11 research outputs found

    Upper bounds for the Stanley-Wilf limit of 1324 and other layered patterns

    Get PDF
    We prove that the Stanley-Wilf limit of any layered permutation pattern of length \ell is at most 424\ell^2, and that the Stanley-Wilf limit of the pattern 1324 is at most 16. These bounds follow from a more general result showing that a permutation avoiding a pattern of a special form is a merge of two permutations, each of which avoids a smaller pattern. If the conjecture is true that the maximum Stanley-Wilf limit for patterns of length \ell is attained by a layered pattern then this implies an upper bound of 424\ell^2 for the Stanley-Wilf limit of any pattern of length \ell. We also conjecture that, for any k0k\ge 0, the set of 1324-avoiding permutations with kk inversions contains at least as many permutations of length n+1n+1 as those of length nn. We show that if this is true then the Stanley-Wilf limit for 1324 is at most eπ2/313.001954e^{\pi\sqrt{2/3}} \simeq 13.001954

    Growth rates for subclasses of Av(321)

    Get PDF
    Pattern classes which avoid 321 and other patterns are shown to have the same growth rates as similar (but strictly larger) classes obtained by adding articulation points to any or all of the other patterns. The method of proof is to show that the elements of the latter classes can be represented as bounded merges of elements of the original class, and that the bounded merge construction does not change growth rates

    Some open problems on permutation patterns

    Full text link
    This is a brief survey of some open problems on permutation patterns, with an emphasis on subjects not covered in the recent book by Kitaev, \emph{Patterns in Permutations and words}. I first survey recent developments on the enumeration and asymptotics of the pattern 1324, the last pattern of length 4 whose asymptotic growth is unknown, and related issues such as upper bounds for the number of avoiders of any pattern of length kk for any given kk. Other subjects treated are the M\"obius function, topological properties and other algebraic aspects of the poset of permutations, ordered by containment, and also the study of growth rates of permutation classes, which are containment closed subsets of this poset.Comment: 20 pages. Related to upcoming talk at the British Combinatorial Conference 2013. To appear in London Mathematical Society Lecture Note Serie

    On constants in the Füredi–Hajnal and the Stanley–Wilf conjecture

    Get PDF
    AbstractFor a given permutation matrix P, let fP(n) be the maximum number of 1-entries in an n×n (0,1)-matrix avoiding P and let SP(n) be the set of all n×n permutation matrices avoiding P. The Füredi–Hajnal conjecture asserts that cP:=limn→∞fP(n)/n is finite, while the Stanley–Wilf conjecture asserts that sP:=limn→∞|SP(n)|n is finite.In 2004, Marcus and Tardos proved the Füredi–Hajnal conjecture, which together with the reduction introduced by Klazar in 2000 proves the Stanley–Wilf conjecture.We focus on the values of the Stanley–Wilf limit (sP) and the Füredi–Hajnal limit (cP). We improve the reduction and obtain sP⩽2.88cP2 which decreases the general upper bound on sP from sP⩽constconstO(klog(k)) to sP⩽constO(klog(k)) for any k×k permutation matrix P. In the opposite direction, we show cP=O(sP4.5).For a lower bound, we present for each k a k×k permutation matrix satisfying cP=Ω(k2)

    Permutation classes

    Full text link
    This is a survey on permutation classes for the upcoming book Handbook of Enumerative Combinatorics

    On The Growth Of Permutation Classes

    Get PDF
    We study aspects of the enumeration of permutation classes, sets of permutations closed downwards under the subpermutation order. First, we consider monotone grid classes of permutations. We present procedures for calculating the generating function of any class whose matrix has dimensions m × 1 for some m, and of acyclic and unicyclic classes of gridded permutations. We show that almost all large permutations in a grid class have the same shape, and determine this limit shape. We prove that the growth rate of a grid class is given by the square of the spectral radius of an associated graph and deduce some facts relating to the set of grid class growth rates. In the process, we establish a new result concerning tours on graphs. We also prove a similar result relating the growth rate of a geometric grid class to the matching polynomial of a graph, and determine the effect of edge subdivision on the matching polynomial. We characterise the growth rates of geometric grid classes in terms of the spectral radii of trees. We then investigate the set of growth rates of permutation classes and establish a new upper bound on the value above which every real number is the growth rate of some permutation class. In the process, we prove new results concerning expansions of real numbers in non-integer bases in which the digits are drawn from sets of allowed values. Finally, we introduce a new enumeration technique, based on associating a graph with each permutation, and determine the generating functions for some previously unenumerated classes. We conclude by using this approach to provide an improved lower bound on the growth rate of the class of permutations avoiding the pattern 1324. In the process, we prove that, asymptotically, patterns in Łukasiewicz paths exhibit a concentrated Gaussian distribution
    corecore