16,720 research outputs found

    Multiple Beamforming with Perfect Coding

    Full text link
    Perfect Space-Time Block Codes (PSTBCs) achieve full diversity, full rate, nonvanishing constant minimum determinant, uniform average transmitted energy per antenna, and good shaping. However, the high decoding complexity is a critical issue for practice. When the Channel State Information (CSI) is available at both the transmitter and the receiver, Singular Value Decomposition (SVD) is commonly applied for a Multiple-Input Multiple-Output (MIMO) system to enhance the throughput or the performance. In this paper, two novel techniques, Perfect Coded Multiple Beamforming (PCMB) and Bit-Interleaved Coded Multiple Beamforming with Perfect Coding (BICMB-PC), are proposed, employing both PSTBCs and SVD with and without channel coding, respectively. With CSI at the transmitter (CSIT), the decoding complexity of PCMB is substantially reduced compared to a MIMO system employing PSTBC, providing a new prospect of CSIT. Especially, because of the special property of the generation matrices, PCMB provides much lower decoding complexity than the state-of-the-art SVD-based uncoded technique in dimensions 2 and 4. Similarly, the decoding complexity of BICMB-PC is much lower than the state-of-the-art SVD-based coded technique in these two dimensions, and the complexity gain is greater than the uncoded case. Moreover, these aforementioned complexity reductions are achieved with only negligible or modest loss in performance.Comment: accepted to journa

    Detect-and-forward relaying aided cooperative spatial modulation for wireless networks

    No full text
    A novel detect-and-forward (DeF) relaying aided cooperative SM scheme is proposed, which is capable of striking a flexible tradeoff in terms of the achievable bit error ratio (BER), complexity and unequal error protection (UEP). More specifically, SM is invoked at the source node (SN) and the information bit stream is divided into two different sets: the antenna index-bits (AI-bits) as well as the amplitude and phase modulation-bits (APM-bits). By exploiting the different importance of the AI-bits and the APM-bits in SM detection, we propose three low-complexity, yet powerful relay protocols, namely the partial, the hybrid and the hierarchical modulation (HM) based DeF relaying schemes. These schemes determine the most appropriate number of bits to be re-modulated by carefully considering their potential benefits and then assigning a specific modulation scheme for relaying the message. As a further benefit, the employment of multiple radio frequency (RF) chains and the requirement of tight inter-relay synchronization (IRS) can be avoided. Moreover, by exploiting the benefits of our low-complexity relaying protocols and our inter-element interference (IEI) model, a low-complexity maximum-likelihood (ML) detector is proposed for jointly detecting the signal received both via the source-destination (SD) and relay-destination (RD) links. Additionally, an upper bound of the BER is derived for our DeF-SM scheme. Our numerical results show that the bound is asymptotically tight in the high-SNR region and the proposed schemes provide beneficial system performance improvements compared to the conventional MIMO schemes in an identical cooperative scenario.<br/

    Bit-Interleaved Coded Multiple Beamforming with Perfect Coding

    Full text link
    When the Channel State Information (CSI) is known by both the transmitter and the receiver, beamforming techniques employing Singular Value Decomposition (SVD) are commonly used in Multiple-Input Multiple-Output (MIMO) systems. Without channel coding, there is a trade-off between full diversity and full multiplexing. When channel coding is added, both of them can be achieved as long as the code rate Rc and the number of employed subchannels S satisfy the condition RcS<=1. By adding a properly designed constellation precoder, both full diversity and full multiplexing can be achieved for both uncoded and coded systems with the trade-off of a higher decoding complexity, e.g., Fully Precoded Multiple Beamforming (FPMB) and Bit-Interleaved Coded Multiple Beamforming with Full Precoding (BICMB-FP) without the condition RcS<=1. Recently discovered Perfect Space-Time Block Code (PSTBC) is a full-rate full-diversity space-time code, which achieves efficient shaping and high coding gain for MIMO systems. In this paper, a new technique, Bit-Interleaved Coded Multiple Beamforming with Perfect Coding (BICMB-PC), is introduced. BICMB-PC transmits PSTBCs through convolutional coded SVD systems. Similar to BICMB-FP, BICMB-PC achieves both full diversity and full multiplexing, and its performance is almost the same as BICMB-FP. The advantage of BICMB-PC is that it can provide a much lower decoding complexity than BICMB-FP, since the real and imaginary parts of the received signal can be separated for BICMB-PC of dimensions 2 and 4, and only the part corresponding to the coded bit is required to acquire one bit metric for the Viterbi decoder.Comment: accepted to conference; Proc. IEEE ICC 201

    Labeling Diversity for 2x2 WLAN Coded-Cooperative Networks

    Get PDF
    Labelling diversity is an efficient technique recently proposed in the literature and aims to improve the bit error rate(BER) performance of wireless local area network (WLAN) systems with two transmit and two receive antennas without increasing the transmit power and bandwidth requirements. In this paper, we employ labelling diversity with different space-time channel codes such as convolutional, turbo and low density parity check (LDPC) for both point-to-point and coded-cooperative communication scenarios. Joint iterative decoding schemes for distributed turbo and LDPC codes are also presented. BER performance bounds at an error floor (EF) region are derived and verified with the help of numerical simulations for both cooperative and non-cooperative schemes. Numerical simulations show that the coded-cooperative schemes with labelling diversity achieve better BER performances and use of labelling diversity at the source node significantly lowers relay outage probability and hence the overall BER performance of the coded-cooperative scheme is improved manifolds

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Near-Capacity Turbo Trellis Coded Modulation Design

    No full text
    Bandwidth efficient parallel-concatenated Turbo Trellis Coded Modulation (TTCM) schemes were designed for communicating over uncorrelated Rayleigh fading channels. A symbol-based union bound was derived for analysing the error floor of the proposed TTCM schemes. A pair of In-phase (I) and Quadrature-phase (Q) interleavers were employed for interleaving the I and Q components of the TTCM coded symbols, in order to attain an increased diversity gain. The decoding convergence of the IQ-TTCM schemes was analysed using symbol based EXtrinsic Information Transfer (EXIT) charts. The best TTCM component codes were selected with the aid of both the symbol-based union bound and non-binary EXIT charts for the sake of designing capacity-approaching IQ-TTCM schemes in the context of 8PSK, 16QAM and 32QAM signal sets. It will be shown that our TTCM design is capable of approaching the channel capacity within 0.5 dB at a throughput of 4 bit/s/Hz, when communicating over uncorrelated Rayleigh fading channels using 32QAM

    Self-concatenated code design and its application in power-efficient cooperative communications

    No full text
    In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions

    Space-Time Coded Spatial Modulated Physical Layer Network Coding for Two-Way Relaying

    Full text link
    Using the spatial modulation approach, where only one transmit antenna is active at a time, we propose two transmission schemes for two-way relay channel using physical layer network coding with space time coding using Coordinate Interleaved Orthogonal Designs (CIOD's). It is shown that using two uncorrelated transmit antennas at the nodes, but using only one RF transmit chain and space-time coding across these antennas can give a better performance without using any extra resources and without increasing the hardware implementation cost and complexity. In the first transmission scheme, two antennas are used only at the relay, Adaptive Network Coding (ANC) is employed at the relay and the relay transmits a CIOD Space Time Block Code (STBC). This gives a better performance compared to an existing ANC scheme for two-way relay channel which uses one antenna each at all the three nodes. It is shown that for this scheme at high SNR the average end-to-end symbol error probability (SEP) is upper bounded by twice the SEP of a point-to-point fading channel. In the second transmission scheme, two transmit antennas are used at all the three nodes, CIOD STBC's are transmitted in multiple access and broadcast phases. This scheme provides a diversity order of two for the average end-to-end SEP with an increased decoding complexity of O(M3)\mathcal{O}(M^3) for an arbitrary signal set and O(M2M)\mathcal{O}(M^2\sqrt{M}) for square QAM signal set.Comment: 9 pages, 7 figure
    corecore