3,070 research outputs found

    Using word graphs as intermediate representation of uttered sentences

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-33275-3_35We present an algorithm for building graphs of words as an intermediate representation of uttered sentences. No language model is used. The input data for the algorithm are the pronunciation lexicon organized as a tree and the sequence of acoustic frames. The transition between consecutive units are considered as additional units. Nodes represent discrete instants of time, arcs are labelled with words, and a confidence measure is assigned to each detected word, which is computed by using the phonetic probabilities of the subsequence of acoustic frames used for completing the word. We evaluated the obtained word graphs by searching the path that best matches with the correct sentence and then measuring the word accuracy, i.e. the oracle word accuracy. © 2012 Springer-Verlag.This work was supported by the Spanish MICINN under contract TIN2011-28169-C05-01 and the Vic. d’Investigació of the UPV under contract 20110897.Gómez Adrian, JA.; Sanchís Arnal, E. (2012). Using word graphs as intermediate representation of uttered sentences. En Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Springer Verlag (Germany). 284-291. doi:10.1007/978-3-642-33275-3_35S284291Ortmanns, S., Ney, H., Aubert, X.: A word graph algorithm for large vocabulary continuous speech recognition. Computer Speech and Language 11, 43–72 (1997)Ney, H., Ortmanns, S., Lindam, I.: Extensions to the word graph method for large vocabulary continuous speech recognition. In: Proceedings of IEEE ICASSP 1997, Munich, Germany, vol. 3, pp. 1791–1794 (1997)Wessel, F., Schlüter, R., Macherey, K., Ney, H.: Confidence Measures for Large Vocabulary Continuous Speech Recognition. IEEE Transactions on Speech and Audio Processing 9(3), 288–298 (2001)Ferreiros, J., San-Segundo, R., Fernández, F., D’Haro, L.-F., Sama, V., Barra, R., Mellén, P.: New word-level and sentence-level confidence scoring using graph theory calculus and its evaluation on speech understanding. In: Proceedings of INTERSPEECH 2005, Lisbon, Portugal, pp. 3377–3380 (2005)Raymond, C., Béchet, F., De Mori, R., Damnati, G.: On the use of finite state transducers for semantic interpretation. Speech Communication 48, 288–304 (2006)Hakkani-Tür, D., Béchet, F., Riccardi, G., Tur, G.: Beyond ASR 1-best: Using word confusion networks in spoken language understanding. Computer Speech and Language 20, 495–514 (2006)Justo, R., Pérez, A., Torres, M.I.: Impact of the Approaches Involved on Word-Graph Derivation from the ASR System. In: Vitrià, J., Sanches, J.M., Hernández, M. (eds.) IbPRIA 2011. LNCS, vol. 6669, pp. 668–675. Springer, Heidelberg (2011)Gómez, J.A., Calvo, M.: Improvements on Automatic Speech Segmentation at the Phonetic Level. In: San Martin, C., Kim, S.-W. (eds.) CIARP 2011. LNCS, vol. 7042, pp. 557–564. Springer, Heidelberg (2011)Calvo, M., Gómez, J.A., Sanchis, E., Hurtado, L.F.: An algorithm for automatic speech understanding over word graphs. Procesamiento del Lenguaje Natural (48) (accepted, pending of publication, 2012)Moreno, A., Poch, D., Bonafonte, A., Lleida, E., Llisterri, J., Mariño, J.B., Nadeu, C.: Albayzin Speech Database: Design of the Phonetic Corpus. In: Proceedings of Eurospeech, Berlin, Germany, vol. 1, pp. 653–656 (September 1993)Benedí, J.M., Lleida, E., Varona, A., Castro, M., Galiano, I., Justo, R., López, I., Miguel, A.: Design and acquisition of a telephone spontaneous speech dialogue corpus in Spanish: DIHANA. In: Proc. of LREC 2006, Genova, Italy (2006

    Design, development and field evaluation of a Spanish into sign language translation system

    Get PDF
    This paper describes the design, development and field evaluation of a machine translation system from Spanish to Spanish Sign Language (LSE: Lengua de Signos Española). The developed system focuses on helping Deaf people when they want to renew their Driver’s License. The system is made up of a speech recognizer (for decoding the spoken utterance into a word sequence), a natural language translator (for converting a word sequence into a sequence of signs belonging to the sign language), and a 3D avatar animation module (for playing back the signs). For the natural language translator, three technological approaches have been implemented and evaluated: an example-based strategy, a rule-based translation method and a statistical translator. For the final version, the implemented language translator combines all the alternatives into a hierarchical structure. This paper includes a detailed description of the field evaluation. This evaluation was carried out in the Local Traffic Office in Toledo involving real government employees and Deaf people. The evaluation includes objective measurements from the system and subjective information from questionnaires. The paper details the main problems found and a discussion on how to solve them (some of them specific for LSE)

    A Semantic Question Answering Framework for Large Data Sets

    Get PDF
    Traditionally, the task of answering natural language questions has involved a keyword-based document retrieval step, followed by in-depth processing of candidate answer documents and paragraphs. This post-processing uses semantics to various degrees. In this article, we describe a purely semantic question answering (QA) framework for large document collections. Our high-precision approach transforms the semantic knowledge extracted from natural language texts into a language-agnostic RDF representation and indexes it into a scalable triplestore. In order to facilitate easy access to the information stored in the RDF semantic index, a user's natural language questions are translated into SPARQL queries that return precise answers back to the user. The robustness of this framework is ensured by the natural language reasoning performed on the RDF store, by the query relaxation procedures, and the answer ranking techniques. The improvements in performance over a regular free text search index-based question answering engine prove that QA systems can benefit greatly from the addition and consumption of deep semantic information

    Gen Ed Data Review Meeting Handouts, June 24, 2016

    Get PDF
    Handouts from the General Education Data Review and Discussion

    Speech to sign language translation system for Spanish

    Get PDF
    This paper describes the development of and the first experiments in a Spanish to sign language translation system in a real domain. The developed system focuses on the sentences spoken by an official when assisting people applying for, or renewing their Identity Card. The system translates official explanations into Spanish Sign Language (LSE: Lengua de Signos EspanÂżola) for Deaf people. The translation system is made up of a speech recognizer (for decoding the spoken utterance into a word sequence), a natural language translator (for converting a word sequence into a sequence of signs belonging to the sign language), and a 3D avatar animation module (for playing back the hand movements). Two proposals for natural language translation have been evaluated: a rule-based translation module (that computes sign confidence measures from the word confidence measures obtained in the speech recognition module) and a statistical translation module (in this case, parallel corpora were used for training the statistical model). The best configuration reported 31.6% SER (Sign Error Rate) and 0.5780 BLEU (BiLingual Evaluation Understudy). The paper also describes the eSIGN 3D avatar animation module (considering the sign confidence), and the limitations found when implementing a strategy for reducing the delay between the spoken utterance and the sign sequence animation

    Appendices for Standard 12 (March 2014)

    Get PDF
    Appendices for Standard 12 (March 2014

    Knowledge and Reasoning for Image Understanding

    Get PDF
    abstract: Image Understanding is a long-established discipline in computer vision, which encompasses a body of advanced image processing techniques, that are used to locate (“where”), characterize and recognize (“what”) objects, regions, and their attributes in the image. However, the notion of “understanding” (and the goal of artificial intelligent machines) goes beyond factual recall of the recognized components and includes reasoning and thinking beyond what can be seen (or perceived). Understanding is often evaluated by asking questions of increasing difficulty. Thus, the expected functionalities of an intelligent Image Understanding system can be expressed in terms of the functionalities that are required to answer questions about an image. Answering questions about images require primarily three components: Image Understanding, question (natural language) understanding, and reasoning based on knowledge. Any question, asking beyond what can be directly seen, requires modeling of commonsense (or background/ontological/factual) knowledge and reasoning. Knowledge and reasoning have seen scarce use in image understanding applications. In this thesis, we demonstrate the utilities of incorporating background knowledge and using explicit reasoning in image understanding applications. We first present a comprehensive survey of the previous work that utilized background knowledge and reasoning in understanding images. This survey outlines the limited use of commonsense knowledge in high-level applications. We then present a set of vision and reasoning-based methods to solve several applications and show that these approaches benefit in terms of accuracy and interpretability from the explicit use of knowledge and reasoning. We propose novel knowledge representations of image, knowledge acquisition methods, and a new implementation of an efficient probabilistic logical reasoning engine that can utilize publicly available commonsense knowledge to solve applications such as visual question answering, image puzzles. Additionally, we identify the need for new datasets that explicitly require external commonsense knowledge to solve. We propose the new task of Image Riddles, which requires a combination of vision, and reasoning based on ontological knowledge; and we collect a sufficiently large dataset to serve as an ideal testbed for vision and reasoning research. Lastly, we propose end-to-end deep architectures that can combine vision, knowledge and reasoning modules together and achieve large performance boosts over state-of-the-art methods.Dissertation/ThesisDoctoral Dissertation Computer Science 201
    • …
    corecore