which are closer to the Gaussians in the reference GMM by

eyeballing the data.

In all cases, EM algorithms were initialized the same way. Following the

common practice in the literature, the initial mean vector for each component

was set to a randomly selected data point. The initial covariance matrices and

the initial mixture weights were calculated from the probabilistic assignment of

the data points to the Gaussian components with the initial mean vectors and the

identity covariance matrices. 50 different initializations were obtained this way,

and the EM algorithms were run for each initial configuration until convergence

for maximum 500 iterations. The final result of each EM run was selected as

the parameters corresponding to the best out of 50 runs having the highest log-

likelihood.

Fig. 4.1 shows 300 data points generated from the reference GMM. All 300

data points are marked in blue. The reference Gaussians used to generate the

300 data points are overlayed as red ellipses drawn at three standard deviations.

Fig. 4.2 shows 100 data points generated from a uniform distribution. All 100

data points are marked in blue.

Fig. 4.3 shows 400 data points used as the training data set. All 400 data

points in the training data set are marked in blue. The reference Gaussians

used to generate the 300 data points are overlayed as red ellipses drawn at three

standard deviations.

Fig. 4.4 shows 400 data points used as the training data set. All 400 data

points in the training data set are marked in blue. The Gaussians obtained using
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the best out of 50 runs of the standard EM algorithm are overlayed as red ellipses

drawn at three standard deviations.

Fig. 4.5 shows 300 data points generated from the reference GMM and 100

data points generated from a uniform distribution in [0, 100]2. Two data points

at coordinates (24.8, 63.2) and (44.1, 24.0) are selected as inliers and are marked

in green. Four data points at coordinates (2.9, 98.2), (1.0, 7.5), (95.7, 1.7) and

(92.4, 98.2) are selected as outliers and are marked in white. The reference Gaus-

sians used to generate the 300 data points are overlayed as red ellipses drawn at

three standard deviations.

Fig. 4.6 shows the detected inliers, outliers and the resulting Gaussians ob-

tained using the proposed EM algorithm for the constrained robust GMMs. 323

data points detected as inliers are marked in green. 77 data points detected as

outliers are marked in white. The resulting Gaussians obtained using the best

out of 50 runs of the proposed EM algorithm for the constrained robust GMMs

are overlayed as red ellipses drawn at three standard deviations.

Fig. 4.7 shows 300 data points generated from the reference GMM and 100

data points generated from a uniform distribution in [0, 100]2. Two data points

at coordinates (24.8, 63.2) and (44.1, 24.0) are selected as inliers and are marked

in green. Four data points at coordinates (93.1, 41.55), (4.1, 39.7), (68.2, 20.9)

and (20.7, 74.2) are selected as outliers and are marked in white. The reference

Gaussians used to generate the 300 data points are overlayed as red ellipses drawn

at three standard deviations.

Fig. 4.8 shows the detected inliers, outliers and the resulting Gaussians ob-

tained using the proposed EM algorithm for the constrained robust GMMs. 318

data points detected as inliers are marked in green. 82 data points detected as

outliers are marked in white. The resulting Gaussians obtained using the best

out of 50 runs of the proposed EM algorithm for the constrained robust GMMs

are overlayed as red ellipses drawn at three standard deviations.

Fig. 4.9 shows 300 data points generated from the reference GMM and 100

data points generated from a uniform distribution in [0, 100]2. Two data points
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Figure 4.1: 300 data points sampled from a GMM are marked in blue. The
reference Gaussians used to generate the data points are overlayed as red ellipses
drawn at three standard deviations.

at coordinates (24.8, 63.2) and (44.1, 24.0) are selected as inliers and are marked

in green. Four data points at coordinates (88.3, 18.1), (91.8, 7.3), (45.7, 32.5)

and (31.6, 40.9) are selected as outliers and are marked in white. The reference

Gaussians used to generate the 300 data points are overlayed as red ellipses drawn

at three standard deviations.

Fig. 4.10 shows the detected inliers, outliers and the resulting Gaussians ob-

tained using the proposed EM algorithm for the constrained robust GMMs. 310

data points detected as inliers are marked in green. 90 data points detected as

outliers are marked in white. The resulting Gaussians obtained using the best

out of 50 runs of the proposed EM algorithm for the constrained robust GMMs

are overlayed as red ellipses drawn at three standard deviations.
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Figure 4.2: 100 data points corresponding to samples from a uniform distribution
[0, 100]2 are marked in blue.
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Figure 4.3: 400 data points in the training data set are marked in blue. The ref-
erence Gaussians are overlayed as red ellipses drawn at three standard deviations.
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Figure 4.4: 400 data points in the training data set are marked in blue. The
resulting Gaussians obtained using the best out of 50 runs of the standard EM
algorithm are overlayed as red ellipses drawn at three standard deviations.
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Figure 4.5: Two data points at coordinates (24.8, 63.2) and (44.1, 24.0) selected as
inliers are marked in green. Four data points at coordinates (2.9, 98.2), (1.0, 7.5),
(95.7, 1.7) and (92.4, 98.2) selected as outliers are marked in white. The rest of
the data points in the data set is marked in blue. The reference Gaussians are
overlayed as red ellipses drawn at three standard deviations.
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Figure 4.6: 323 data points detected as inliers are marked in green. 77 data points
detected as outliers are marked in white. The resulting Gaussians obtained using
the best out of 50 runs of the proposed EM algorithm for the constrained robust
GMMs are overlayed as red ellipses drawn at three standard deviations.
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Figure 4.7: Two data points at coordinates (24.8, 63.2) and (44.1, 24.0) selected
as inliers are marked in green. Four data points at coordinates (93.1, 41.55),
(4.1, 39.7), (68.2, 20.9) and (20.7, 74.2) selected as outliers are marked in white.
The rest of the data points in the data set is marked in blue. The reference
Gaussians are overlayed as red ellipses drawn at three standard deviations.
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Figure 4.8: 318 data points detected as inliers are marked in green. 82 data points
detected as outliers are marked in white. The resulting Gaussians obtained using
the best out of 50 runs of the proposed EM algorithm for the constrained robust
GMMs are overlayed as red ellipses drawn at three standard deviations.
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Figure 4.9: Two data points at coordinates (24.8, 63.2) and (44.1, 24.0) selected
as inliers are marked in green. Four data points at coordinates (88.3, 18.1),
(91.8, 7.3), (45.7, 32.5) and (31.6, 40.9) selected as outliers are marked in white.
The rest of the data points in the data set is marked in blue. The reference
Gaussians are overlayed as red ellipses drawn at three standard deviations.
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Figure 4.10: 310 data points detected as inliers are marked in green. 90 data
points detected as outliers are marked in white. The resulting Gaussians obtained
using the best out of 50 runs of the proposed EM algorithm for the constrained
robust GMMs are overlayed as red ellipses drawn at three standard deviations.
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4.5 Conclusions

In this Chapter, we studied the robust estimation of the Gaussian mixture mod-

els and provided a robust Gaussian mixture model as an application to the con-

strained Gaussian mixture model framework. We developed a robust Gaussian

mixture model where inlier/outlier information available for few data points can

be incorporated as convex constraints on the information parameters. We devel-

oped an EM algorithm to learn both the model parameters that are consistent

with the available inlier/outlier information and the threshold value needed to

determine the outliers. Furthermore, we have illustrated the capabilities of the

proposed model on two dimensional synthetic data set.
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Chapter 5

Maximum Likelihood Estimation

of Gaussian Mixture Models

Using Stochastic Search

5.1 Introduction

The conventional algorithm used to do the maximum likelihood estimation of

Gaussian mixture model parameters is the expectation maximization (EM) algo-

rithm. One of the main problems with the EM algorithm is that the algorithm

converges to a local optimum. This is because the negative log-likehood function

is not a convex function of the Gaussian mixture model parameters. Moreover,

there is also the associated problem of initialization as it influences which local

optima of the negative log-likelihood function is attained.

In this Chapter, a novel global search algorithm based on the expectation

maximization and particle swarm optimization algorithms is presented to do the

maximum likelihood estimation of the Gaussian mixture model parameters. Our

major contributions in this Chapter are twofold. First, a novel parameterization

for arbitrary covariance matrices that allow independent updating of individual
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parameters while preserving the symmetry and the positive definiteness proper-

ties is presented. Second, an effective component matching technique to correct

the problems due the existence of multiple candidate solutions which are equiv-

alent under the permutations of the Gaussian mixture components is proposed.

Experiments on synthetic and real-life data sets verifies the perfomance of the

proposed algorithms.

The rest of the Chapter is organized as follows. Section 5.2 introduces the

definition of the estimation problem. Section 5.3 gives the summary of the up-

date equations for the expectation maximization algorithm in terms of the source

parameters. Section 5.4 presents the details of the proposed covariance parame-

terization and the solution for the identifiability problem. Section 5.5 describes

the proposed algorithm based on the expectation maximization and the particle

swarm optimization algorithms. Section 5.6 presents the experiments and dis-

cussion using both synthetic and real data sets. Finally, Section 5.7 provides the

conclusions of the Chapter.

5.2 Problem Definition

We consider a family of mixtures of K multivariate Gaussian distributions in

Rd indexed by the source parameters Ξ = {α1, µ1,Σ1, . . . , αK , µK ,ΣK}. Each

{µk,Σk} represents the parameters of the k’th Gaussian distribution p(x|µk,Σk)

such that µk ∈ Rd and Σk ∈ Sd++ are the means and the covariance matrices,

respectively, for k = 1, . . . , K. Mixing probabilities αk ∈ [0, 1] are constrained to

sum up to 1, i.e.,
∑K

k=1 αk = 1. Given a set of N data points X = {x1, . . . ,xN}
where xj ∈ Rd are independent and identically distributed (i.i.d.) according to the

mixture probability density function p(x|Ξ) =
∑K

k=1 αkp(x|µk,Σk), the objective

is to obtain the maximum likelihood estimate Ξ̂ by finding the parameters that

minimize the negative log-likelihood function

− 1

N

N∑
j=1

log

( K∑
k=1

αkp(xj|µk,Σk)

)
. (5.1)
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The negative log-likelihood function is not a convex function of the Gaus-

sian mixture parameters. The common practice for reaching a local optimum of

the negative log-likelihood function is to use the expectation-maximization (EM)

algorithm.

5.3 Expectation Maximization Algorithm

For completeness we briefly present the update equations for the expectation

maximization algorithm in terms of the source parameters in the this Section.

Details of the expectation maximization algorithm can be found in Chapter 3.

E-step

q(yj = k)(t) = p(yj = k|xj,Ξ(t)) =
α

(t)
k p(xj|µ

(t)
k ,Σ

(t)
k )∑K

i=1 α
(t)
i p(xj|µ

(t)
i ,Σ

(t)
i )

(5.2)

M-step

α
(t+1)
k =

1

N

N∑
j=1

q(yj = k)(t) (5.3)

µ
(t+1)
k =

1

α
(t+1)
k N

N∑
j=1

q(yj = k)(t)xj (5.4)

Σ
(t+1)
k =

1

α
(t+1)
k N

N∑
j=1

(
q(yj = k)(t)xjx

T
j

)
− µ(t+1)

k (µ
(t+1)
k )T (5.5)

where t indicates the iteration number.

5.4 Stochastic Search

The EM algorithm coverges to a local optimum. To overcome this problem, the

common practice is to use multiple random initializations to find different local

optima, and to use the result corresponding to the highest log-likelihood value.

This method can be viewed as a simple stochastic global search algorithm. How-

ever, even with some heuristics that have been proposed to guide the initialization,
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this approach is usually far from providing an acceptable solution because there

is no mechanism that can measure how different these multiple initializations are

from each other. Furthermore, for relatively more complex data sets for which

the likelihood function may contain a large number of local optima, the results

for a large number of independent EM runs can still be unsatisfactory because

these multiple initializations do not have a guarantee of a sufficient coverage of

the solution space.

As discussed in Chapter 1, an alternative is to use population-based stochastic

search algorithms where different candidate solutions are allowed to interact with

each other. The interactions in the commonly used GA, DE, and PSO algorithms

are typically implemented using operations such as randomized selection, swap-

ping, addition, and perturbation of the individual parameters of the candidate

solutions. For example, the crossover operation in GA and DE randomly selects

some parts of two candidate solutions to create a new candidate solution during

the reproduction of the population. Similarly, the mutation operation in GA

and DE and the update operation in PSO perturb an existing candidate solution

using a vector that is created using some combination of random numbers and

other candidate solutions.

However, the continuation of the iterations that search for better candidate

solutions assume that the parameters remain valid. The validity and bound-

edness of the mean vectors are relatively easy to implement but direct use of

covariance matrices introduce problems. For example, one might consider to use

d(d+1)/2 potentially different entries of a real symmetric d×d covariance matrix

as a direct parameterization of the covariance matrix. Although this ensures the

symmetry property, it cannot guarantee the positive definiteness where arbitrary

modifications of these entries may produce non-positive definite matrices. This

is illustrated in Table 5.1 where a new covariance matrix is constructed from

three valid covariance matrices in a simple arithmetic operation. Even though

the input matrices are positive definite, the output matrix is often not positive

definite for increasing dimensions. Another possible parameterization is to use

Cholesky factorization but the resulting parameters are unbounded (real num-

bers in the (−∞,∞) range). Therefore, lack of a suitable parameterization for
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Table 5.1: Simulation of the construction of a covariance matrix from three exist-
ing covariance matrices. Given the input matrices Σ1, Σ2, and Σ3, a new matrix
is constructed as Σnew = Σ1 + (Σ2 − Σ3) in an arithmetic operation that is of-
ten found in many stochastic search algorithms. This operation is repeated for
100, 000 times for different input matrices at each dimensionality reported in the
first row. As shown in the second row, the number of Σnew that is positive definite,
i.e., a valid covariance matrix, decreases significantly at increasing dimensions.
This shows that the entries in the covariance matrix cannot be directly used as
parameters in stochastic search algorithms.

Dimension 3 5 10 15 20 30
# valid 44,652 27,443 2,882 103 1 0

arbitrary covariance matrices has limited the flexibility of the existing approaches

in modeling the covariance structure of the components in the mixture.

In this Section, first, we propose a novel parameterization where the parame-

ters of an arbitrary covariance matrix are independently modifiable and can have

upper and lower bounds. We also describe an algorithm for unique identification

of these parameters from a valid covariance matrix. Then, we describe a new

solution to the mixture identifiability problem where different orderings of the

Gaussian components in different candidate solutions can significantly affect the

convergence of the search procedure. The proposed approach solves this issue by

using a two-stage interaction between the candidate solutions. In the first stage,

the optimum correspondences among the components of two candidate solutions

are identified. Once these correspondences are identified, in the second stage, de-

sirable interactions such as selection, swapping, addition, and perturbation can

be performed. Both the proposed parameterization and the solutions for the two

identifiability problems allow effective use of population-based stochastic search

algorithms for the estimation of GMMs.

5.4.1 Covariance Parameterization

The proposed covariance parameterization is based on eigenvalue decomposition

of the covariance matrix. For a given d-dimensional covariance matrix Σ ∈ Sd++,
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let {λi,νi} for i = 1, . . . , d denote the eigenvalue-eigenvector pairs in a partic-

ular order where λi ∈ R++ for i = 1, . . . , d correspond to the eigenvalues and

νi ∈ Rd such that ‖νi‖2 = 1 and νTi νj = 0 for i 6= j represent the eigen-

vectors. A given d-dimensional covariance matrix Σ can be written in terms

of its eigenvalue-eigenvector pairs as Σ =
∑d

i=1 λiνiν
T
i . Let the diagonal ma-

trix Λ = diag(λ1, . . . , λd) denote the eigenvalue matrix, and the unitary matrix

V = (ν1, . . . ,νd) denote the corresponding eigenvector matrix where the normal-

ized eigenvectors are placed into the columns of V in the order determined by

the corresponding eigenvalues in Λ. Then, the given covariance matrix can be

written as Σ = VΛVT .

Due to its symmetric structure, an arbitrary d-dimensional covariance matrix

has d(d+1)/2 degrees of freedom; thus, at most d(d+1)/2 parameters are needed

to represent this matrix. The proposed parameterization is based on the following

theorem.

Theorem 1. An arbitrary covariance matrix with d(d+ 1)/2 degrees of freedom

can be parametrized using d eigenvalues in a particular order and d(d − 1)/2

Givens rotation matrix angles φpq ∈ [−π/4, 3π/4] for 1 ≤ p < q ≤ d computed

from the eigenvector matrix whose columns store the eigenvectors in the same

order as the corresponding eigenvalues.

The proof is based on the following Definition, Proposition, and Lemma. An

example parameterization for a 3× 3 covariance matrix is given in Figure 5.1.

Definition 22. A Givens rotation matrix G(p, q, φpq) with three input parameters

corresponding to two indices p and q that satisfy p < q, and an angle φpq has the

form

G(p, q, φpq) =


1 ··· 0 ··· 0 ··· 0
...

...
...

...
...

0 ··· cos(φpq) ··· sin(φpq) ··· 0

...
...

...
...

...
0 −sin(φpq) ··· cos(φpq) ··· 0

...
...

...
...

...
0 ··· 0 ··· 0 ··· 1

 . (5.6)

Premultiplication by G(p, q, φpq)T corresponds to a counterclockwise rotation of φ

radians in the plane spanned by two coordinate axes indexed by p and q [155].
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Proposition 11. A Givens rotation can be used to zero a particular entry in a

vector. Given scalars a and b, the c = cos(φ) and s = sin(φ) values in (5.6) that

can zero b can be computed as the solution of(
c s

−s c

)T (
a

b

)
=

(
h

0

)
(5.7)

using the following algorithm [155]

if b = 0 then

c = 1; s = 0

else

if |b| > |a| then

τ = −a/b; s = 1/
√

1 + τ 2; c = sτ

else

τ = −b/a; c = 1/
√

1 + τ 2; s = cτ

end if

end if

where φ can be computed as φ = arctan(s/c). The resulting Givens rotation angle

φ is in the range [−π/4, 3π/4] by definition (because of the absolute values in the

algorithm).

Lemma 1. An eigenvector matrix V of size d× d can be written as a product of

d(d− 1)/2 Givens rotation matrices whose angles lie in the interval [−π/4, 3π/4]

and a diagonal matrix whose entries are either +1 or −1.

Proof of Lemma 1. Existence of such a decomposition can be shown by using

QR factorization via a series of Givens rotations. QR factorization decomposes

any real square matrix into a product of an orthogonal matrix Q and an upper

triangular matrix R, and can be computed by using Givens rotations where each

rotation zeros an element below the diagonal of the input matrix. When the

QR algorithm is applied to V, the angle φpq for the given indices p and q is

calculated using the values V(p, p) and V(q, p) as the scalars a and b, respectively,

in Definition 11, and then, V is premultiplied with the transpose of the Givens

rotation matrix as G(p, q, φpq)TV where G is defined in Definition 22. This
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multiplication zeros the value V(q, p). This process is continued for p = 1, . . . , d−
1 and q = p+ 1, . . . , d, resulting in the orthogonal matrix

Q =
d−1∏
p=1

d∏
q=p+1

G(p, q, φpq) (5.8)

and the triangular matrix

R = QTV. (5.9)

Since the eigenvector matrix V is orthogonal, i.e., VTV = I, RTQTQR =

I leads to RTR = I because Q is also orthogonal. Since R should be both

orthogonal and upper triangular, we conclude that R is a diagonal matrix whose

entries are either +1 or −1.

Proof of Theorem 1. Following Lemma 1, an eigenvector matrix V in which the

eigenvectors are stored in a particular order can be written using d(d − 1)/2

angle parameters for the Q matrix and an additional d parameters for the R

matrix. However, since both νi and −νi are valid eigenvectors (Σνi = λiνi

and Σ(−νi) = λi(−νi)), we can show that those additional d parameters for the

diagonal of R are not required for the parameterization of eigenvector matrices.

This follows from the invariance of the Givens rotation angles to the rotation

of the eigenvectors with π radians such that when any column of the V matrix

is multiplied by −1, only the R matrix changes, while the Q matrix, hence the

Givens rotation angles, do not change. To prove this invariance, let P = {P|P ∈
Rd×d,P(i, j) = 0,∀i 6= j, and P(i, i) ∈ {+1,−1} for i = 1, . . . , d} be a set of

modification matrices. For a given P ∈ P , define V̂ = VP. Since V = QR,

we have V̂ = QRP. Then, defining R̂ = RP gives V̂ = QR̂. Since Q did not

change and R̂ = RP is still a diagonal matrix whose entries are either +1 or

−1, it is a valid QR factorization. Therefore, we can conclude that there exists

a QR factorization V̂ = QR̂ with the same Q matrix as the QR factorization

V = QR.

The discussion above shows that the d(d − 1)/2 Givens rotation angles are

sufficient for the parameterization of the eigenvectors because the multiplication
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V
√

Λ

= G(1, 2, π/3) G(1, 3, π/6) G(2, 3, π/4)
√

Λ I

=

 cos(π3 ) sin(π3 ) 0
− sin(π3 ) cos(

π
3 ) 0

0 0 1

  cos(π6 ) 0 sin(π6 )
0 1 0

− sin(π6 ) 0 cos(
π
6 )

 1 0 0
0 cos(π4 ) sin(π4 )
0− sin(π4 ) cos(

π
4 )

 2 0 0
0 1 0
0 0 0.5

 1 0 0
0 1 0
0 0 1


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=

 0.87 0.44 0.39
−1.50 0.66 0.02
−1.00 −0.61 0.31


Σ = (V

√
Λ) (V

√
Λ)T =

 0.87 0.44 0.39
−1.50 0.66 0.02
−1.00 −0.61 0.31

 0.87 0.44 0.39
−1.50 0.66 0.02
−1.00 −0.61 0.31

T

= 1.10 −1.00 −1.01
−1.00 2.69 1.10
−1.01 1.10 1.47


Figure 5.1: Example parameterization for a 3 × 3 covariance matrix.
The example matrix can be parametrized using {λ1, λ2, λ3, φ

12, φ13, φ23} =
{4, 1, 0.25, π/3, π/6, π/4}. The ellipses from right to left show the covariance
structure resulting from each step of premultiplication of the result of the previ-
ous step, starting from the identity matrix.

of any eigenvector by −1 leads to the same covariance matrix Σ, i.e.,

Σ =
d∑

i=1, i 6=j

λiνiν
T
i + λj(−νj)(−νj)T

=
d∑

i=1, i 6=j

λiνiν
T
i + λj(νj)(νj)

T

=
d∑
i=1

λiνiν
T
i .

(5.10)

Finally, together with the d eigenvalues, the covariance matrix can be constructed

as Σ = VΛVT .
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Table 5.2: To demonstrate its non-uniqueness, all equivalent parameterizations
of the example covariance matrix given in Figure 5.1 for different orderings of the
eigenvalue-eigenvector pairs. The angles are given in degrees.

λ1 λ2 λ3 φ12 φ13 φ23

4 1 0.25 60.00 30.00 45.00
4 0.25 1 60.00 30.00 -45.00
1 4 0.25 123.43 -37.76 39.23
1 0.25 4 123.43 -37.76 129.23
0.25 4 1 -3.43 -37.76 -39.23
0.25 1 4 -3.43 -37.76 50.77

5.4.2 Identifiability of Individual Gaussians

Theorem 1 assumes that the eigenvalue-eigenvector pairs are given in a particu-

lar order. However, since any d-dimensional covariance matrix Σ ∈ Sd++ can be

written as Σ =
∑d

i=1 λiνiν
T
i and there is no inherent ordering of the eigenvalue-

eigenvector pairs, it is possible to write this summation in terms of d! different

eigenvalue and eigenvector matrices as Σ = VΛVT simply by changing the order

of the eigenvalues and their corresponding eigenvectors in the eigendecomposition

matrices Λ and V. For example, all equivalent parameterizations of the example

covariance matrix in Figure 5.1 are given in Table 5.2. Furthermore, multiplying

any column of the eigenvector matrix by −1 still gives a valid eigenvector matrix,

resulting in 2d possibilities. Since we showed that there exists a unique Q matrix

and a corresponding set of unique Givens rotation angles can be extracted via

QR factorization in the proof of Theorem 1, the result is invariant to these 2d

possibilities. However, for an improved efficiency in the global search, it is one

of our goals to pair the parameters between alternate solution candidates before

performing any interactions among them. Therefore, the dependence of the re-

sults on the d! orderings and the resulting equivalence classes still need to be

eliminated.

In order to have unique eigenvalue decomposition matrices, we propose an

ordering algorithm based on the eigenvectors so that from a given covariance ma-

trix we can obtain uniquely ordered eigenvalue and eigenvector matrices, leading

to a unique set of eigenvalues and Givens rotation angles as the parameters. The
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ordering algorithm uses only the eigenvectors and not the eigenvalues because

the eigenvectors correspond to the principal directions of the data whereas the

eigenvalues indicate the amount of the extent of the data along these directions.

The proposed eigenvalue-eigenvector ordering algorithm uses an orthogonal

basis matrix as a reference. In this greedy selection algorithm, the eigenvec-

tor among the unselected ones having the maximum absolute inner product

with the i’th reference vector is put into the i’th column in the output ma-

trix. Let S in = {{λin
1 ,ν

in
1 }, . . . , {λin

d ,ν
in
d }} denote the input eigenvalue-eigenvector

pair set, Vref = (νref
1 , . . . ,νref

d ) denote the reference orthogonal basis matrix,

Λout = diag(λout
1 , . . . , λout

d ) and Vout = (νout
1 , . . . ,νout

d ) denote the final output

eigenvalue and eigenvector matrices, and I be the set of indices of the remaining

eigenvalue-eigenvector pairs that need to be ordered. The ordering algorithm is

defined in Algorithm 1.

Algorithm 1 Eigenvector ordering algorithm.

Input: S in, Vref, I = {1, . . . , d}
Output: Λout, Vout

1: for i = 1 to d do
2: i∗ = arg maxj∈I |(ν in

j )T (νref
i )|

3: λout
i ← λin

i∗

4: νout
i ← ν in

i∗

5: I ← I − {i∗}
6: end for

Any reference basis matrix Vref in Algorithm 1 will eliminate the dependency

on the d! orderings, and will result in a unique set of parameters. However, the

choice of Vref can affect the convergence of the likelihood during estimation. We

performed simulations to determine the most effective reference matrix Vref for

eigenvector ordering. The maximum likelihood estimation problem to estimate

the covariance matrix of a single Gaussian is given as follows. Given a set of N

data points X = {x1, . . . ,xN} where each xj ∈ Rd is independent and identically

distributed according to a Gaussian with zero mean and covariance matrix Σ, the

negative log-likelihood function

1

2
log(|Σ|)− 1

2N

N∑
j=1

xTj Σ−1xj −
d

2
log(2π) (5.11)
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can be rewritten as

−1

2
log(|Σ−1|)− 1

2
tr(Σ−1Σs)−

d

2
log(2π) (5.12)

where Σs = 1
N

∑N
i=1 xix

T
i . Thus, the maximum likelihood estimate of Σ can

be found as the one that minimizes − log(|Σ−1|) − tr(Σ−1Σs). We solved this

minimization problem using GA, DE, and PSO implemented as described in

Chapter 1. For GA and DE, candidate reference matrices were the identity ma-

trix and the eigenvector matrix corresponding to the global best solution. For

PSO, candidate reference matrices were the identity matrix, the eigenvector ma-

trix corresponding to each particle’s personal best, and the eigenvector matrix

corresponding to the global best particle. For each case, 100 different target

Gaussians (Σs in (5.12)) were randomly generated by sampling the eigenvalues

from the uniform distribution Uniform[0.1, 1.0] and the Givens rotation angles

from the uniform distribution Uniform[−π/4, 3π/4]. This was repeated for di-

mensions d ∈ {3, 5, 10, 15, 20, 30}, and the respective optimization algorithm was

used to find the corresponding covariance matrix (Σ in (5.12)) that minimizes

the negative log-likelihood using 10 different initializations. Figure 5.2 shows the

plots of estimation errors resulting from the 1, 000 trials. The error was com-

puted as the difference between the target log-likelihood computed from the true

Gaussian parameters (Σ = Σs) and the resulting log-likelihood computed from

the estimated Gaussian parameters. Based on these results, we can conclude that

the eigenvector matrix corresponding to the personal best solution for PSO, and

the eigenvector matrix corresponding to the global best solution for GA and DE

(no personal best is available in GA and DE) can be used as the reference matrix

in the eigenvector ordering algorithm.

Summary: The discussion above demonstrated that a d-dimensional covari-

ance matrix Σ ∈ Sd++ can be parametrized using d eigenvalues λi ∈ R++ for

i = 1, . . . , d and d(d − 1)/2 angles φpq ∈ [−π/4, 3π/4] for 1 ≤ p < q ≤ d. We

showed that, for a given covariance matrix, these parameters can be uniquely ex-

tracted using eigenvalue decomposition, the proposed eigenvector ordering algo-

rithm that aligns the principal axes of the covariance ellipsoids among alternate

candidate solutions, and QR factorization using the Givens rotations method.
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Figure 5.2: Average error in log-likelihood and its standard deviation (shown
as error bars at one standard deviation) in 1, 000 trials for different choices of
reference matrices in eigenvector ordering during the estimation of the covariance
matrix of a single Gaussian using stochastic search. Choices for the reference
matrix are I: identity matrix, GB: the eigenvector matrix corresponding to the
global best solution, and PB: the eigenvector matrix corresponding to the personal
best solution.

We also showed that, given these parameters, a covariance matrix can be gener-

ated from the eigenvalue matrix Λ = diag(λ1, . . . , λd) and the eigenvector matrix

V =
∏d−1

p=1

∏d
q=p+1 G(p, q, φpq) as Σ = VΛVT .

5.4.3 Identifiability of Gaussian Mixtures

Similar to the problem of ordering of the parameters within individual Gaussian

components to obtain a unique set of parameters as discussed in the previous

section, ordering of the Gaussian components within a candidate solution is im-

portant for obtaining a unique correspondence between two candidate solutions

during their interactions for parameter updates throughout the stochastic search.

The correspondence identifiability problem that arises from the equivalency of

K! possible orderings of individual components in a candidate solution for a mix-

ture of K Gaussians affects the convergence of the search procedure. First of

all, when the likelihood function has a mode under a particular ordering of the

components, there exists K! symmetric modes corresponding to all parameter

sets that are in the same equivalence class formed by the permutation of these

components. When these equivalencies are not known, a search algorithm may
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Figure 5.3: Example correspondence relations for two GMMs with three compo-
nents. The ellipses represent the true components corresponding to the colored
sample points. The numbered blobs represent the locations of the components
in the candidate solutions. When the parameter updates are performed accord-
ing to the component pairs in the default order, some of the components may
be updated based on interactions with components in different parts of the data
space. However, using the reference matching procedure, a more desirable corre-
spondence relation can be found enabling faster convergence.

not cover the solution space effectively as equivalent configurations of compo-

nents may be repeatedly explored. In a related problem, in the extreme case,

a reproduction operation applied to two candidate solutions that are essentially

equal may result in a new solution that is completely different from its parents.

Secondly, the knowledge of the correspondences helps performing the update op-

erations as intended. For example, even for two candidate solutions that are not

in the same equivalence class, alignment of their components enables effective use

of both direct interactions and cross interactions. For instance, cross interactions

may be useful to increase diversity; on the other hand, direct interactions may be

more helpful to find local minima. Without such alignment of the components,

these interactions cannot be controlled as desired, and the iterations proceed with

arbitrary exploration of the search space. Figure 5.3 shows examples for default

and desired correspondence relations for two GMMs with three components.
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We propose a matching algorithm for finding the correct correspondence re-

lation between the components of two GMMs to enable interactions between the

corresponding components in different solution candidates. In the following, the

correspondence identification problem is formulated as a minimum cost network

flow optimization problem. The objective is to find the correspondence relation

that minimizes the sum of Kullback-Leibler (KL) divergences between pairs of

Gaussian components. For two Gaussians g1(x|µ1,Σ1) and g2(x|µ2,Σ2), the KL

divergence has the closed form expression

D(g1‖g2) =
1

2

(
log
|Σ2|
|Σ1|

+ tr
(

Σ−1
2 Σ1

)
− d+ (µ1 − µ2)TΣ−1

2 (µ1 − µ2)

)
. (5.13)

Consequently, given a target GMM with parameters {{µtar
1 ,Σtar

1 }, . . . {µtar
K ,Σtar

K }}
and a reference GMM with parameters {{µref

1 ,Σref
1 }, . . . {µref

K ,Σ
ref
K }}, the cost of

matching the i’th component of the first GMM to the j’th component of the

second GMM is computed as

cij = log
|Σref

j |
|Σtar

i |
+ tr

(
(Σref

j )−1Σtar
i

)
+ (µtar

i − µref
j )T (Σref

j )−1(µtar
i − µref

j ), (5.14)

and the correspondences are found by solving the following optimization problem:

minimize
I11,...,IKK

∑K
i=1

∑K
j=1 cijIij

subject to
∑K

i=1 Iij = 1, ∀j ∈ {1, . . . , K}∑K
j=1 Iij = 1, ∀i ∈ {1, . . . , K}

Iij =


1, correspondence between

i’th and j’th components

0, otherwise.

(5.15)

In this formulation, the first and third constraints force each component of the

first GMM to be matched with only one component of the second GMM, and

the second constraint makes sure that only one component of the first GMM is

matched to each component of the second GMM. This optimization problem can

be solved very efficiently using the Edmonds-Karp algorithm [156]. Note that

the solution of the optimization problem in (5.15) does not change under any

permutation of the component labels in the target and reference GMMs. Figure

5.4 illustrates the optimization formulation for the example in Figure 5.3. Once
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Figure 5.4: Optimization formulation for two GMMs with three components
shown in Figure 5.3. The correspondences found are shown in red.

the correspondences are established, the parameter updates can be performed as

described in the examples for different stochastic search algorithms in Section 5.1

in general and as presented for the particle swarm optimization in Section 5.5 in

particular.

We performed simulations to evaluate the effectiveness of correspondence iden-

tification using the proposed matching algorithm. We ran the stochastic search

algorithms GA, DE, and PSO for the maximum likelihood estimation of the

Gaussian mixture model parameters that were synthetically generated as fol-

lows. The mixture weights were sampled from a uniform distribution such that

the ratio of the largest weight to the smallest weight was at most 1.3 and all

weights summed up to 1. The mean vectors were sampled from the uniform dis-

tribution Uniform[0, 1]d where d was the number of dimensions. The covariance

matrices were generated by sampling the eigenvalues from the uniform distribu-

tion Uniform[1, 1.6] and the Givens rotation angles from the uniform distribution

Uniform[−π/4, 3π/4]. The minimum separation between the components in the

mixture was controlled with a parameter called c. Two Gaussians are defined to

be c-separated if

‖µ1 − µ2‖2 ≤ c
√
d max{λmax(Σ1), λmax(Σ2)} (5.16)

where λmax(Σ) is the largest eigenvalue of the given covariance matrix [157]. The

randomly generated Gaussian components in a mixture were forced to satisfy the

pairwise c-separation constraint. The mixtures in the simulations were generated
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Figure 5.5: Average error in log-likelihood and its standard deviation (shown
as error bars at one standard deviation) in 1, 000 trials without and with the
correspondence identification step in the estimation of GMMs using stochastic
search.

for c = 4.0, K = 5, and dimensions d ∈ {3, 5, 10, 20}. 100 such mixtures were

generated, and 1, 000 points were sampled from each mixture. The parameters in

the candidate solutions in GA, DE, and PSO were randomly initialized as follows.

The mean vectors were sampled from the uniform distribution Uniform[0, 1]d, the

eigenvalues of the covariance matrices were sampled from the uniform distribu-

tion Uniform[0, 10], and the Givens rotation angles were sampled from the uniform

distribution Uniform[−π/4, 3π/4]. 10 different initializations were used for each

mixture, resulting in 1, 000 trials. The true parameters were compared to the

estimation results obtained without and with correspondence identification. Fig-

ure 5.5 shows the plots of estimation errors resulting from the 1, 000 trials. The

error was computed as the difference between the target log-likelihood computed

from the true GMM parameters and the resulting log-likelihood computed from

the estimated GMM parameters. Based on these results, we can conclude that

using the proposed correspondence identification algorithm leads to significantly

better results for all stochastic search algorithms used.

5.5 Particle Swarm Optimization

We illustrate the proposed solutions for the estimation of GMMs using stochastic

search in a particle swarm optimization (PSO) framework. The following Sections
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briefly describe the general PSO formulation by setting up the notation, and then

present the details of the GMM estimation procedure using PSO.

5.5.1 General Formulation

PSO is a population-based stochastic search algorithm that is inspired by the

social interactions of swarm animals. In PSO, each member of the population

is called a particle. Each particle Z(m) is composed of two vectors, a position

vector Z(m)
u and a velocity vector Z(m)

v where m = 1, . . . ,M indicates the particle

index in a population of M particles. The position of each particle Z(m)
u ∈ Rn

corresponds to a candidate solution for an n-dimensional optimization problem.

A fitness function defined for the optimization problem of interest is used to

assign a goodness value to a particle based on its position. The particle having the

best fitness value is called the global best, and this position is denoted as Z(GB)
u .

Each particle also remembers its best position throughout the search history as

its personal best, and this position is denoted as Z(m,PB)
u .

PSO begins by initializing the particles with random positions and small ran-

dom velocities in the n-dimensional parameter space. In the subsequent iter-

ations, each of the n velocity components in Z(m)
v is computed independently

using its previous value, the global best, and the particle’s own personal best in

a stochastic manner as

Z(m)
v (t+ 1) = ηZ(m)

v (t) + c1 U1(t)
(
Z(m,PB)
v (t)− Z(m)

v (t)
)

+ c2 U2(t)
(
Z(GB)
v (t)− Z(m)

v (t)
)

(5.17)

where η is the inertia weight, U1 and U2 represent random numbers sampled from

Uniform[0, 1], c1 and c2 are acceleration weights, and t is the iteration number.

Each particle moves from its old position to a new position using its new velocity

vector as

Z(m)
u (t+ 1) = Z(m)

u (t) + Z(m)
v (t+ 1), (5.18)

and its personal best is modified if necessary. Additionally, the global best of the

population is updated based on the particles’ new fitness values.
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The main difference between PSO and other popular search algorithms like

genetic algorithms and differential evolution is that PSO is not an evolutionary

algorithm. In evolutionary algorithms, a newly created particle cannot be kept

unless it has a better fitness value. However, in PSO, particles are allowed to move

to worse locations and this mechanism allows the particles to escape from local

optima gradually without the need of any long jump mechanism. In evolutionary

algorithms, this can generally be achieved by mutation and crossover operations

but these operations can be hard to design for different problems. In addition,

PSO uses the global best to coordinate the movement of all particles and uses

personal bests to keep track of all local optima found. These properties make it

easier to incorporate problem specific ideas into PSO where the global best serves

as the current state of the problem and the personal bests serve as the current

states of the particles.

5.5.2 GMM Estimation Using PSO

The solutions proposed in this Chapter enable the formulation of a PSO frame-

work for the estimation of GMMs with arbitrary covariance matrices. This for-

mulation involves the definition of the particles, the initialization procedure, the

fitness function, and the update procedure.

5.5.2.1 Particle Definition

Each particle that corresponds to a candidate solution stores the parameters of

the means and covariance matrices of a GMM. Assuming that the number of

components in the mixture is fixed as K, the position vector of the m’th particle

is defined as

Z(m)
u = ((µ(m,k)

u )T , λ
(m,k)
1,u , . . . , λ

(m,k)
d,u , φ12,(m,k)

u , . . . φ(d−1)(d),(m,k)
u , for k = 1, . . . , K)

(5.19)

where µ
(m,k)
u ∈ Rd for k = 1, . . . , K denote the mean vectors parametrized using

d real numbers, λ
(m,k)
i,u ∈ R++ for i = 1, . . . , d and k = 1, . . . , K denote the
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eigenvalues of the covariance matrices, and φ
pq,(m,k)
u ∈ [−π/4, 3π/4] for 1 ≤ p <

q ≤ d and k = 1, . . . , K denote the Givens rotation angles as defined in Section

5.4.1. The velocity vector Z(m)
v is defined similarly. The K mixture weights

α1, . . . , αK are calculated from the probabilistic assignments of the data points

to the components, and are not part of the PSO particles.

5.5.2.2 Initialization

Initialization of each particle at the beginning of the first iteration can be done us-

ing random numbers within the ranges defined for each parameter. The proposed

parameterization makes this possible because the angles are in a fixed range while

lower and upper bounds for the mean values and upper bounds for the eigenvalues

can easily be selected with the knowledge of the data. As an alternative, one can

first randomly select K data points as the means, and form the initial components

by assigning each data point to the closest mean. Then, the covariance matrices

can be computed from the assigned points, and the parameters of these matrices

can be extracted using eigenvalue decomposition and QR factorization using the

Givens rotations method as described in Section 5.4.1. Another alternative for

selecting the initial components is the k-means initialization procedure described

in [73].

5.5.2.3 Fitness Function

The PSO iterations proceed to find the maximum likelihood estimates by mini-

mizing the negative log-likelihood defined in (5.1).

5.5.2.4 Update Equations

Before updating each particle as in (5.17) and (5.18), the correspondences between

its components and the components of the global best particle are found. This

is done by using the particle’s personal best as the reference GMM and the
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global best particle as the target GMM in (5.14). The correspondence relation

computed using (5.14) and (5.15) is denoted with a function f(k) that maps the

current particle’s component index k to the global best particle’s corresponding

component index f(k). Using this correspondence relation, the mean parameters

are updated as

µ(m,k)
v (t+ 1) = η µ(m,k)

v (t) + c1(t)
(
µ(m,PB,k)
u (t)− µ(m,k)

u (t)
)

+ c2(t)
(
µ(GB,f(k))
u (t)− µ(m,k)

u (t)
)
, (5.20)

µ(m,k)
u (t+ 1) = µ(m,k)

u (t) + µ(m,k)
v (t+ 1), (5.21)

and the eigenvalues and angles as the covariance parameters are updated as

λ
(m,k)
i,v (t+ 1) = η λ

(m,k)
i,v (t) + c1(t)

(
λ

(m,PB,k)
i,u (t)− λ(m,k)

i,u (t)
)

+ c2(t)
(
λ

(GB,f(k))
i,u (t)− λ(m,k)

i,u (t)
)
, (5.22)

λ
(m,k)
i,u (t+ 1) = λ

(m,k)
i,u (t) + λ

(m,k)
i,v (t+ 1) (5.23)

φpq,(m,k)
v (t+ 1) = η φpq,(m,k)

v (t) + c1(t)
(
φpq,(m,PB,k)
u (t)− φpq,(m,k)

u (t)
)

+ c2(t)
(
φpq,(GB,f(k))
u (t)− φpq,(m,k)

u (t)
)
, (5.24)

φpq,(m,k)
u (t+ 1) = φpq,(m,k)

u (t) + φpq,(m,k)
v (t+ 1). (5.25)

The uniform random numbers U1 and U2 are incorporated into c1 and c2. The

rest of the notation is same as in Sections 5.4.1 and 5.5.1.

The convergence of the search procedure can also be improved by running a set

of EM iterations for each particle at the end of each iteration. After the covariance

parameters are updated as above, new covariance matrices are constructed from

the parameters using Σ = VΛVT , the EM procedure is allowed to converge to a

local optimum, and new parameters are computed by performing another set of

eigenvalue decomposition and QR factorization steps. These EM iterations help

converging to local optima effectively, whereas the PSO iterations handle the

search for the global maximum. The overall estimation procedure is summarized

in Algorithm 2.
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Algorithm 2 PSO algorithm for GMM estimation.

Input: d-dimensional data set with N samples, number of components (K), PSO
parameters (η, c1, and c2)

1: Initialize population with M particles as in (5.19)
2: for t = 1 to T1 do {T1: number of PSO iterations}
3: for m = 1 to M do
4: Construct K eigenvalue matrices
5: Construct K eigenvector matrices by multiplying Givens rotation

angles
6: Run EM for local convergence for T2 iterations {T2: number of EM

iterations for each PSO iteration}
7: Compute K eigenvalue and eigenvector matrices via singular value

decomposition of new covariance matrices
8: Reorder eigenvalues and eigenvectors of each covariance matrix ac-

cording to personal best
9: Extract Givens rotation angles using QR factorization

10: Replace particle’s means, eigenvalues, and angles
11: Calculate log-likelihood
12: Update personal best
13: end for
14: Update global best
15: for m = 1 to M do
16: Reorder components of global best according to personal best
17: Update particle’s means, eigenvalues, and angles as in (5.20)–(5.25)
18: end for
19: end for
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5.6 Experiments

We evaluated the framework for GMM estimation (Sections 5.4 and 5.5) using

both synthetic and real data sets. Comparative experiments were also done using

the EM algorithm (Section 5.3). The procedure used for synthetic data generation

and the results for both synthetic and real data sets are given below.

5.6.1 Experiments on Synthetic Data

Data sets of various dimensions d ∈ {5, 10, 15, 20, 30, 40} and number of compo-

nents K ∈ {5, 10, 15, 20} were generated. For dimensions d ∈ {5, 10, 15}, d = 20,

and d ∈ {30, 40}, the sample size N was set to 1, 000, 2, 000, and 4, 000, respec-

tively. The d and N values were chosen based on real data sets used for the

experiments described in the next Section. For a particular d and K combina-

tion, a GMM was generated as follows. The mixture weights were sampled from

a uniform distribution such that the ratio of the largest weight to the smallest

weight was at most 2 and all weights summed up to 1. The mean vectors were

sampled from the uniform distribution Uniform[0, 100]d. The covariance matri-

ces were generated using the eigenvalue/eigenvector parameterization described

in Section 5.4.1. The eigenvalues were sampled from the uniform distribution

Uniform[1, 16], and the Givens rotation angles were sampled from the uniform

distribution Uniform[−π/4, 3π/4]. Furthermore, the proximity of the compo-

nents were controlled using c-separation defined in (5.16). Different values of

c ∈ {2.0, 4.0, 8.0} were used to control the difficulty of the estimation problem.

The selection of c value was based on visual observations in 2-dimensional data.

We observed that the minimum value of c where K individual Gaussian com-

ponents were distinguishable by visual inspection was close to 2.0, and c = 8.0

corresponded to the case where the components were well separated. Conse-

quently, we divided the relative difficulties of the data sets into three. The easy

settings corresponded to d ∈ {5, 10} and c = 8.0, the medium settings corre-

sponded to d ∈ {10, 15, 20} and c = 4.0, and the hard settings corresponded to

d ∈ {20, 30, 40} and c = 2.0. 10 different mixtures with N samples each were
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generated for each setting.

The PSO and EM parameters were initialized similarly for a fair evaluation.

We assumed that the number of components was known a priori for each data

set. Following the common practice in the literature, the initial mean vector for

each component was set to a randomly selected data point. The initial covariance

matrices and the initial mixture weights were calculated from the probabilistic

assignment of the data points to the components with the initial mean vectors

and identity covariance matrices. The initial mixture weights were used only in

the EM procedure as the proposed algorithm does not include the weights as pa-

rameters. After initialization, the search procedure constrained the components

of the mean vectors in each particle defined in (5.19) to stay in the data region

defined by the minimum and maximum values of each component in the data used

for estimation. Similarly, the eigenvalues were constrained to stay in [λmin, λmax]

where λmin = 10−5 and λmax was the maximum eigenvalue of the covariance ma-

trix of the whole data, and the Givens rotation angles were constrained to lie in

[−π/4, 3π/4]. The PSO parameters η, c1, and c2 in (5.17) were fixed at η = 0.728,

c1 = c2 = 1.494 following the common practice in the PSO literature [84]. Thus,

no parameter tuning was done during both initialization and search stages in the

experiments.

For each test mixture, each PSO run consisted of M particles that were up-

dated for T1 iterations where each iteration also consisted of at most T2 EM

iterations as described at the end of Section 5.5.2. Each primary EM run con-

sisted of a group of M individual secondary runs where the initial parameters of

each secondary run was the same as the parameters of one of the M particles

in the corresponding PSO run. Each secondary run was allowed to iterate for

at most T1 × T2 iterations or until the relative change in the log-likelihood in

two consecutive iterations was less than 10−6. The number of iterations were

adjusted such that each PSO run (M particles with T1 PSO iterations and T2

EM iterations for each PSO iteration) and the corresponding primary EM run

(M secondary EM runs with T1 × T2 iterations each) were compatible.

Table 5.3 shows the details of the synthetic data sets generated using these

124



Table 5.3: Details of the synthetic data sets used for performance evaluation.
The three groups of rows correspond to the settings categorized as easy, medium,
and hard with respect to their relative difficulties. The parameters are described
in the text.

Setting # d K c N M T1 T2 T1 × T2

1 5 5 8.0 1,000 20 30 20 600
2 5 10 8.0 1,000 20 30 20 600
3 10 5 8.0 1,000 20 30 20 600
4 10 5 4.0 1,000 20 30 20 600
5 10 10 4.0 1,000 20 30 20 600
6 10 15 4.0 1,000 20 30 20 600
7 15 5 4.0 1,000 30 30 20 600
8 15 10 4.0 1,000 30 30 20 600
9 15 15 4.0 1,000 30 30 20 600
10 20 5 4.0 2,000 30 50 20 1,000
11 20 10 2.0 2,000 30 50 20 1,000
12 20 15 2.0 2,000 30 50 20 1,000
13 20 20 2.0 2,000 30 50 20 1,000
14 30 10 2.0 4,000 40 100 20 2,000
15 30 15 2.0 4,000 40 100 20 2,000
16 30 20 2.0 4,000 40 100 20 2,000
17 40 15 2.0 4,000 40 100 20 2,000
18 40 20 2.0 4,000 40 100 20 2,000

settings. For each setting, 10 different mixtures with N samples each were gen-

erated as described above. For each mixture, the target log-likelihood was com-

puted from the true GMM parameters. Then, for each mixture, 10 different

initializations were obtained as described above, and both the PSO and the EM

procedures were run for each initial configuration. The parameters of the global

best particle were selected as the final result of each PSO run at the end of the

iterations. The final result of each primary EM run was selected as the param-

eters corresponding to the best secondary run having the highest log-likelihood

among the M secondary runs. The estimation error was computed as the differ-

ence between the target log-likelihood and the resulting log-likelihood computed

from the estimated GMM parameters.

Table 5.4 and Figure 5.6 present the error statistics computed from the 100

runs (10 different mixtures and 10 different initializations for each mixture) for
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each setting. When all settings were considered, it could be seen that the pro-

posed PSO algorithm resulted in better estimates compared to those by the EM

algorithm for all settings. In particular, the PSO algorithm converged to the true

GMM parameters in more than half of the runs for 11 out of 18 settings (all of

the 10 easy and medium settings and one hard setting) with a median error of

zero, whereas the EM algorithm could do the same for only five settings. For

all settings, the average error obtained by the PSO algorithm was significantly

lower than the error by the EM algorithm. For the settings with a small number

of components, both EM and PSO had no problem in finding the optimum solu-

tion. This was mainly due to good initial conditions where it was relatively easier

to find a small number of good initial data points that behaved as good initial

means. Note that a good initialization for only one of the M secondary runs for

each primary EM run was sufficient to report a perfect performance because the

best out of M was used.

The above argument could be extended for PSO to all settings relatively

independent of the number of dimensions and the number of components. We

could conclude that the proposed algorithm was less sensitive to initializations

because in every iteration the particles took small number of steps toward one of

the local optima using the local EM iterations, and then due to their interaction

with the global best, they could move away from that local optimum. We could

argue that the common characteristic of the small number of wrong convergences

of PSO was the initialization of most of the particles including the global best near

the same local optimum. In that case, both the local EM iterations and the global

best particle attracted all particles toward the same region. This problem could

be eliminated by a more sophisticated initialization procedure that increased the

diversity of the particles. However, we used the same initialization procedure

that used the same random points for both EM and PSO algorithms to do a fair

comparison.

In this thesis, we only investigated the advantages of correspondence identifi-

cation with regard to finding better global minima of the negative log-likelihood.

We showed that stochastic search algorithms performed better in finding global

optima. However, correspondence identification can also be useful in increasing
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the population diversity. For instance, once we find the correspondence relations

via the proposed matching algorithm, we can force the parameters to be updated

with the distant (not matching) ones in the global best in some random way

to increase the diversity. Another approach may be to temporarily modify the

update equations so that the particles move away from the global best if the KL

divergence between their personal best and the global best becomes too small in

early iterations to overcome premature convergence to a local optimum.

We did not try to tune the parameters of PSO such as η, c1, and c2. For differ-

ent settings, parameter tuning might be useful in terms of increased convergence

speed and increased estimation accuracy. However, such tuning could have led

to an unfair advantage of PSO over the EM algorithm. We also did not tune the

number of particles and the number of iterations except increasing them linearly

with increasing dimension. Increasing the number of iterations will not improve

the performance of EM after its convergence but larger number of iterations will

allow PSO to explore a larger portion of the parameter space. However, the num-

ber of iterations were fixed to the same number for EM and PSO to allow a fair

comparison.

5.6.2 Experiments on Real Data

We also used four data sets from the UCI Machine Learning Repository [158]

for real data experiments. These data sets are referred to as Glass (glass iden-

tification), Wine, ImgSeg (Statlog image segmentation), and Landsat (Statlog

Landsat satellite). Table 5.5 summarizes the characteristics of these data sets

and the corresponding experimental settings. For each data set and for each K

value, both PSO and EM were run using 10 different initial configurations that

were generated as described in the previous Section. The resulting log-likelihood

values for each setting for each data set are shown in Figure 5.7. The results

show that the proposed PSO algorithm performed better than the EM algorithm

for all settings.
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Table 5.4: Statistics of the estimation error for the synthetic data sets using the
GMM parameters estimated via the EM and PSO procedures. The mean, stan-
dard deviation (std), median, and median absolute deviation (mad) are computed
from 100 different runs for each setting.

EM PSO
Setting # mean std median mad mean std median mad

1 6.18 61.46 0.00 0.00 0.00 0.00 0.00 0.00
2 304.99 183.36 362.71 71.94 41.30 112.55 0.00 0.00
3 66.59 335.93 0.00 0.00 17.42 122.22 0.00 0.00
4 20.32 115.54 0.00 0.00 0.00 0.00 0.00 0.00
5 283.29 135.85 331.03 37.41 27.15 81.98 0.00 0.00
6 500.68 110.17 480.89 78.46 69.80 83.05 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 300.83 174.13 367.08 68.42 11.28 55.66 0.00 0.00
9 654.48 145.67 654.23 163.56 51.39 100.70 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11 490.14 307.53 615.89 126.93 112.75 227.90 0.00 0.00
12 842.94 242.63 880.06 192.40 224.89 231.03 97.21 75.14
13 975.60 152.44 912.21 113.53 261.34 98.73 120.66 45.12
14 1,171.30 592.29 1,105.42 205.61 236.63 315.23 102.31 102.70
15 1,651.47 518.35 1,576.24 124.21 309.21 232.49 272.18 58.23
16 2,098.39 460.39 1,971.43 384.08 523.84 183.92 375.28 114.02
17 2,328.13 676.15 2,093.80 403.16 609.92 281.59 412.54 93.84
18 2,946.89 760.48 2,882.77 425.04 697.02 292.17 468.27 100.57

Table 5.5: Details of the real data sets used for performance evaluation. Ktrue

corresponds to the number of classes in each data set. K corresponds to the num-
ber of Gaussian components used in the experiments. The rest of the parameters
are described in the text.

Data set d Ktrue K N M T1 T2 T1 × T2

Glass 9 6 { 6, 7, 8, 9, 10 } 214 20 30 20 600
Wine 13 3 { 3, 4, 5, 6, 7 } 178 30 30 20 600

ImgSeg 19 7 { 7, 8, 9, 10, 11 } 2,310 30 50 20 1,000
Landsat 36 7 { 7, 8, 9, 10, 11 } 4,435 40 100 20 2,000
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Figure 5.6: Statistics of the estimation error for the synthetic data sets using
the GMM parameters estimated via the EM (blue) and PSO (red) procedures.
The boxes show the lower quartile, median, and upper quartile of the error. The
whiskers drawn as dashed lines extend out to the extreme values.

5.7 Conclusions

In this Chapter, we presented a framework for effective utilization of stochastic

search algorithms for the maximum likelihood estimation of Gaussian mixture

models. One of the contributions of this work was a covariance parameterization

that enabled the use of arbitrary covariance matrices in the search process. The

parameterization used eigenvalue decomposition, and modeled each covariance

matrix in terms of its eigenvalues and Givens rotation angles extracted from the

eigenvector matrices. This parameterization allowed the individual parameters

to be independently modifiable so that the resulting matrices remained valid co-

variance matrices after the stochastic updates. Furthermore, the parameters had

bounded ranges so that they could be searched within a finite solution space. We

also described an algorithm for ordering the eigenvectors so that the parameters

of individual Gaussian components were uniquely identifiable.
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Figure 5.7: Average log-likelihood and its standard deviation (shown as error
bars at one standard deviation) computed from 10 different runs of EM and PSO
procedures for the real data sets.
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Another contribution of this work was an optimization formulation for resolv-

ing the identifiability problem for the mixtures. The proposed solution allowed a

unique correspondence between two candidate solutions so that desirable inter-

actions became possible for parameter updates throughout the stochastic search.

We showed that the proposed methods can be used effectively with different

stochastic search algorithms such as genetic algorithms, differential evolution,

and particle swarm optimization. The final set of experiments using particle

swarm optimization with synthetic and real data sets showed that the proposed

algorithm could achieve significantly higher likelihood values compared to those

obtained by the conventional EM algorithm under the same initial conditions.
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Chapter 6

Compound Object Detection

6.1 Introduction

Recently available multispectral channels in very high spatial resolution (VHR)

images acquired from new generation satellites have enabled new applications

as the increased spectral resolution enhanced the capability to distinguish dif-

ferent physical materials. However, the increased amount of spatial detail in

these images also necessitates new advanced algorithms for automatic analysis.

For example, the commonly used classification algorithms that require an initial

segmentation of the image into homogeneous regions cannot always cope with

the increasing complexity because such homogeneous regions often correspond to

very small details.

An alternative approach in the recent years has been to model the spatial ar-

rangements of simple image regions to identify complex region groups. Gaetano

et al. [159] performed hierarchical texture segmentation assuming that frequent

neighboring regions are strongly related. They clustered the image regions to

compute the frequencies of quantized region pairs with discrete labels, and used

these frequencies to build a segmentation tree where some of the nodes correspond

to complex structures. Zamalieva et al. [160] found the significant relations be-

tween neighboring regions as the modes of a probability distribution estimated
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Figure 6.1: Compound structures in WorldView-2 images of Ankara and Ku-
sadasi, Turkey.

using the continuous features of region co-occurrences. The resulting modes were

used to construct the edges of a graph, and a graph mining algorithm was used

to find subgraphs that may correspond to compound structures. Vanegas et al.

[161] proposed a method based on fuzzy measures of relative direction between

objects to detect aligned object groups. They first detected locally aligned groups

of three objects, and then checked for global alignment using these local align-

ments. Akcay and Aksoy [162] described a procedure that combined statistical

characteristics of primitive objects modeled using spectral, shape, and position

information with structural characteristics encoded using spatial alignments of

neighboring similar object groups. However, all of these approaches required an

initial segmentation for the identification of the primitive regions. Furthermore,

they were designed to detect only a particular type of arrangement such as co-

occurrence or alignment.

In this Chapter we describe a new approach that combines statistical and

structural characteristics of simple objects to discover compound structures in
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VHR images. The compound structures of interest can include different types

of residential, commercial, industrial, and agricultural areas that are comprised

of spatial arrangements of primitive objects such as buildings, roads, and trees

corresponding to locally homogeneous details. The proposed approach uses a

probabilistic representation of the compound objects based on constrained Gaus-

sian mixture models introduced in Chapter 3.

In this model, each Gaussian component in the mixture models a group of

pixels corresponding to a particular primitive object. Each pixel is represented

using a feature vector that encodes both spectral and spatial information consist-

ing of the pixel’s multispectral data and its coordinates, respectively. Gaussian

components are partioned into two parts: spectral and spatial where the spectral

mean corresponds to the color of the object, the spectral covariance corresponds

to the homogeneity of the color content, the spatial mean corresponds to the

position of the object, and the spatial covariance models its shape.

Given example compound structures of interest that are comprised of multiple

primitive objects, first, a Gaussian mixture model is fit to the pixels correspond-

ing to the selected structures. This Gaussian mixture model is then used as

the reference model in the detection algorithm for identifying the occurrences

of other similar compound structures. We describe a novel detection algorithm

based on the expectation maximization algorithm for the robust extension of the

constrained Gaussian mixture models with known number of inliers as described

in Sections 3.4 and 4.2.4. Proposed detection algorithm tries to find the given

number of pixels in the new image data that are most similar to the pixels in the

reference compound object. Using the language of the Chapter 4, these most sim-

ilar pixels we are trying to find in the new image are considered to be the inliers

and the rest of the pixels are treated as the outliers. The inlier pixels are assumed

to be distributed according to a Gaussian mixture model similar to the reference

model. Proposed detection algorithm tries to determine both the inlier pixels and

the parameters of the new Gaussian mixture model corresponding to the inlier

pixels. In this Chapter, we use the source parameterization for the Gaussian

mixture models. The new Gaussian mixture model has to satisfy various convex

constraints on the source parameters. These constraints are formed using the
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parameters of the reference Gaussian mixture model and are described in detail

in Section 6.3. The main idea is that these constraints do not allow the spectral

parts of the new Gaussian mixture model to be very different from the reference

model. On the other hand, spatial parts modeling the locations and the shape

of the new primitive objects to be found are allowed to change while preserving

the relative location and the size relations given in the reference model. In the

detection algorithm, we run the expectation maximization algorithm initialized

from different locations on the image data corresponding to the target images.

The result is a list of compound structures detected in target images by group-

ing pixels that have high likelihoods of belonging to the Gaussian object models

while satisfying the spatial layout constraints. A very important feature of the

proposed model is that it can perform object detection without any requirement

of initial segmentation where the only assumption is that the spectral and spatial

content of the primitive objects can be modeled in terms of Gaussians.

The rest of the Chapter is organized as follows. Section 6.2 defines the prop-

erties of compound structures of interest. Section 6.3 describes the proposed

Gaussian mixture model. Section 6.4 presents the detection algorithm. Section

6.5 provides experimental results on an 8-band multispectral WorldView-2 image

of Ankara, Turkey. Finally, Section 6.6 lists the conclusions.

6.2 Definition of Compound Structures

In this thesis, compound structures are defined as high-level heterogeneous ob-

jects that are composed of spatial arrangements of multiple, relatively homoge-

neous, and compact primitive objects. To build the model for these structures,

first, each pixel is represented using a d-dimensional feature vector x = (xms; xxy)

where x ∈ Rd is formed by concatenating a d − 2 dimensional vector xms con-

taining the multispectral values and a 2-dimensional vector xxy containing the

pixel’s coordinates in the image. Since each primitive object is assumed to have

a relatively homogeneous spectral content and a compact shape, we further as-

sume that it can be modeled using a Gaussian that is defined in terms of the mean
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(a) RGB image (b) Spectral model (c) Spatial model

Figure 6.2: An example model for six buildings in a grid formation.

(a) Synthetic image (b) Spectral model (c) Spatial model

Figure 6.3: An example model for four objects in a synthetic image.

µ = (µms;µxy) and the block diagonal covariance matrix Σ = (Σms, 0; 0,Σxy) with

an additional assumption that the multispectral values and the pixel coordinates

are independent, i.e., p(x) = p(xms)p(xxy). Given a group of pixels forming the

primitive object, the spectral mean µms corresponds to the average color of the

object, the spectral covariance Σms corresponds to the homogeneity of the color

content, the spatial mean µxy corresponds to the position of the object, and the

spatial covariance Σxy models its shape. Figure 6.2 illustrates both the spectral

and the spatial parts of the models for example objects.

A compound structure consisting of K primitive objects can then be mod-

eled using a Gaussian mixture model (GMM) expressed in terms of the source
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parameters as

p(x|ν) =
K∑
k=1

αkp(x|νx|y=k) (6.1)

that is fully defined by the set of parameters ν = {α1, νx|y=1, . . . , αK , νx|y=K}
where each νx|y=k = {µk,Σk} represents the source parameters of the k’th Gaus-

sian component p(x|νx|y=k) that corresponds to the k’th primitive object. µk ∈ Rd

denotes the mean vector and Σk ∈ Sd++ denotes the covariance matrix of the k’th

Gaussian component. αk ∈ [0, 1] denotes the probability of a pixel belonging

to the k’th Gaussian component, and is proportional to the number of pixels,

i.e., size, of the corresponding primitive object. The sizes are normalized for the

whole compound structure, i.e., α1, . . . , αK are constrained to sum up to 1 as∑K
k=1 αk = 1. Since each pixel can belong to one of the K Gaussian compo-

nents, we also define a corresponding label variable yj ∈ {1, . . . , K} for each pixel

j = 1, . . . , N where yj = k denotes the event of the j’th pixel belonging to the

k’th Gaussian component.

The primitive objects can form different compound structures according to

different spatial arrangements. In addition to its effectiveness of modeling both

the homogeneity and the uncertainty in the spectral and shape content of the

primitive objects, the power of the proposed compound structure model comes

from its capability of modeling their arrangements. We use a fully connected

layout model that is defined in terms of the displacement vectors between the

centroids (spatial means) µxy of the primitive objects. Given K primitive objects,

the spatial layout of the compound structure is modeled using a total of K(K −
1)/2 displacement vectors dij, i = 1, . . . , K − 1, j = i + 1, . . . , K, where each of

these vectors is defined for a particular pair of primitive objects. Figure 6.2(c)

shows the layout model of the proposed spatial GMM structure.

6.3 Constrained Gaussian Mixture Model

In the compound object detection problem, we assume that we are given an ex-

ample compound structure of interest. This input, called the reference structure,
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is expected to be in the form of individually delineated regions for the primi-

tive objects. The regions corresponding to the primitive objects can be obtained

using basic low-level operations such as morphological opening/closing or image

segmentation, or can be obtained via manual selection.

The total of Ñ pixels, xj, j = 1, . . . , Ñ , belonging to the reference structure

consisting ofK primitive objects are used to fit a GMM withK components where

each primitive object is modeled by one of the Gaussian components. Since the

memberships of all reference pixels to the Gaussian components, yj, j = 1, . . . , Ñ ,

are known, the source parameters of the reference GMM can be directly obtained

using the maximum likelihood estimates

α̃k =
1

Ñ

Ñ∑
j=1

δ(yj = k) (6.2)

µ̃k =
1

α̃kÑ

Ñ∑
j=1

δ(yj = k)xj (6.3)

Σ̃k =
1

α̃kÑ

Ñ∑
j=1

(
δ(yj = k)xjx

T
j

)
− µ̃kµ̃Tk (6.4)

where δ(yj = k) is the Kronecker delta function that gives 1 if yj = k, and 0 oth-

erwise. The resulting reference GMM, p(x|ν̃), is defined by its source parameters

ν̃ = {α̃1, ν̃x|y=1, . . . , α̃K , ν̃x|y=K} where ν̃x|y=k = {µ̃k, Σ̃k}, k = 1, . . . , K.

In addition to the GMM source parameters, we also extract the spatial layout

of the reference structure in terms of the displacement vectors d̃ij, i = 1, . . . , K−
1, j = i+ 1, . . . , K, that are computed using

µ̃xyi + d̃ij = µ̃xyj . (6.5)

Given a target image with N pixels xj, j = 1, . . . , N , the goal is to iden-

tify the pixels in this image that are the most similar to those in the reference

structure. This can be formulated as a detection problem for the localization of

the subregions, i.e., the pixels of interest, that are most likely to correspond to

the reference compound object. However, an inherent difficulty in this detection

problem is that the pixels of interest, whose number is expected to be similar to
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the number of pixels in the reference structure, are typically observed as part of

a significantly larger set of observations (N � Ñ) where the rest of the pixels

have an unknown distribution. Using the language of Chapter 4, the pixels of in-

terest can be considered to be the inliers and the rest of the pixels can be treated

as the outliers. In this case, for the data points X , we have a set of N hidden

inlier Bernoulli variables O = {o1, . . . , oN} where oj ∈ {0, 1} denotes whether

the data point xj is an inlier or not denoted by oj = 1, oj = 0, respectively.

Furthermore, we assume that the inliers are distributed according to a Gaussian

mixture model, i.e., p(x|0 = 1) is a Gaussian mixture density function. In Section

4.2.4, propostion 9, we have shown that for general robust mixture models if we

assume that the posterior distributions of data points being outliers or inliers

R = {r(o1), . . . , r(oN)}, r(oj) = p(oj|xj), for j = 1, . . . , N , can take only binary

values, i.e., r(oj) ∈ {0, 1} for j = 1, . . . , N , the number of inliers is a known fixed

number Ñ , i.e.,
∑N

j=1 r(oj = 1) = Ñ , and the likelihoods of the data points given

they are outliers are equal to a constant p̃, i.e., p(xj|oj = 0) = p̃ for j = 1, . . . , N ,

then we can determine the inliers where r(oj = 1) = 1 by setting r(oj = 1) = 1

for the Ñ biggest log p(xj|oj = 1) values and r(oj = 1) = 0 for the rest.

The detection process involves the identification of the pixels of interest of the

target image modeled with a GMM with K components where K is the same as

the number of components in the reference GMM and estimating the target GMM

parameters modeling the pixels of interest. The estimation of the parameters of

the target GMM, p(x|o = 1, ν), that leads to the highest log-likelihood, also

uses the reference GMM, p(x|ν̃), to form spectral and spatial constraints on the

target GMM parameters. Once the target GMM is obtained, the pixels of interest

correspond to the ones that are the most likely under the estimated model.

The proposed estimation algorithm is presented in Section 6.4. The algo-

rithm uses the following constraints that are defined between pairs of Gaussian

components, one from the reference GMM and the other one from the target

GMM.

• We want to keep the relative sizes of the components of reference and target

structures the same, i.e., αk = α̃k for k = 1, . . . , K.
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• We want the average spectral content of the reference and target compo-

nents to be similar. Thus, we constrain the multispectral part of each

target mean to lie inside a confidence ellipsoid around the reference mean,

i.e., (µmsk − µ̃msk )T (Σ̃ms
k )−1(µmsk − µ̃msk ) ≤ β for k = 1, . . . , K where β is a

constant.

• We also want the homogeneity of the spectral content of the corresponding

reference and target components to be the same, i.e., Σms
k = Σ̃ms

k for k =

1, . . . , K.

• We want to preserve the spatial layout of the reference structure in the

target structure. Thus, given the K(K − 1)/2 displacement vectors d̃ij, i =

1, . . . , K − 1, j = i+ 1, . . . , K, that are computed between the spatial parts

of the reference means as in (6.5), the spatial layout of the target structure

is constrained as µxyi + d̃ij − µxyj = tij where ‖tij‖1 ≤ u and the constant

u ∈ R+ specify the allowed amount of deviation from the reference spatial

relations.

• Finally, we want the aspect ratio of each reference primitive object to be

preserved in the target. Thus, we constrain the minimum and maximum

eigenvalues, λmin and λmax , respectively, of the spatial parts of the reference

and target covariances to be the same, i.e., λmin(Σxy
k ) = λmin(Σ̃xy

k ) and

λmax (Σxy
k ) = λmax (Σ̃xy

k ) for k = 1, . . . , K. Note that this allows different

rotations of the primitive objects.

The spectral and spatial constraints are illustrated in Figures 6.4 and 6.5, respec-

tively.

6.4 Detection Algorithm

The input to the detection problem is the reference GMM, p(x|ν̃), i.e. estimated

from Ñ pixels in the reference compound structure, and a target image containing

N pixels, x1, . . . ,xN , among which an unknown subset of size Ñ constitutes the
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Figure 6.5: Spatial constraints. (a) Reference spatial model. (b) Mean con-
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pixels of interest. The goal of the detection algorithm is to identify the pixels of

interest modeled by the set inlier indicator variables

R = {r(o1 = 1), . . . , r(oN = 1)}, r(oj = 1) ∈ {0, 1} for j = 1, . . . , N

and estimate the parameters of the target GMM, p(x|o = 1, ν), that minimizes

the negative weighted log-likelihood

{ν∗,R∗} = arg min
ν,R
− 1

Ñ

N∑
j=1

r(oj = 1) log p(xj|oj = 1, ν). (6.6)

The GMM parameters and the indicator variables can be obtained via the expec-

tation maximization algorithm using the dual problem for the M-step described

in Section 3.4.

Let Q = {q(y1), . . . , q(yN)} denote distributions over the label variables The

upper bound function F (R,Q, ν) for the negative log-likelihood function l(R, ν)

can be obtained as

l(R, ν) ≤ − 1

Ñ

N∑
j=1

r(oj = 1)

(
K∑
k=1

q(yj = k) log

(
p(xj, yj = k|oj = 1, ν)

q(yj = k)

))
= F (R,Q, ν).

(6.7)

Based on the bound function F (R,Q, ν), we can write the E-step and the dual

problem for the M-step of the expectation maximization algorithm as follows.

6.4.1 Expectation Maximization Algorithm

In the E-step, we compute the constrained posterior distributions as follows.
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E-step

qt(yj) =
p(xj, yj|oj = 1, νt−1)∑K

i=1 p(xj, yj = i|oj = 1, νt−1)
for j = 1, . . . , N (6.8)

rt(oj = 1) =


1, for Ñ data points with the highest

Eqt(yj)[log p(xj, yj|oj = 1, νt−1)] +H(qt(yj))

0, o.w.

for j = 1, . . . , N (6.9)

where the index t corresponds to the iteration number.

In the M-step the source parameters ν = {α1, µ1,Σ1, . . . , αK , µK ,ΣK} that

satisfy the constraints defined in Section 6.3 is computed by solving the following

dual convex optimization problem.

maximize −
K−1∑
k=1

αk logαk − (1−
K−1∑
k=1

αk) log(1−
K−1∑
k=1

αk)

+
K∑
k=1

αsk
(1

2
log |Σk|+

d

2
log(2πe)

)
+

K−1∑
k=1

αkηsk +
K∑
k=1

αsk
(
µTkmsk −

1

2
tr(ΣkSsk)−

1

2
µTk Sskµk

)
subject to αk = α̃k, k = 1, . . . , K − 1 (6.10)

(µmsk − µ̃msk )T (Σ̃ms
k )−1(µmsk − µ̃msk ) ≤ β,

k = 1, . . . , K, (6.11)

µxyi + d̃ij − µxyj = tij, ‖tij‖1 ≤ u,

i = 1, . . . , K − 1, j = i+ 1, . . . , K (6.12)

Σms
k = Σ̃ms

k , k = 1, . . . , K, (6.13)

λmin(Σ̃xy
k )I2 � Σxy

k � λmax (Σ̃xy
k )I2, k = 1, . . . , K, (6.14)

Σi
k = 0 for i 6= ms, i 6= xy, k = 1, . . . , K (6.15)

where α, µ1,Σ1, . . . , µK ,ΣK , t are the optimization variables. Constraints in the
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problem above are convex inequality and affine equality constraints in the opti-

mization variables. The expected empirical information parameters are denoted

by

ηsk = log
αsk

1−
∑K−1

i=1 αsi
, k = 1, . . . , K − 1

msk = Σ−1
sk µsk, k = 1, . . . , K

Ssk = Σ−1
sk , k = 1, . . . , K

which were calculated apriori after the E-step using the expected empirical prob-

abilities

αsk =
1

Ñ

N∑
j=1

rt(oj = 1)qt(yj = k), k = 1, . . . , K

the expected empirical means

µsk =
1

αskÑ

N∑
j=1

rt(oj = 1)qt(yj = k)xj, k = 1, . . . , K

and the expected empirical covariance matrices

Σsk =
1

αskÑ

N∑
j=1

(
rt(oj = 1)qt(yj = k)xjx

T
j

)
− µskµTsk, k = 1, . . . , K

Here we use I2 to denote the 2-by-2 identity matrix.

The procedure is run by starting from different initializations of the target

GMM on the target image. The algorithm alternates between the E and M steps

until an allowed maximum number of iterations is attained or until the difference

between the log-likelihood values at two successive iterations falls below some

given threshold value. For each initialization, the algorithm gives the GMM

parameters and the indicator variables. Each result corresponds to a grouping

of the pixels that have high likelihoods of belonging to the reference Gaussian

object models while satisfying the spatial layout constraints. The results can

be sorted in descending order of the likelihood values, and a list of compound

structures detected in the target image can be obtained by truncating this list at

a particular likelihood value.
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6.5 Experiments

Experiments were performed on an 8-band multispectral WorldView-2 image of

Ankara, Turkey with 500 × 500 pixels and 2 m spatial resolution. The refer-

ence compound structures were obtained by manual delineation of the individual

primitive objects. The parameters of the reference Gaussian components were

obtained using maximum likelihood estimation. In particular, the component

probabilities (α̃k, k = 1, . . . , K) were estimated using the ratio of the number of

pixels in each primitive object to the total number of pixels in the compound

structure, and the means and the covariance matrices were estimated using the

pixels belonging to each primitive object. After this supervised step, the rest of

the detection process was performed fully unsupervised using the EM algorithm

described in section 6.4. Note that, the algorithm does not require any initial

segmentation while performing object detection because it can group individual

pixels that have high likelihoods of belonging to the Gaussian object models while

satisfying the spatial layout constraints.

Since each different initialization of the EM algorithm converges to a local op-

timum of the likelihood function and there is no additional information about the

expected locations of similar compound structures in the target image, we used

a straightforward initialization procedure using uniform sampling of the image

coordinates. First, the reference structure was placed at the top-left corner of the

target image. Then, the x and y coordinates were incremented by 25 pixels to

form a grid of points that were used as offsets to be added to the centroids of the

reference objects for initialization while preserving the displacement relations of

the centroids computed from the reference GMM. This resulted in 19× 19 = 361

runs for the EM algorithm. For each run, after calculating the initial centroids

using these offset values, the spatial covariances were initialized to the reference

GMM’s corresponding spatial covariances. Furthermore, the means and covari-

ances corresponding to multispectral values were also initialized to the reference

GMM’s corresponding means and covariances. Similarly, the Gaussian compo-

nent probabilities were initialized to reference Gaussian component probabilities.

Finally, the number of inliers was set to the total number of pixels in the reference
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structure. For all experiments, the number of mixture components was fixed to

the number of primitive objects in the reference structure.

Fig. 6.6 shows an example structure composed of four buildings with red roofs

placed in a diamond formation. The resulting target GMMs obtained after the

convergence of the EM algorithm for each of the 361 runs were ranked accord-

ing to the resulting likelihood values.Fig. 6.7 shows the top sixteen structures

that corresponded to the highest likelihood values. The spatial layout model and

the constraints defined in sections 6.2 and 6.3, respectively, allow the individual

Gaussian components to rotate around their centroids while preserving the rel-

ative displacements computed from the reference GMM. Therefore, some of the

detected structures corresponded to formations by rotated buildings (e.g., cross-

like formation of four buildings, and parallel groups of two buildings) where the

displacements between pairwise centroids were always very similar to those in the

reference structure because of the constraints used.

Fig. 6.8 shows another example structure corresponding to an intersection

of four road segments. Similar to the previous example, the resulting target

GMMs obtained after the convergence of the EM algorithm for each of the 361

runs were ranked according to the resulting likelihood values. Fig. 6.9 shows

the top eight structures that corresponded to the highest likelihood values. All

results except the third one corresponded to intersections that were similar to the

reference structure. The third result shows an interesting case where nearby road

segments formed a different structure because of the allowed rotations around the

centroids with almost identical displacement. Additional constraints can be used

to restrict or relax both the appearances and the spatial layout of the primitive

objects within the compound structures of interest.

Fig. 6.10 and Fig. 6.11 show another example structure composed of four

buildings and a pool. Similar to the previous examples, the resulting target

GMMs obtained after the convergence of the EM algorithm.
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Figure 6.6: Detection of an example structure composed of four buildings with red
roofs in a diamond formation in a multispectral WorldView-2 image of Ankara.
(a) shows the RGB image formed by the visible bands. (b) shows a close up of
the four patches, that were manually delineated as primitive objects, overlayed on
the RGB image as yellow polygons. (c) shows the likelihood results obtained with
unconstrained GMM. (d) shows the likelihood results obtained with the proposed
constrained GMM model

6.6 Conclusions

We presented a new Gaussian mixture model that uses the individual Gaus-

sian components to represent the spectral and shape contents of basic primitive

objects, and proposed a new expectation-maximization algorithm that can incor-

porate spectral and spatial constraints for the detection of compound structures

that are comprised of spatial arrangements of such objects. Given an example

compound structure of interest, first, a reference GMM was estimated from the

pixels belonging to the manually delineated primitive objects. Then, the EM

algorithm was used to fit a robust GMM to the target image data so that the

pixels that had high likelihoods of belonging to the Gaussian object models and

satisfied the spatial layout constraints could be grouped to perform unsupervised

object detection.

The initial experiments showed that the proposed method can detect high-

level structures that cannot be modeled using traditional techniques. Further-

more, it has a very important advantage of not requiring any initial segmentation

while performing object detection by grouping individual pixels. In the proof-of-

concept experiments presented in this Chapter, all primitive objects corresponded
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Figure 6.7: The top 16 structures that corresponded to the highest likelihood
values at the end of all runs of the EM algorithm. For each result, the pixels
selected as inliers are marked in cyan, and the resulting Gaussians are overlayed
as yellow ellipses drawn at three standard deviations.
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Figure 6.8: Detection of an example structure corresponding to an intersection of
four road segments in a multispectral WorldView-2 image of Ankara. (a) shows
the RGB image formed by the visible bands. (b) shows a close up of the four
patches, that were manually delineated as primitive objects, overlayed on the
RGB image as yellow polygons. (c) shows the likelihood results obtained with
unconstrained GMM. (d) shows the likelihood results obtained with the proposed
constrained GMM model.

Figure 6.9: The top eight structures that corresponded to the highest likelihood
values at the end of all runs of the EM algorithm. For each result, the pixels
selected as inliers are marked in cyan, and the resulting Gaussians are overlayed
as yellow ellipses drawn at three standard deviations.
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Figure 6.10: Detection of an example structure composed of four buildings and
a pool in a multispectral WorldView-2 image of Kusadasi.
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Figure 6.11: Detection of an example structure composed of four buildings and
a pool in another multispectral WorldView-2 image of Kusadasi.
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to the same type, i.e., buildings in Fig. 6.6 and roads in Fig. 6.8, but the algorithm

can use any type of primitive object. Therefore, future work includes experiments

with other types of compound structures in larger data sets. We are also plan-

ning to extend the model with additional constraints to handle the scale and

orientation changes.
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Chapter 7

Conclusions and Future Work

In this thesis, a novel framework called constrained Gaussian mixture models

where convex constraints either on the information or the source parameters

can be handled by solving constrained convex optimization problems for the M-

step of the expectation maximization algorithm was presented. This framework

provides a mathematically principled way to handle convex constraints on both

the information and the source parameters for Gaussian mixture models.

Second, a new probabilistic model for the robust estimation of the Gaus-

sian mixture models was proposed. We showed that we can incorporate the

inlier/outlier information available for small number of data points as convex

constraints on the information parameters. This model allows us to estimate the

information parameters consistent with available inlier/outlier information. Fur-

thermore, using available inlier/outlier information we showed that we can also

determine a threshold level for outlier detection.

Third, novel parameterization based on eigenvalue decomposition of covari-

ance matrices suitable for stochastic search algorithms was developed. A new

algorithm where global search skills of the PSO algorithm and the local search

skills of the expectation maximization algorithm can be exploited to do global

parameter estimation was presented.
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Fourth, a compound object detection algorithm as an application to the ro-

bust constrained Gaussian mixture models was developed. We showed that vari-

ous prior information about the objects can be effectively modeled using convex

constraints on the source parameters.

The unifying idea in this thesis was that various prior information available

for the problem can be incorporated in the form of convex constraints either on

the source or the information parameters for the Gaussian mixture models and we

can handle these constraints by solving constrained convex optimization problems

for the M-step of the expectation maximization algorithm.

We showed that constrained robust Gaussian mixture models can be success-

fully used for data analysis and object detection. Improving the capabilities of

the proposed models, searching for new applications and developing specialized

convex optimization solvers for specific applications can be directions for future

research.
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