367 research outputs found

    Artificial Neural Networks in Agriculture

    Get PDF
    Modern agriculture needs to have high production efficiency combined with a high quality of obtained products. This applies to both crop and livestock production. To meet these requirements, advanced methods of data analysis are more and more frequently used, including those derived from artificial intelligence methods. Artificial neural networks (ANNs) are one of the most popular tools of this kind. They are widely used in solving various classification and prediction tasks, for some time also in the broadly defined field of agriculture. They can form part of precision farming and decision support systems. Artificial neural networks can replace the classical methods of modelling many issues, and are one of the main alternatives to classical mathematical models. The spectrum of applications of artificial neural networks is very wide. For a long time now, researchers from all over the world have been using these tools to support agricultural production, making it more efficient and providing the highest-quality products possible

    Digital Hardware Pulse-Mode RBFNN with Hybrid On-chip Learning Algorithm Based Edge Detection.

    Full text link

    Advances in Postharvest Process Systems

    Get PDF
    This Special Issue presents a range of recent technologies and innovations to help the agricultural and food industry to manage and minimize postharvest losses, enhance reliability and sustainability, and generate high-quality products that are both healthy and appealing to consumers. It focuses on three main topics of food storage and preservation technologies, food processing technologies, and the applications of advanced mathematical modelling and computer simulations. This presentation of the latest research and information is particularly useful for people who are working in or associated with the fields of agriculture, the agri-food chain and technology development and promotion

    BRUISE DETECTION IN APPLES USING 3D INFRARED IMAGING AND MACHINE LEARNING TECHNOLOGIES

    Get PDF
    Bruise detection plays an important role in fruit grading. A bruise detection system capable of finding and removing damaged products on the production lines will distinctly improve the quality of fruits for sale, and consequently improve the fruit economy. This dissertation presents a novel automatic detection system based on surface information obtained from 3D near-infrared imaging technique for bruised apple identification. The proposed 3D bruise detection system is expected to provide better performance in bruise detection than the existing 2D systems. We first propose a mesh denoising filter to reduce noise effect while preserving the geometric features of the meshes. Compared with several existing mesh denoising filters, the proposed filter achieves better performance in reducing noise effect as well as preserving bruised regions in 3D meshes of bruised apples. Next, we investigate two different machine learning techniques for the identification of bruised apples. The first technique is to extract hand-crafted feature from 3D meshes, and train a predictive classifier based on hand-crafted features. It is shown that the predictive model trained on the proposed hand-crafted features outperforms the same models trained on several other local shape descriptors. The second technique is to apply deep learning to learn the feature representation automatically from the mesh data, and then use the deep learning model or a new predictive model for the classification. The optimized deep learning model achieves very high classification accuracy, and it outperforms the performance of the detection system based on the proposed hand-crafted features. At last, we investigate GPU techniques for accelerating the proposed apple bruise detection system. Specifically, the dissertation proposes a GPU framework, implemented in CUDA, for the acceleration of the algorithm that extracts vertex-based local binary patterns. Experimental results show that the proposed GPU program speeds up the process of extracting local binary patterns by 5 times compared to a single-core CPU program

    The EnMAP Managed Vegetation Scientific Processor

    Get PDF
    Nach jahrelanger wissenschaftlicher und technischer Vorbereitungszeit wird voraussichtlich Ende des Jahres 2020 der Start der orbitalen Phase einer unbemannten deutschen Weltraum-Mission initiiert. Das Environmental Mapping and Analysis Program (EnMAP) wird an Bord des gleichnamigen Satelliten einen hyperspektralen Sensor zur Erfassung terrestrischer Oberflächen tragen. In den Umweltdisziplinen zur Erforschung von Ökosystemen, landwirtschaftlicher, forstwirtschaftlicher und urbaner Flächen, im Bereich der Küsten- und Inlandsgewässer sowie der Geologie und Bodenkunde bereitete man sich im Vorfeld des Starts auf die kommenden Daten vor. Zwar existiert bereits eine Vielzahl an Algorithmen zur wissenschaftlichen Analyse von spektralen Daten, allerdings ergeben sich auch neue Herausforderungen, da die EnMAP-Mission bislang im weltweiten Kontext der Fernerkundung einzigartig ist. Die Abdeckung des vollen optischen Spektrums (420 nm – 2450 nm) in Verbindung mit einer moderaten räumlichen Auflösung von 30 m und einem hohen Signal-Rausch-Verhältnis von mindestens 180 im kurzwelligen Infrarot und über 400 im sichtbaren Spektrum, ermöglichen eine Aufnahmequalität, die bislang nur von flugzeuggestützten Systemen erreicht werden konnte. Die Bemühungen in dieser Dissertation umfassen Aktivitäten in der wissenschaftlichen Vorbereitungsphase zu agrargeographischen Fragestellungen. Algorithmen und Tools zur Analyse der hyperspektralen Daten werden kostenlos im QGIS-Plugin EnMAP-Box 3 zur Verfügung gestellt. Die drängenden Fragen im Agrarsektor drehen sich hierbei um die Ableitung biochemischer und biophysikalischer Parameter aus Fernerkundungsdaten, weshalb die übergeordnete Problemstellung des Promotionsvorhabens die Entwicklung eines wissenschaftsbasierten EnMAP-Tools für bewirtschaftete Vegetationsflächen (EnMAP Managed Vegetation Scientific Processor) darstellt. Zu Beginn wurde eine umfassende Feldkampagne geplant, welche ab April 2014 umgesetzt wurde. Neben der spektralen Erfassung von Blatt-, Bestands- und Bodensignaturen in einem Winterweizen- und einem Maisfeld erfolgte auch die Messung wesentlicher Pflanzenparameter an den exakt gleichen Positionen. Hierzu zählt die non-destruktive Ableitung des Blattflächenindex (LAI), des Blattchlorophyllgehalts (Ccab), des Blattwassergehalts (EWT oder Cw), des relativen Blatttrockengewichts (LMA oder Cm), des mittleren Blattneigungswinkels im Bestand (ALIA) sowie weiterer sekundärer Parameter wie Wuchshöhe, das phänologisches Stadium und der Sonnenvektor. Um die Fähigkeit des späteren EnMAP-Satelliten sich um bis zu 30° orthogonal zur Flugrichtung zu kippen nachzustellen, wurden die spektralen Aufnahmen aus verschiedenen Betrachtungswinkeln erstellt, die dieser Aufnahme-Geometrien nachempfunden sind. Ein gängiges Verfahren zur Ableitung der relevanten Pflanzenparameter ist die Verwendung des Strahlungstransfermodells PROSAIL, welches das spektrale Signal einer Vegetationsfläche auf Basis der zugrundeliegenden biophysikalischen und biochemischen Parameter simuliert. Bei der Umkehr dieses Prozesses können ebendiese Variablen von gemessenen spektralen Daten abgeleitet werden. Hierzu wurde eine Datenbank (Look-Up-Table, LUT) aus PROSAIL-Modellläufen aufgebaut und die in den Feldkampagnen gemessenen Spektren mit dieser abgeglichen. Mit dieser Methode der LUT-Invertierung aus unterschiedlichen Aufnahmewinkeln konnten Genauigkeiten bei der LAI-Schätzung von 18 % und bei Blattchlorophyll von 20 % erzielt werden. Eine starke Anisotropie, also eine Reflexionsabhängigkeit von der Beleuchtungs- und Aufnahmerichtung, wurde bei Winterweizen vor allem für frühe Entwicklungsstadien festgestellt. Bei einer anschließenden Studie zur Unsicherheitsanalyse des Spektralmodells wurden PROSAIL-Ergebnisse, bei denen real gemessene Pflanzenparameter als Input dienten, den zugehörigen Reflektanzspektren gegenübergestellt. Es zeigten sich hierbei mitunter starke Abweichungen zwischen gemessenen und modellierten Spektren, die im Falle des Winterweizens einen saisonalen Verlauf zeichneten. Vor allem während frühen Wachstumsstadien tendierte das Modell dazu die Reflektanz im nahen Infrarot zu überschätzen, während es gegen Ende der Wachstumsperiode eher eine Unterschätzung aufwies. Als Unsicherheitsfaktor wurde die Parametrisierung des Modells ausgemacht, wenn der ALIA-Parameter als echter physikalische Blattwinkel interpretiert wird. Es wurde geschlussfolgert, dass eine Separierung von LAI und ALIA bei der Invertierung von PROSAIL eine korrekte Abschätzung der weniger sensitiven Parameter behindert. Die Erstellung des Vegetations-Prozessors erforderte die Verwendung von Regressions-Algorithmen des maschinellen Lernens (MLRA), da eine Verteilung von großen LUTs an die User nicht praktikabel wäre. Die MLRAs wurden an synthetischen Datensätzen trainiert, wobei zunächst die Optimierung der Hyperparameter im Vordergrund stand, bevor die Anwendung an echten Spektraldaten unternommen wurde. Es konnten dabei erst aussagekräftige Ergebnisse produziert werden, als die Trainingsdaten mit einem künstlichen Rauschen belegt wurden, da die Algorithmen unter einer Überanpassung an die Modellumgebung litten. Mithilfe des Prozessors konnten schließlich LAI, ALIA, Ccab und Cw aus hyperspektralen Daten abgeleitet werden. Künstliche neuronale Netze dienen dabei als Blackbox-Modelle, die in kurzer Zeit große Datenmengen verarbeiten können und somit einen entscheidenden Beitrag zur modernen angewandten Fernerkundung für eine breite User-Community leisten.After years of scientific and technical preparation, the launch of an unmanned German space-mission is planned to be initiated in 2020. The Environmental Mapping and Analysis Program (EnMAP) is going to provide an equally named hyperspectral imager to map land surfaces. Scientists of environmental disciplines of monitoring of ecosystems, agricultural, forestry and urban areas as well as coastal and inland waters, geology and soils prepared themselves for the upcoming data prior to the actual launch. Although there already exists a variety of useful algorithms for a profound analysis of spectral data, new challenges will arise given the uniqueness of the EnMAP-mission in the global context of remote sensing; i.e. coverage of the full range of the optical spectrum (420 nm – 2450 nm) in combination with a moderate spatial resolution of 30 m and a high signal-to-noise ratio of at least 180 in the shortwave infrared and above 400 in the visible spectrum. This enables an imaging quality which to this date has only been reached by airborne systems. The efforts of this dissertation comprise activities in the scientific preparation phase for agro-geographical tasks. Algorithms and tools for an analysis of hyperspectral data are being provided for free in the QGIS-plugin EnMAP-Box 3. Urgent questions in the agricultural sector revolve around the derivation of biochemical and biophysical parameters from remote sensing data. For this reason, the overarching objective of this promotion is the development of a scientific EnMAP-tool for managed areas of vegetation (EnMAP Managed Vegetation Scientific Processor). At first, an extensive field campaign was planned and then started in April, 2014. Apart from spectral observations of leaves, canopies and soils in a winter wheat and a maize field, also relevant plant parameters were acquired at the exact same spots. Namely, they are the Leaf Area Index (LAI), leaf chlorophyll content (Ccab), leaf water content (EWT or Cw), relative dry leaf weight (LMA or Cm), Average Leaf Inclination Angle (ALIA) as well as other secondary parameters like canopy height, phenological stage and the solar vector. Spectral measurements were captured from different observation angles to match ground data with the sensing geometry of the future EnMAP-satellite, which can be tilted up to 30° orthogonal to its direction of flight. A common procedure to derive relevant crop parameters is to make use of the radiative transfer model PROSAIL, which simulates the spectral signal of a vegetated surface based on biophysical and biochemical input parameters. If this process is reverted, said parameters can be derived from measured spectral data. To do so, a Look-Up-Table (LUT) is built containing model runs of PROSAIL and then subsequently compared against spectra from the field campaigns. With this approach of LUT-inversions from different observation angles, an accuracy of 18 % could be achieved for LAI and 20 % for Ccab. Strong anisotropic effects, i.e. dependence on illumination geometry and sensor orientation, were identified for winter wheat mainly in the early stages of plant development. In a consecutive study about uncertainties of the spectral model, PROSAIL results fed with in situ measured crop parameters as input, were opposed to their associated reflectance signatures. A strong deviation between measured and modelled spectra was observed, which – in the case of winter wheat – showed a seasonal behavior. The model tended to overestimate reflectances in the near infrared for early phenological stages and to underestimate them at end of the growing period. The parametrization of the model was identified as an uncertainty factor if the ALIA parameter is interpreted as true physical leaf inclinations. It was concluded that a separation of LAI and ALIA at inversion of PROSAIL prevents an adequate estimation of the less sensitive parameters. The development of the vegetation processor required the use of Machine Learning Regression Algorithms (MLRA), since distribution of large LUTs to the user would be impracticable. The MLRAs were trained with synthetic datasets with primary importance to optimize their hyperparameters, before attempting to apply the algorithms to real spectral data. Significant results could not be obtained until training data were altered with artificial noise, because algorithms suffered from overfitting to the model environment. Executing the processor allowed to derive LAI, ALIA, Ccab and Cw from hyperspectral data. Artificial neural networks served as black box models, which digest great amount of data in a short period of time and thus make a decisive contribution to modern applied remote sensing with relevance for a broad user-community

    MACHINE VISION TECHNOLOGY FOR FOOD QUALITY AND SAFETY INSPECTIONS

    Get PDF
    With increased expectations for food products of high quality and safety standards, the need for accurate, fast and objective determination of these characteristics in food products continues to grow. Machine vision as a non-destructive technology, provides an automated and economic way to accomplish these requirements. This research thus explored two applications of using machine vision techniques for food quality and safety inspections. The first application is using a combined X-ray and laser range imaging system to detect bone and other physical contaminants inside poultry meat. For this project, our research focuses on how to calibrate the imaging system. A unique three-step calibration method was developed and results showed that high accuracy has been achieved for the whole system calibration - a root mean square error of 0.20 mm, a standard deviation of 0.20 mm, and a maximum error of 0.48 mm. The second application is separating walnuts' shells and meat. A backlight imaging system was developed based on our finding that the backlit images of walnut shells and meat showed quite different texture patterns due to their different light transmittance properties. The texture patterns were characterized by several rotation invariant texture analysis methods. The uncorrelated and redundant features were further removed by a support vector machine (SVM) based recursive feature elimination method, with the SVM classifier trained concurrently for separations of walnuts' shells and meat. The experimental results showed that the proposed approach was very effective and could achieve an overall 99.2% separation accuracy. This high separation accuracy and low instrument cost make the proposed imaging system a great benefit to the walnut processing industry

    The EnMAP Managed Vegetation Scientific Processor

    Get PDF
    Nach jahrelanger wissenschaftlicher und technischer Vorbereitungszeit wird voraussichtlich Ende des Jahres 2020 der Start der orbitalen Phase einer unbemannten deutschen Weltraum-Mission initiiert. Das Environmental Mapping and Analysis Program (EnMAP) wird an Bord des gleichnamigen Satelliten einen hyperspektralen Sensor zur Erfassung terrestrischer Oberflächen tragen. In den Umweltdisziplinen zur Erforschung von Ökosystemen, landwirtschaftlicher, forstwirtschaftlicher und urbaner Flächen, im Bereich der Küsten- und Inlandsgewässer sowie der Geologie und Bodenkunde bereitete man sich im Vorfeld des Starts auf die kommenden Daten vor. Zwar existiert bereits eine Vielzahl an Algorithmen zur wissenschaftlichen Analyse von spektralen Daten, allerdings ergeben sich auch neue Herausforderungen, da die EnMAP-Mission bislang im weltweiten Kontext der Fernerkundung einzigartig ist. Die Abdeckung des vollen optischen Spektrums (420 nm – 2450 nm) in Verbindung mit einer moderaten räumlichen Auflösung von 30 m und einem hohen Signal-Rausch-Verhältnis von mindestens 180 im kurzwelligen Infrarot und über 400 im sichtbaren Spektrum, ermöglichen eine Aufnahmequalität, die bislang nur von flugzeuggestützten Systemen erreicht werden konnte. Die Bemühungen in dieser Dissertation umfassen Aktivitäten in der wissenschaftlichen Vorbereitungsphase zu agrargeographischen Fragestellungen. Algorithmen und Tools zur Analyse der hyperspektralen Daten werden kostenlos im QGIS-Plugin EnMAP-Box 3 zur Verfügung gestellt. Die drängenden Fragen im Agrarsektor drehen sich hierbei um die Ableitung biochemischer und biophysikalischer Parameter aus Fernerkundungsdaten, weshalb die übergeordnete Problemstellung des Promotionsvorhabens die Entwicklung eines wissenschaftsbasierten EnMAP-Tools für bewirtschaftete Vegetationsflächen (EnMAP Managed Vegetation Scientific Processor) darstellt. Zu Beginn wurde eine umfassende Feldkampagne geplant, welche ab April 2014 umgesetzt wurde. Neben der spektralen Erfassung von Blatt-, Bestands- und Bodensignaturen in einem Winterweizen- und einem Maisfeld erfolgte auch die Messung wesentlicher Pflanzenparameter an den exakt gleichen Positionen. Hierzu zählt die non-destruktive Ableitung des Blattflächenindex (LAI), des Blattchlorophyllgehalts (Ccab), des Blattwassergehalts (EWT oder Cw), des relativen Blatttrockengewichts (LMA oder Cm), des mittleren Blattneigungswinkels im Bestand (ALIA) sowie weiterer sekundärer Parameter wie Wuchshöhe, das phänologisches Stadium und der Sonnenvektor. Um die Fähigkeit des späteren EnMAP-Satelliten sich um bis zu 30° orthogonal zur Flugrichtung zu kippen nachzustellen, wurden die spektralen Aufnahmen aus verschiedenen Betrachtungswinkeln erstellt, die dieser Aufnahme-Geometrien nachempfunden sind. Ein gängiges Verfahren zur Ableitung der relevanten Pflanzenparameter ist die Verwendung des Strahlungstransfermodells PROSAIL, welches das spektrale Signal einer Vegetationsfläche auf Basis der zugrundeliegenden biophysikalischen und biochemischen Parameter simuliert. Bei der Umkehr dieses Prozesses können ebendiese Variablen von gemessenen spektralen Daten abgeleitet werden. Hierzu wurde eine Datenbank (Look-Up-Table, LUT) aus PROSAIL-Modellläufen aufgebaut und die in den Feldkampagnen gemessenen Spektren mit dieser abgeglichen. Mit dieser Methode der LUT-Invertierung aus unterschiedlichen Aufnahmewinkeln konnten Genauigkeiten bei der LAI-Schätzung von 18 % und bei Blattchlorophyll von 20 % erzielt werden. Eine starke Anisotropie, also eine Reflexionsabhängigkeit von der Beleuchtungs- und Aufnahmerichtung, wurde bei Winterweizen vor allem für frühe Entwicklungsstadien festgestellt. Bei einer anschließenden Studie zur Unsicherheitsanalyse des Spektralmodells wurden PROSAIL-Ergebnisse, bei denen real gemessene Pflanzenparameter als Input dienten, den zugehörigen Reflektanzspektren gegenübergestellt. Es zeigten sich hierbei mitunter starke Abweichungen zwischen gemessenen und modellierten Spektren, die im Falle des Winterweizens einen saisonalen Verlauf zeichneten. Vor allem während frühen Wachstumsstadien tendierte das Modell dazu die Reflektanz im nahen Infrarot zu überschätzen, während es gegen Ende der Wachstumsperiode eher eine Unterschätzung aufwies. Als Unsicherheitsfaktor wurde die Parametrisierung des Modells ausgemacht, wenn der ALIA-Parameter als echter physikalische Blattwinkel interpretiert wird. Es wurde geschlussfolgert, dass eine Separierung von LAI und ALIA bei der Invertierung von PROSAIL eine korrekte Abschätzung der weniger sensitiven Parameter behindert. Die Erstellung des Vegetations-Prozessors erforderte die Verwendung von Regressions-Algorithmen des maschinellen Lernens (MLRA), da eine Verteilung von großen LUTs an die User nicht praktikabel wäre. Die MLRAs wurden an synthetischen Datensätzen trainiert, wobei zunächst die Optimierung der Hyperparameter im Vordergrund stand, bevor die Anwendung an echten Spektraldaten unternommen wurde. Es konnten dabei erst aussagekräftige Ergebnisse produziert werden, als die Trainingsdaten mit einem künstlichen Rauschen belegt wurden, da die Algorithmen unter einer Überanpassung an die Modellumgebung litten. Mithilfe des Prozessors konnten schließlich LAI, ALIA, Ccab und Cw aus hyperspektralen Daten abgeleitet werden. Künstliche neuronale Netze dienen dabei als Blackbox-Modelle, die in kurzer Zeit große Datenmengen verarbeiten können und somit einen entscheidenden Beitrag zur modernen angewandten Fernerkundung für eine breite User-Community leisten.After years of scientific and technical preparation, the launch of an unmanned German space-mission is planned to be initiated in 2020. The Environmental Mapping and Analysis Program (EnMAP) is going to provide an equally named hyperspectral imager to map land surfaces. Scientists of environmental disciplines of monitoring of ecosystems, agricultural, forestry and urban areas as well as coastal and inland waters, geology and soils prepared themselves for the upcoming data prior to the actual launch. Although there already exists a variety of useful algorithms for a profound analysis of spectral data, new challenges will arise given the uniqueness of the EnMAP-mission in the global context of remote sensing; i.e. coverage of the full range of the optical spectrum (420 nm – 2450 nm) in combination with a moderate spatial resolution of 30 m and a high signal-to-noise ratio of at least 180 in the shortwave infrared and above 400 in the visible spectrum. This enables an imaging quality which to this date has only been reached by airborne systems. The efforts of this dissertation comprise activities in the scientific preparation phase for agro-geographical tasks. Algorithms and tools for an analysis of hyperspectral data are being provided for free in the QGIS-plugin EnMAP-Box 3. Urgent questions in the agricultural sector revolve around the derivation of biochemical and biophysical parameters from remote sensing data. For this reason, the overarching objective of this promotion is the development of a scientific EnMAP-tool for managed areas of vegetation (EnMAP Managed Vegetation Scientific Processor). At first, an extensive field campaign was planned and then started in April, 2014. Apart from spectral observations of leaves, canopies and soils in a winter wheat and a maize field, also relevant plant parameters were acquired at the exact same spots. Namely, they are the Leaf Area Index (LAI), leaf chlorophyll content (Ccab), leaf water content (EWT or Cw), relative dry leaf weight (LMA or Cm), Average Leaf Inclination Angle (ALIA) as well as other secondary parameters like canopy height, phenological stage and the solar vector. Spectral measurements were captured from different observation angles to match ground data with the sensing geometry of the future EnMAP-satellite, which can be tilted up to 30° orthogonal to its direction of flight. A common procedure to derive relevant crop parameters is to make use of the radiative transfer model PROSAIL, which simulates the spectral signal of a vegetated surface based on biophysical and biochemical input parameters. If this process is reverted, said parameters can be derived from measured spectral data. To do so, a Look-Up-Table (LUT) is built containing model runs of PROSAIL and then subsequently compared against spectra from the field campaigns. With this approach of LUT-inversions from different observation angles, an accuracy of 18 % could be achieved for LAI and 20 % for Ccab. Strong anisotropic effects, i.e. dependence on illumination geometry and sensor orientation, were identified for winter wheat mainly in the early stages of plant development. In a consecutive study about uncertainties of the spectral model, PROSAIL results fed with in situ measured crop parameters as input, were opposed to their associated reflectance signatures. A strong deviation between measured and modelled spectra was observed, which – in the case of winter wheat – showed a seasonal behavior. The model tended to overestimate reflectances in the near infrared for early phenological stages and to underestimate them at end of the growing period. The parametrization of the model was identified as an uncertainty factor if the ALIA parameter is interpreted as true physical leaf inclinations. It was concluded that a separation of LAI and ALIA at inversion of PROSAIL prevents an adequate estimation of the less sensitive parameters. The development of the vegetation processor required the use of Machine Learning Regression Algorithms (MLRA), since distribution of large LUTs to the user would be impracticable. The MLRAs were trained with synthetic datasets with primary importance to optimize their hyperparameters, before attempting to apply the algorithms to real spectral data. Significant results could not be obtained until training data were altered with artificial noise, because algorithms suffered from overfitting to the model environment. Executing the processor allowed to derive LAI, ALIA, Ccab and Cw from hyperspectral data. Artificial neural networks served as black box models, which digest great amount of data in a short period of time and thus make a decisive contribution to modern applied remote sensing with relevance for a broad user-community

    Computer Vision System as a Tool to Estimate Pork Marbling

    Get PDF
    Currently pork marbling is assessed subjectively in the industry, because of the limited methods and tools that are suitable for the industry. In this dissertation, we are devoted to develop a computer vision system for objective measurement of pork which suits the industrial needs. Experiment 1 examined the possibility of using computer vision system (CVS) to predict marbling in a lab-based experiment using pork samples that were already trimmed of subcutaneous fat and connective tissue. Experiment 2 an industrial scale CVS was built to predict the 3rd and 10th rib pork chop’s marbling. Experiment 3 the industrial scale CVS was tested in the meat plant and images of whole boneless pork loin were collected. The CVS predicted marbling were compared with subjective marbling score using crude fat percentage (CF%) as standard. In experiment 1 subjective marbling score had a correlation of 0.81 with CF% while CVS had a 0.66 correlation. CVS has shown an accuracy of 63% for stepwise regression model and 75% for support vector machine model. These results indicate that CVS has the potential to be used as an tool to predict pork intramuscular fat (IMF)%. In experiment 2 the accuracy of CVS predicting pork chop CF% was 68.6% and subjective marbling was 70.1%. A drop of accuracy in predicting anterior chop CF% for both CVS and objective marbling score was observed when compared to posterior chop, this suggest that there is a discrepancy in accuracy between the anatomy location of samples collected. In experiment 3 the accuracy of CVS predicting boneless whole loin was 58.6% and subjective marbling score was 53.3%. In this research, CVS has demonstrated a consistency of accuracies using different pork samples. CVS has shown higher accuracy when predicting whole boneless loin IMF% when compared to subjective assessment.National Pork BoardColeman Natura

    Source Apportionment and Forecasting of Aerosol in a Steel City - Case Study of Rourkela

    Get PDF
    Urban air pollution is one of the biggest problems ascending due to rapid urbanization and industrialization. The improvement of air quality in an urban area in general, constitutes of three phases, monitoring, modeling and control measures. The present research work addresses the requirements of the urban air quality management programme (UAQMP) in Rourkela steel city. A typical UAQMP contains three aspects: monitoring of air pollution, modeling of air pollution and taking control measures. The present study aims to conduct the modeling of particulate air pollution for a steel city. Modeling of particulate matter (PM) pollution is nothing but the application of different mathematical models in source apportionment and forecasting of PM. PM (PM10 and TSP) was collected twice a week for two years (2011-2012) during working hours in Rourkela. The seasonal variations study of PM showed that the aerosol concentration was high during summer and low during monsoon. A detailed chemical characterization of both PM10 and TSP was carried out to find out the concentrations of different metal ions, anions and carbon content. The Spearman rank correlation analysis between different chemical species of PM depicted the presence of both crustal and anthropogenic origins in particulate matter. The enrichment factor analysis highlighted the presence of anthropogenic sources. Three major receptor models were used for the source apportionment of PM, namely chemical mass balance model (CMB), principal component analysis (PCA) and positive matrix factorization (PMF). In selecting source profiles for CMB, an effort has been put to select the profiles which represent the local conditions. Two of the profiles, namely soil dust and road dust, were developed in the present study for better accuracy. All three receptor models have shown that industrial (40-45%) and combustion sources (30-35%) were major contributors to particulate pollution in Rourkela. Artificial neural networks (ANN) were used for the prediction of particulate pollution using meteorological parameters as inputs. The emphasis is to compare the performances of MLP and RBF algorithms in forecasting and provide a rigorous inter-comparison as a first step toward operational PM forecasting models. The training, testing and validation errors of MLP networks are significantly lower than that of RBF networks. The results indicate that both MLP and RBF have shown good prediction capabilities while MLP networks were better than that of RBF networks. There is no profound bias that can be seen in the models which may also suggest that there are very few or zero external factors that may influence the dispersion and distribution of particulate matter in the study area
    corecore