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For a given permutation matrix P , let f P (n) be the maximum
number of 1-entries in an n × n (0,1)-matrix avoiding P and let
S P (n) be the set of all n × n permutation matrices avoiding P .
The Füredi–Hajnal conjecture asserts that cP := limn→∞ f P (n)/n
is finite, while the Stanley–Wilf conjecture asserts that sP :=
limn→∞ n

√|S P (n)| is finite.
In 2004, Marcus and Tardos proved the Füredi–Hajnal conjecture,
which together with the reduction introduced by Klazar in 2000
proves the Stanley–Wilf conjecture.
We focus on the values of the Stanley–Wilf limit (sP ) and the
Füredi–Hajnal limit (cP ). We improve the reduction and obtain
sP � 2.88c2

P which decreases the general upper bound on sP

from sP � constconstO (k log(k))
to sP � constO (k log(k)) for any k × k

permutation matrix P . In the opposite direction, we show cP =
O (s4.5

P ).
For a lower bound, we present for each k a k × k permutation
matrix satisfying cP = Ω(k2).

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

A (0,1)-matrix A = (ai, j) is said to be a permutation matrix, if each row and each column contains
exactly one 1-entry. Each such matrix corresponds to some permutation π = (π(1),π(2), . . . ,π(n))

in such a way, that ai, j = 1 exactly if π(i) = j. We let Pπ denote the permutation matrix corre-
sponding to π . An n-permutation is a permutation on n elements and its corresponding matrix is an
n-permutation matrix. We say that B is a submatrix of A if it can be obtained from A by removing
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some of its rows and columns. A (0,1)-matrix A contains a k × k (0,1)-matrix P = (pi, j) if A has
a k × k submatrix B = (bi, j) such that for all i, j ∈ [k]: pi, j = 1 implies bi, j = 1. Note that a permuta-
tion matrix A contains another permutation matrix P if and only if P is a submatrix of A. A avoids B
if it does not contain B .

For a (0,1)-matrix P let f P (n) be the maximum number of 1-entries in an n × n (0,1)-matrix
avoiding P .

We define the Füredi–Hajnal limit of P as follows:

cP = lim
n→∞

f P (n)

n
.

Using the idea of the proof of Theorem 1 from [2], we can prove that cP always exists and that

∀n ∈ N: f P (n) � cP n.

In 1992 Füredi and Hajnal [5] conjectured that for any fixed permutation matrix P , f P (n) = O (n),
which is equivalent to asking whether cP is finite. Marcus and Tardos [9] proved that for any k-per-
mutation matrix P ,

cP � 2k4
(

k2

k

)
,

which settled the Füredi–Hajnal conjecture (FHC).

Claim 1.

1. For any k-permutation matrix P and for any n � k − 1:

f P (n) � (2k − 2)n − (k − 1)2 and thus cP � 2k − 2.

2. If P is the identity matrix of size k × k, that is pi, j = 1 if and only if i = j, then

∀n � k − 1: f P (n) = (2k − 2)n − (k − 1)2.

Proof. 1. Take any 1-entry pα,β of P . Let A be the n × n (0,1)-matrix with

ai, j =
{

0 if α � i � n − k + α and β � j � n − k + β,

1 otherwise.

A has exactly n2 − (n − k + 1)2 = (2k − 2)n − (k − 1)2 1-entries and because pα,β cannot be
represented by any 1-entry of A, A avoids P .

2. Let P be the k × k identity matrix and let A be any n × n (0,1)-matrix avoiding P . Then each
diagonal of A contains at most k − 1 1-entries. Since A has 2n − 1 diagonals and the marginal ones
have fewer than k − 1 elements, we can count that if A avoids P , it has at most (2k − 2)n − (k − 1)2

1-entries. �
This has been so far the best known lower bound on cP . In Section 4 we define a 2k-permutation

matrix Cross(2k) and show that cCross(2k) � k2.
For a permutation matrix P let S P (n) be the set of all n-permutation matrices avoiding P , T P (n)

the set of all n × n (0,1)-matrices avoiding P and T P (n,m) the set of all n × n (0,1)-matrices con-
taining exactly m 1-entries and avoiding P . Obviously

T P (n) ⊇ T P (n,n) ⊇ S P (n).

The Stanley–Wilf limit of a permutation matrix P is defined as

sP = lim n
√∣∣S P (n)

∣∣.

n→∞
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The Stanley–Wilf conjecture (SWC) was formulated by Stanley and Wilf around 1992 and asserted
that sP always exists and is finite. A weaker modification claimed that for any given P , n

√|S P (n)| is
bounded. Arratia [2] showed that both versions are equivalent, that sP always exists and

∀n ∈ N: ∣∣S P (n)
∣∣ � (sP )n.

Klazar [7] shows that∣∣T P (n)
∣∣ � 15cP n.

This together with the proof of FHC proves SWC with

sP � 152k4(k2
k ).

It is known that for every k and every k-permutation matrix P , sP � (k − 1)2/e3 [6] and there are
infinitely many permutation matrices P with sP � 9.47(k − 1)2/9 [4].

We show in Section 2 that

sP � 2.88c2
P

(
� 2.88

(
2k4

(
k2

k

))2)

and in Section 3 that

cP � O
(
s4.5

P

)
.

These bounds together mean that showing an upper bound polynomial in k on one of the con-
stants cP , sP would give an upper bound polynomial in k on the other one.

Originally, the Stanley–Wilf limit was defined for permutations. We only rephrased it in the terms
of permutation matrices, so the definitions satisfy sπ = sPπ . To simplify the notation, we will some-
times use sπ instead of sPπ .

Section 5 focuses on similar questions for higher-dimensional permutation matrices. An exten-
sion of the Füredi–Hajnal conjecture to higher dimensions was proved by Klazar and Marcus [8].
For any given d-dimensional permutation matrix P , they showed that if a d-dimensional n × · · · × n
(0,1)-matrix A avoids P , then A has at most O (nd−1) 1-entries and there are such matrices A with
Ω(nd−1) 1-entries.

It is not known how the Stanley–Wilf conjecture could be extended to higher dimensions. For a
d-dimensional permutation matrix P let S P ,d(n) be the set of d-dimensional n × · · · × n permutation
matrices avoiding P . We provide bounds

nn(d−2+o(1)) �
∣∣S P ,d(n)

∣∣ � nn(d(d−2)/(d−1)+o(1)),

where the upper bound is obtained by a proof similar to the proof of Theorem 2.

2. FHC to SWC reduction

Theorem 2. For any permutation matrix P

sP � 2.88c2
P .

Thus

∀n ∈ N: ∣∣S P (n)
∣∣ �

(
2.88c2

P

)n
.

Proof. We can assume cP � 1, since otherwise sP = 0 and the statement is true.
The reduction is based on Klazar’s reduction [7]. We start with a 1 × 1 matrix A0 := (1). In each

step, we transform the matrix Ai of size 2i ×2i into Ai+1 of size 2i+1 ×2i+1 by replacing each entry ω
of Ai by a 2 × 2 block containing only 0-entries if and only if ω = 0. There is a single possibility how
to replace a 0-entry and fifteen possibilities of replacing a 1-entry. The number of 1-entries is non-
decreasing, so we are only interested in matrices Ai with at most n 1-entries. Another estimate on
the number of 1-entries uses the fact that if Ai contains P , then Ai+1, Ai+2, . . . contain P as well. So
we consider only matrices Ai that avoid P , thus Ai has at most f P (2i) � cP · 2i 1-entries.
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• Phase 1: We use the estimate that the number of 1-entries in Ai is at most cP · 2i and get

∣∣T P
(
2i)∣∣ � 15cP ·2i−1 · ∣∣T P

(
2i−1)∣∣ � 15cP ·(2i−1+2i−2) · ∣∣T P

(
2i−2)∣∣ � · · · � 15cP ·2i

. (1)

Klazar continues until 2i � n, but we stop when i = a, which will be chosen later.
• Phase 2: This time we use the estimate that the number of 1-entries in Ai is at most n. Using

a = �log2(n/cP )	, we could now easily show sP = O (clog2 15
P ), but our aim is a better estimate.

We will count how many transformations of matrices from T P (2a+i−1) give a matrix from
T P (2a+i,m). We define j1, j2, j3, j4 to be the numbers of 1-entries that were replaced by a block
with 1, 2, 3, 4 1-entries, respectively. There are four possible replacements of a 1-entry that do
not increase the number of 1-entries, six increase it by one, four by two and one by three. This
gives the following recursive formula for the upper bound on |T P (2a+i,m)|:

∑
j1, j2, j3, j4�0

j1+2 j2+3 j3+4 j4=m

(
m − j2 − 2 j3 − 3 j4

j1, j2, j3, j4

)
· ∣∣T P

(
2a+i−1,m − j2 − 2 j3 − 3 j4

)∣∣4 j1 6 j2 4 j3 1 j4 .

To simplify the computations, we define the function u : N0 × Z → N0:

∀m � 0: u(0,m) := 1,

∀i,∀m < 0: u(i,m) := 0,

∀i > 0,∀m � 0: u(i,m) :=
∑

j2, j3, j4�0
j2+ j3+ j4�m

(
m

m − j2 − j3 − j4, j2, j3, j4

)

× u(i − 1,m − j2 − 2 j3 − 3 j4)4m−2 j2−3 j3−4 j4 6 j2 4 j3 1 j4 .

We have |T P (2a+i,m)| � u(i,m)|T P (2a)| because it is true for i = 0 and the differences between
the recursive formulas are that the one for u(i,m) adds several nonnegative summands and
changes the multinomial coefficient. But, as one can check, the value of the multinomial coef-
ficient never decreases.
For each nonnegative i, we will find some positive di such that for all integers m we will have
u(i,m) � (4idi)

m . First, d0 := 1 satisfies the inequality for i = 0. For i > 0, if m is negative, the
inequality is trivial, otherwise

u(i,m) �
∑

j2, j3, j4�0
j2+ j3+ j4�m

(
m

m − j2 − j3 − j4, j2, j3, j4

)

× (
4i−1di−1

)m− j2−2 j3−3 j4 · 4m−2 j2−3 j3−4 j4 · 6 j2 4 j3 1 j4

= (
4idi−1

)m ∑
j′1, j2, j3, j4�0

j′1+ j2+ j3+ j4=m

(
m

j′1, j2, j3, j4

)

×
(

6

di−14i+1

) j2( 4

d2
i−142i+1

) j3( 1

d3
i−143i+1

) j4

= (
4idi−1

)m
(

1 + 6

di−14i+1
+ 4

d2
i−142i+1

+ 1

d3
i−143i+1

)m

.

Thus we can set di to di−1 · (1 + 6/(di−14i+1) + 4/(d2
i−142i+1) + 1/(d3

i−143i+1)) or anything larger.
Then di � di−1. We will count d1 and d2 exactly and then the rest.
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For i = 1, the expression above becomes 1.44140625, so we can set d1 := 1.4415. Then we get
d2 � 1.537989 . . . , so let d2 := 1.538. For i � 3 let

di = di−1 ·
(

1 + 6

di−14i+1
+ 4

d2
i−142i+1

+ 1

d3
i−143i+1

)

� di−1 ·
(

1 + 6

d24i+1
+ 4

d2
242i+1

+ 1

d3
243i+1

)

� di−1 exp

(
6

d24i+1
+ 4

d2
242i+1

+ 1

d3
243i+1

)

� d2

i∏
j=3

(
exp

(
6

d24 j+1
+ 4

d2
242 j+1

+ 1

d3
243 j+1

))

= d2 exp

(
i∑

j=3

6

d24 j+1
+

i∑
j=3

4

d2
242 j+1

+
i∑

j=3

1

d3
243 j+1

)

� d2 exp

(
4

3

6

d244
+ 16

15

4

d2
247

+ 64

63

1

d3
2410

)

� 1.57.

Let d∞ := 1.57. All in all, we have just proven that for any i and m:∣∣T P
(
2a+i,m

)∣∣ � 4imdm∞
∣∣T P

(
2a)∣∣ � 4imdm∞ · 15cP ·2a

,

where the last inequality follows from Eq. (1). We could finish when 2a+i � n for the first time,
which would already result in sP = O (c2

P ), but to achieve a better multiplication constant, we
continue until a + i equals some b such that 2b � 2n2.

Every n-permutation matrix avoiding P can be expanded by adding empty rows and columns to

form a matrix from T P (2b,n). This can be done in
(2b

n

)2
ways while the reverse process is unique—we

just delete all empty rows and columns and see what remains. Therefore |T P (2b,n)| � |S P (n)|(2b

n

)2
.

Since 2b � 2n2, we can estimate:(
2b

n

)
� (2b − n)n

n! �
2b·n(1 − 1

2n )n

en(n
e )n

� 2b·n · e−1

en(n
e )n

.

We now have

∣∣S P (n)
∣∣ �

∣∣T P
(
2b,n

)∣∣ ·
(

2b

n

)−2

� 4n·(b−a) · dn∞ · 15cP ·2a ·
(

en

(
n

e

)n

· e · 2−b·n
)2

= e4n2
(

4b−ad∞
n2

e2
4−b

)n

15cP ·2a

and so

n
√∣∣S P (n)

∣∣ � n
√

e4n2 d∞
e2

n24−a15cP 2a/n = n
√

e4n2 d∞
e2

4−a exp

(
2 ln(n) + ln(15)cP 2a

n

)
.

Let ga(n) := 2 ln(n) + ln(15)cP 2a/n. A simple calculation shows that for any given a > 0, ga(n) has
its minimum at n = ln(15)cP 2a−1 and is decreasing on the interval (0, ln(15)cP 2a−1). So we will set

n(a) := ⌊
ln(15)cP 2a−1⌋
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and estimate

ga
(
n(a)

)
� ga

(
ln(15)cP 2a−1 − 1

)
� ga

(
ln(15)cP 2a−1

(
1 − 1

2a

))
.

Since lima→∞ n(a) = ∞ and from [2] limn→∞ n
√|S P (n)| exists, we obtain

sP = lim
n→∞

n
√∣∣S P (n)

∣∣ = lim
a→∞

n(a)

√∣∣S P
(
n(a)

)∣∣
� lim

a→∞
( n(a)

√
e4n(a)2

)d∞
e2

lim
a→∞

(
4−a exp

(
ga

(
n(a)

)))
� 1 · d∞

e2
lim

a→∞ 4−a exp

(
ga

(
ln(15)cP 2a−1

(
1 − 1

2a

)))

= d∞
e2

lim
a→∞ 4−a exp

(
2 ln

(
ln(15)cP 2a−1

(
1 − 1

2a

))
+ ln(15)cP 2a

ln(15)cP 2a−1(1 − 1
2a )

)

� d∞
e2

lim
a→∞ 4−a(ln(15)cP 2a−1)2

(
1 − 1

2a

)2

exp

(
2

1 − 1
2a

)

= d∞
e2

· ln2(15)

4
c2

P lim
a→∞ 4−a4a

(
1 − 1

2a

)2

exp

(
2

1 − 1
2a

)

= d∞ · ln2(15)

4
c2

P

� 2.88c2
P .

Theorem 1 from [2] now gives

∀n � 1: ∣∣S P (n)
∣∣ �

(
2.88c2

P

)n
. �

Notice that a similar proof can be used to show n
√|T P (n,n)| � O (c2

P ). However,
limn→∞ n

√|T P (n)| � 2cP . To show this we will take an n × n (0,1)-matrix A with f P (n) 1-entries
that avoids P . The matrix A contains 2 f P (n) different n × n matrices and all such matrices avoid P .

3. SWC to FHC reduction

Lemma 3. Let P be any permutation matrix and let B be a matrix of size b × c containing at least b 1-entries
in each row. If B avoids P , then

∣∣S P (b)
∣∣ �

(
b2

e2c

)b

.

Proof. We take the rows of B one by one from top to bottom and from each of them, we select some
1-entry in a column that was not used previously. This way, we constructed a b-permutation matrix
contained in B , thus avoiding P . This construction gives us at least b! occurrences of b-permutation
matrices, but some can be different occurrences of the same matrix. To count the largest possible
number of occurrences of a given b-permutation matrix, we observe that the rows are given but we
can select any b-tuple out of the c columns. All in all, the number of different b-permutation matrices
avoiding P is at least

b!(c
b

) �
( b

e )b

( ce
b )b

=
(

b2

e2c

)b

. �
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Lemma 4. For a given permutation matrix P take any l ∈ N such that 7
√

l is an integer and

∣∣S P
(
l10/7)∣∣ <

(
l6/7

2e2

)l10/7

.

Then

∀n ∈ N: f P (n) �
(
2l27/7 + 10l24/7 + 8l2

)
n.

Proof. First observe that if P has size 1 × 1, then the lemma holds.
By a theorem of Arratia [2], if P has size at least 2×2, then for every i, j � 1 we have |S P (i + j)| �

|S P (i)| · |S P ( j)|. Extending this, we have |S p(α · i)| � |S p(i)|α , and so the conditions of the lemma also
imply

∣∣S P (l)
∣∣ <

(
l6/7

e2

)l

and
∣∣S P

(
l8/7)∣∣ <

(
l6/7

e2

)l8/7

.

Let A = (ai, j) be any n × n permutation matrix avoiding P . We start similarly to the proof of
FHC [9]—we cut the matrix A by horizontal and vertical cuts into a grid of blocks Ki, j of sizes
2l2 × 2l2 and discard the incomplete blocks on the right and at the bottom. That is, Ki, j := {ai′, j′ :
i′ ∈ {2l2i + 1, . . . ,2l2(i + 1)}, j′ ∈ {2l2 j + 1, . . . ,2l2( j + 1)}}. The jth column of blocks is C j := {Ki, j:
i ∈ {0,1, . . . , �n/(2l2)	 − 1}} and the ith row of blocks is Ri := {Ki, j: j ∈ {0,1, . . . , �n/(2l2)	 − 1}}. We
say that a block is wide if it contains more than l nonzero columns, very wide if it contains more than
l1 = l8/7 nonzero columns and ultrawide if it contains more than l2 = l10/7 nonzero columns. Similarly,
a block is tall, very tall, ultratall if it has more than l, l1, l2 nonzero rows, respectively. Throughout the
proof we will use the following observation:

Observation 5. We take b blocks from the same column of blocks and separately contract the columns of each
of them. This way we obtain a b × 2l2 matrix B = (bi, j) with one row for each block, such that bi, j = 0 if and
only if the ith selected block contains no 1-entry in its jth column. If B contains P , then A contains P as well.

Proof. For each 1-entry in the occurrence of P in the contracted matrix B , we take any 1-entry from
the column from which it was contracted. Because P is a permutation matrix, the relative positions
of these 1-entries do not change and they form an occurrence of P in the original matrix A. �

Now, we return to the proof of Lemma 4. If n � 2l27/7, the claim is trivial, otherwise we count the
maximal number of 1-entries in a matrix A that avoids P :

• The discarded blocks have together at most 2 · 2l2n 1-entries.
• Each nonzero block which is neither wide nor tall, has at most l2 1-entries. As was shown

in [9], if we contract each block of A into a single element (whose value is 1 exactly if the
block is nonzero), we obtain a matrix that avoids P . So the number of nonzero blocks is at most
f P (�n/2l2	) and this value can be estimated from the induction hypothesis.

• Each ultrawide or ultratall block has at most 4l4 1-entries. We will show that there are fewer
than l2 = l10/7 ultrawide blocks in one column of blocks and fewer than l2 ultratall blocks in one
row of blocks. It is enough to prove this only for ultrawide blocks; the proof for ultratall blocks
is the same. For contradiction, suppose there are at least l2 ultrawide blocks in the same column
of blocks. We contract the columns of each of them as in Observation 5 and obtain a l2 × 2l2

matrix B with l2 rows each of which has at least l2 1-entries. Lemma 3 then gives

∣∣S P
(
l10/7)∣∣ �

(
l22

2e2l2

)l2

=
(

l6/7

2e2

)l10/7

,

which contradicts the conditions of Lemma 4.
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• Each very wide or very tall block which is neither ultrawide nor ultratall has at most l22 = l20/7

1-entries. To count the maximal number of very wide blocks in one column of blocks we first
contract each such block to a row with at least l1 = l8/7 1-entries. If some l1 consecutive rows
have all their 1-entries in at most l2 columns of A, we will remove all the other columns and
obtain an l1 × l2 matrix with at least l1 1-entries in each row and consequently

∣∣S P
(
l8/7)∣∣ �

(
l21

e2l2

)l1

=
(

l6/7

e2

)l8/7

,

which is not possible and so there are at least l2 nonzero columns in each group of l1 consecutive
rows. Contracting this group gives a row with at least l2 1-entries and as was previously shown,
there are fewer than l2 such rows. We conclude that there are fewer than l2l1 = l18/7 very wide
blocks in one column of blocks.

• In each wide or tall block which is neither very wide nor very tall, there are at most l21 = l16/7

1-entries. We divide the wide blocks into groups of l consecutive blocks. If all the 1-entries in the
blocks of one group lied in only l1 columns, there would be at least

∣∣S P (l)
∣∣ �

(
l2

e2l1

)l

=
(

l6/7

e2

)l

l-permutation matrices avoiding P . So each group can be contracted into a row with at least l1
1-entries. But as we have shown, there are fewer than l2l1 such rows and therefore there are at
most l2l1l = l25/7 wide blocks in one column of blocks.

The overall number of 1-entries is at most

f P (n) � 2 · 2l2n + l2 f P

(⌊
n

2l2

⌋)
+ 2

(
4l4l10/7 + l20/7l18/7 + l16/7l25/7) n

2l2

�
(
4l2 + l27/7 + 5l24/7 + 4l2 + 4l24/7 + l24/7 + l27/7)n

�
(
2l27/7 + 10l24/7 + 8l2

)
n. �

Theorem 6. For any permutation matrix P

cP �
(
232.5e9s4.5

P + 5 · 229e8s4
P + 258/3e14/3s7/3

P

) = O
(
s4.5

P

)
.

Proof. We take the smallest l > (2e2sP )7/6 that is a seventh power of an integer. Because
(2e2sP )7/6 � 1, we will find a suitable l not larger than 27(2e2sP )7/6. For every integer i, the number

of i-permutation matrices avoiding P is at most si
P and from the choice of l, si

P < ( l6/7

2e2 )i . Thus we

can use Lemma 4 and substituting l � 27(2e2sP )7/6 into its result gives the claim that was to be
proven. �

Lemma 4 might be useful even if we do not know the Stanley–Wilf limit, for if we manage to
count |S P (n)| for several small n, we might be able to find some l that would satisfy the conditions
of the lemma.

4. Quadratic lower bound in FHC

In this section we will construct an n × n matrix A(k,n) that avoids the matrix Cross(2k) and has
Ω(nk2) 1-entries. Cross(2k) will be a permutation matrix. Let cri denote the unique 1-entry in ith
column of Cross(2k) and let rcri be the row containing cri . Cross(2k) is defined as follows:

rcri :=

⎧⎪⎨
⎪⎩

i ∀i � k, i even,

2k + 1 − i ∀i � k, i odd,

i ∀i > k, i odd,
2k + 1 − i ∀i > k, i even.



298 J. Cibulka / Journal of Combinatorial Theory, Series A 116 (2009) 290–302
For example,

Cross(8) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A diagonal of an n × n matrix A = (ai, j) is the set of elements ai, j satisfying i − j = d for d fixed
from {−(n − 1),−(n − 2), . . . ,n − 1}. The elements of a skew diagonal are ai, j with i + j = d, where
d ∈ {2,3, . . . ,2n}. The main (skew) diagonal is the longest one. The diagonal distance between ai1, j1

and ai2, j2 is |(i1 − j1) − (i2 − j2)| and their skew diagonal distance is |(i1 + j1) − (i2 + j2)|.
Let n′ := n(k−1)/k . To simplify the proof, we consider only such n that are the kth power of an

integer.
Let A(1,n) be the n × n matrix with only 0-entries. Thus A(1,n) avoids Cross(2).
For k � 2, A(k,n) will contain several copies of A(k − 1,n′) rotated by 90◦ . The 1-entries not

lying in any of the copies will be called proper 1-entries. We will show that, if A(k,n) were to con-
tain Cross(2k), then (without loss of generality) the 1-entries corresponding to cr1 and cr2k would
be proper, and that the 1-entries corresponding to all the other cri would be in a single copy of
A(k − 1,n′). This will contradict the induction hypothesis.

The proper 1-entries are all the entries of A(k,n) such that their diagonal distance from the main
diagonal is in the set {n′,n′ + 1, . . . ,n′ + 2k − 2}. Thus the proper 1-entries form two groups of 2k − 1
consecutive diagonals, one group to the left and the other to the right of the main diagonal. These
diagonals will be called the proper diagonals. The matrix A(k,n) has no 1-entry at diagonal distance
larger than n′ +2k −2 from the main diagonal. The element cr1 is the leftmost and lowermost 1-entry
of Cross(2k), and thus if A(k,n) contains Cross(2k) so that cr1 is represented by ai, j , then cr1 can also
be represented by any 1-entry ai′, j′ with i′ � i and j′ � j. If ai, j is not in the leftmost proper diagonal,
then we can find such a 1-entry ai′, j′ in the leftmost proper diagonal. Thus we can without loss of
generality assume that cr1 occurs in the leftmost and similarly cr2k occurs in the rightmost proper
diagonal.

The rest of Cross(2k) must appear inside the axis-parallel rectangle which has cr1 and cr2k in its
corners. We must place cr2 at least 2k − 2 rows above and at least 1 column to the right from the
occurrence of cr1. But no such entry lies inside the left 2k − 1 proper diagonals. Using a similar
reasoning with cr2k , cr2 can neither lie in the right 2k − 1 proper diagonals. Similarly, cr2k−1 cannot
be represented by any proper 1-entry of A(k,n) and later, we will show that only cr1 and cr2k can be
represented by a proper 1-entry.

Now we take a number of copies (to be determined later) of A(k − 1,n′), rotate them by 90◦ and
place them between the two groups of proper diagonals. We leave 2n′ + 2(2k − 2)+ 1 skew diagonals
between the rightmost nonzero skew diagonal of a copy of A(k − 1,n′) and the leftmost nonzero
skew diagonal of the nearest copy to the right. We also leave n′ skew diagonals to the left from the
leftmost nonzero skew diagonal of the leftmost copy and to the right from the rightmost nonzero
skew diagonal of the rightmost copy. Because all 1-entries of A(k − 1,n′) lie in only 2(n′)(k−2)/(k−1) +
2(2k − 4) + 1 skew diagonals around the main skew diagonal, the number of copies of A(k − 1,n′)
that we can place is⌊

2n − 1

2(n′)
k−2
k−1 + 2(2k − 4) + 2n′ + 2(2k − 2) + 2

⌋
=

⌊
n − 1

2

n
k−1

k + n
k−2

k + 2(2k − 2) − 1

⌋

�
⌊

n

(1 + 1
2(k−1)

)n
k−1

k

⌋
� k − 1

k
n

1
k .

The last two inequalities are true for k � 2 and n large enough.
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Fig. 1. Schematic figure of A(4,n) which avoids Cross(8). Full lines represent diagonals with 1-entries.

If cr2 and cr2k−1 lied in different copies of A(k − 1,n′), their skew diagonal distance would be
at least 2n′ + 2(2k − 1). But obviously, this distance must be smaller than the diagonal distance be-
tween cr1 and cr2k which is only 2n′ + 2(2k − 1) − 1. So cr2 and cr2k−1 lie in the same copy. Because
cr3, cr4, . . . , cr2k−2 must lie in the rectangle with cr2 and cr2k−1 in its corners, all cr2, cr3, . . . , cr2k−1
lie in the same copy. From the definition follows that cr2, cr3, . . . , cr2k−1 form an occurrence of
Cross(2(k − 1)) rotated by 90◦ , which is, by the induction hypothesis, avoided by the rotated copy
of A(k − 1,n′).

See Fig. 1 for an example of A(k,n).

Lemma 7. Let k � 2. If n is large enough and a kth power of an integer, then:

1. A(k,n) avoids Cross(2k).
2. A(k,n) contains at least k2n 1-entries.

Proof. 1. This has already been proven in preceding paragraphs.
2. Let h(k,n) denote the number of 1-entries in A(k,n). A(k,n) has 2(2k − 1)(n − n(k−1)/k) −

2(2k − 1)(2k − 2) proper 1-entries. For k = 2 and n large enough, this is at least 4n, which was to be
proven. Otherwise, from the previous calculations, A(k,n) has at least h(k − 1,n′) k−1

k n1/k 1-entries in
the copies of A(k − 1,n′). Since n′ = n(k−1)/k is a (k − 1)st power of an integer and large enough, we
can use the induction hypothesis. All in all, for k � 3,

h(k,n) � 2(2k − 1)
(
n − n

k−1
k

) − 2(2k − 1)(2k − 2) + h
(
k − 1,n

k−1
k

)k − 1

k
n1/k

� 3kn + (k − 1)2n
k−1

k
k − 1

k
n1/k � 3kn + k3 − 3k2

k
n = n

(
3k + k2 − 3k

) = k2n. �
Theorem 8. For every k � 2, there exists a k × k matrix B such that

cB � (k − 1)2

.

4
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Proof. From the previous lemma, if k is even, we have cCross(k) � k2/4. Otherwise we take any ma-
trix B containing Cross(k − 1) and obtain cB � cCross(k−1) � (k − 1)2/4. �
5. Higher-dimensional matrices

We will call M ∈ {0,1}[n1]×···×[nd] a d-dimensional (0,1)-matrix of size n1 × · · · × nd .
A d-dimensional (0,1)-matrix P of size k × · · · × k is a d-dimensional k-permutation matrix if P

contains k 1-entries and the positions of each two 1-entries of P differ in all coordinates.
We say that a d-dimensional (0,1)-matrix P = (pi1,...,id ) of size k1 × · · · × kd is contained in a

d-dimensional (0,1)-matrix A = (ai1,...,id ) of size n1 × · · · × nd if there exist d increasing injections
f i : [ki] → [ni], i = 1,2, . . . ,d, such that for all i1, i2, . . . , id ∈ [k]: pi1,...,id = 1 implies a f1(i1),..., fd(id) = 1.
If P is not contained in A, we say that A avoids P .

For a d-dimensional k-permutation matrix P and a,b ∈ [d], let the (a,b)-projection of P , proja,b(P ),
be the (2-dimensional) k-permutation matrix P ′ with p′

i, j = 1 exactly if P has a 1-entry whose ath
coordinate has value i and bth coordinate has value j.

Klazar and Marcus [8] proved that for a fixed d-dimensional k-permutation matrix P , the max-
imum number of 1-entries in a d-dimensional matrix A of size n × · · · × n that avoids P is
f P ,d(n) = Θ(nd−1). This generalizes the Füredi–Hajnal conjecture.

Let P be a given d-dimensional k-permutation matrix P . Define S P ,d(n) to be the set of all
d-dimensional n-permutation matrices avoiding P and T P ,d(n,m) to be the set of all d-dimensional
matrices of size n × · · ·×n that avoid P and have at most m 1-entries. Obviously T P ,d(n,n) ⊇ S P ,d(n).

Theorem 9. For a fixed d-dimensional k-permutation matrix P

(n!)d−2 = nn(d−2+o(1)) �
∣∣S P ,d(n)

∣∣ � nn(
d(d−2)

d−1 +o(1))
< (n!)d−1.

Proof. The rightmost expression is the number of d-dimensional n-permutation matrices which is
a trivial upper bound on |S P ,d(n)|.

The lower bound will follow from the following observation. Let P and A be permutation matrices
and let P ′ := proj1,2(P ) and A′ := proj1,2(A). If A′ avoids P ′ , then A avoids P .

For the given matrix P , we take a matrix A′ that avoids P ′ . For any 2-dimensional n-permutation
matrix A′ , there are (n!)d−2 = nn(d−2+o(1)) d-dimensional n-permutation matrices A such that A′ =
proj1,2(A). Because A′ avoids P ′ , all such matrices A are in S P ,d(n).

The proof of the upper bound is similar to the proof of Theorem 2. We start with A0, the 1×· · ·×1
matrix containing one 1-entry. In each step, we transform the matrix Ai of size 2i × · · · × 2i into
Ai+1 of size 2i+1 × · · · × 2i+1 by replacing each 0-entry of Ai by a 2 × · · · × 2 block containing only
0-entries and each 1-entry of Ai by a 2×· · ·×2 block containing at least one 1-entry. There is a single
possibility how to replace a 0-entry and 22d − 1 possibilities of replacing a 1-entry. However only 2d

of the possible replacements of the 1-entry do not increase the number of 1-entries.
In the first phase we use the above mentioned estimate f P ,d(2i) = Θ(2i(d−1)) from [8]. Thus

f P ,d(2i) � cP ,d2i(d−1) for some constant cP ,d and∣∣T P ,d
(
2i,n

)∣∣ � 22d ·cP ,d ·2(i−1)(d−1) · ∣∣T P ,d
(
2i−1,n

)∣∣ � · · · � 22d ·cP ,d ·2i(d−1)

.

We stop when i = a, where a := �log2(n
1/(d−1)). Then |T P ,d(2a,n)| � 2O (n) .

In the second phase which consists of b := �log2(n) − a � log2(n)(d − 2)/(d − 1) + 1 steps, we
use the fact that all matrices Ai have at most n 1-entries. During this phase, we will do at most bn
replacements of a 1-entry, but only at most n of them will increase the number of 1-entries.

For each matrix Aa+b that was created from Aa , we order the replacements of 1-entries during
the second phase primarily by the step in which the replacement occurred and secondarily by the
lexicographic order of the position of the 1-entry being replaced. The 22d − 1 types of replacements
of a 1-entry are assigned numbers from [22d − 1] so that the types of replacements that do not in-
crease the number of 1-entries get numbers from [2d]. Each matrix Aa+b that was created from Aa , is
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assigned a vector whose elements are from [22d − 1]. The entries of the vector represent the replace-
ments of 1-entries in the above defined order, the value of each entry is the type of the replacement.
The vector has length at most bn and at most n its entries are from [22d − 1] \ [2d]. Then we ap-
pend several entries to the vector to obtain a vector of length (b + 1)n with exactly n entries from
[22d − 1] \ [d]. Different matrices Aa+b created from the same matrix Aa get different vectors and thus

∣∣T P ,d
(
2a+b,n

)∣∣ � 22dn2dbn
(

(b + 1)n

n

)∣∣T P ,d
(
2a,n

)∣∣
� 2O (n)2log2(n)

d(d−2)
d−1 n((

log2(n) + 2
)
e
)n

� nn(
d(d−2)

d−1 +o(1))
.

We have |T P ,d(n,n)| � |T P ,d(2a+b,n)|, because 2a+b � n and thus all matrices from T P ,d(n,n) are
in a one-to-one correspondence with matrices from T P ,d(2a+b,n) that have 0-entries in all places
with some coordinate larger than n. �
6. Conclusions and open problems

We have shown that the values sP and cP are closely related. On the other hand, it is impossible
to find an increasing function g : R → R such that sP = g(cP ). This can be seen on the permutation
matrices I and F corresponding to the permutations 1234 and 1342 respectively. First, from Claim 1,
cI = 6 and cF � 6. But for any identity matrix P , Regev [10] showed an asymptotic formula for |S P (n)|
giving s1,...,k = (k − 1)2, so in our case sI = 9. Bóna [3] found an exact formula for |S F (n)|, from which
sF = 8. Thus cI � cF while sI > sF . But the following still might be true:

Problem 1. Does there exist a constant r1, such that for all permutation matrices P

r1c2
P � sP � r2c2

P ?

What are the best possible values of r1 (if it exists) and r2?

From Theorem 2, r2 exists and r2 � 2.88.
Another interesting open problem is to find the highest possible value of sP for P of a given size.

Problem 2. Does there exist a constant q, such that for any k and all k-permutation matrices P

sP � qk2?

This is a weaker form of the conjecture [2] asserting that sP � (k−1)2, which was disproved in [1],
where it was shown that s1324 � 9.47. A generalization of this result [4] implies q � s1324/9, which
is the highest known lower bound on q. In Section 4, we have shown that a related question for
the Füredi–Hajnal limit has a negative answer, because there is a sequence of permutation matrices
whose Füredi–Hajnal limit grows faster than linearly in their size. Moreover, due to this fact, at least
one of the two above-mentioned problems has negative answer.

The following even weaker version already seems to be true.

Conjecture 1. There exist constants s and t, such that for any k and every k-permutation matrix P

sP � skt .

Equivalently, we could have conjectured that cP � s′kt′ for some constants s′ and t′ .
Although Marcus and Klazar [8] proved an extension of the Füredi–Hajnal conjecture for higher-

dimensional matrices, no such extension exists for the Stanley–Wilf conjecture. One possible extension
could be the following
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Problem 3. Given any d-dimensional permutation matrix P , does there exist a constant sP ,d such that∣∣S P ,d(n)
∣∣ � sn

P ,d · n(d−2)n?

Section 5 contains an improvement of the trivial upper bound on |S P ,d(n)|, but the gap between
the bounds still remains very large.
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