819 research outputs found

    New contention resolution schemes for WiMAX

    Get PDF
    Abstract—The use of Broadband Wireless Access (BWA) technology is increasing due to the use of Internet and multimedia applications with strict requirements of end–to–end delay and jitter, through wireless devices. The IEEE 802.16 standard, which defines the physical (PHY) and the medium access control (MAC) layers, is one of the BWA standards. Its MAC layer is centralized basis, where the Base Station (BS) is responsible for assigning the needed bandwidth for each Subscriber Station (SS), which requests bandwidth competing between all of them. The standard defines a contention resolution process to resolve the potential occurrence of collisions during the requesting process. In this paper, we propose to modify the contention resolution process to improve the network performance, including end–to–end delay and throughput

    Efficient Resource Management Mechanism for 802.16 Wireless Networks Based on Weighted Fair Queuing

    Get PDF
    Wireless Networking continues on its path of being one of the most commonly used means of communication. The evolution of this technology has taken place through the design of various protocols. Some common wireless protocols are the WLAN, 802.16 or WiMAX, and the emerging 802.20, which specializes in high speed vehicular networks, taking the concept from 802.16 to higher levels of performance. As with any large network, congestion becomes an important issue. Congestion gains importance as more hosts join a wireless network. In most cases, congestion is caused by the lack of an efficient mechanism to deal with exponential increases in host devices. This can effectively lead to very huge bottlenecks in the network causing slow sluggish performance, which may eventually reduce the speed of the network. With continuous advancement being the trend in this technology, the proposal of an efficient scheme for wireless resource allocation is an important solution to the problem of congestion. The primary area of focus will be the emerging standard for wireless networks, the 802.16 or “WiMAX”. This project, attempts to propose a mechanism for an effective resource management mechanism between subscriber stations and the corresponding base station

    Wireless broadband access: WiMAX and beyond - Investigation of bandwidth request mechanisms under point-to-multipoint mode of WiMAX networks

    Get PDF
    The WiMAX standard specifies a metropolitan area broadband wireless access air interface. In order to support QoS for multimedia applications, various bandwidth request and scheduling mechanisms are suggested in WiMAX, in which a subscriber station can send request messages to a base station, and the base station can grant or reject the request according to the available radio resources. This article first compares two fundamental bandwidth request mechanisms specified in the standard, random access vs. polling under the point-to-multipoint mode, a mandatory transmission mode. Our results demonstrate that random access outperforms polling when the request rate is low. However, its performance degrades significantly when the channel is congested. Adaptive switching between random access and polling according to load can improve system performance. We also investigate the impact of channel noise on the random access request mechanism

    Performance analysis of contention based bandwidth request mechanisms in WiMAX networks

    Get PDF
    This article is posted here with the permission of IEEE. The official version can be obtained from the DOI below - Copyright @ 2010 IEEEWiMAX networks have received wide attention as they support high data rate access and amazing ubiquitous connectivity with great quality-of-service (QoS) capabilities. In order to support QoS, bandwidth request (BW-REQ) mechanisms are suggested in the WiMAX standard for resource reservation, in which subscriber stations send BW-REQs to a base station which can grant or reject the requests according to the available radio resources. In this paper we propose a new analytical model for the performance analysis of various contention based bandwidth request mechanisms, including grouping and no-grouping schemes, as suggested in the WiMAX standard. Our analytical model covers both unsaturated and saturated traffic load conditions in both error-free and error-prone wireless channels. The accuracy of this model is verified by various simulation results. Our results show that the grouping mechanism outperforms the no-grouping mechanism when the system load is high, but it is not preferable when the system load is light. The channel noise degrades the performance of both throughput and delay.This work was supported by the U.K. Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/G070350/1 and by the Brunel University’s BRIEF Award

    Medium access control and network planning in wireless networks

    Get PDF
    Wireless Local Area Networks (WLANs) and Wireless Metropolitan Area Networks (WMANs) are two of the main technologies in wireless data networks. WLANs have a short range and aim at providing connectivity to end users. On the other hand, WMANs have a long range and aim at serving as a backbone network and also at serving end users. In this dissertation, we consider the problem of Medium Access Control (MAC) in WLANs and the placement of Relay Stations (RSs) in WMANs. We propose a MAC scheme for WLANs in which stations contend by using jams on the channel. We present analytic and simulation results to find the optimal parameters of the scheme and measure its performance. Our scheme has a low collision rate and delay and a high throughput and fairness performance. Secondly, we present a MAC scheme for the latest generation of WLANs which have very high data rates. In this scheme, we divide the stations into groups and only one station from each group contends to the channel. We also use frame aggregation to reduce the overhead. We present analytic and simulation results which show that our scheme provides a small collision rate and, hence, achieves a high throughput. The results also show that our scheme provides a delay performance that is suitable for real-time applications and also has a high level of fairness. Finally, we consider the problem of placing Relay Stations (RSs) in WMANs. We consider the Worldwide Interoperability for Microwave Access (WIMAX) technology. The RSs are used to increase the capacity of the network and to extend its range. We present an optimization formulation that places RSs in the WiMAX network to serve a number of customers with a pre-defined bit rate. Our solution also provides fault-tolerance by allowing one RS to fail at a given time so that the performance to the users remains at a predictable level. The goal of our solution is to meet the demands of the users, provide fault-tolerance and minimize the number of RSs used

    A study of QoS support for real time multimedia communication over IEEE802.11 WLAN : a thesis presented in partial fulfillment of the requirements for the degree of Master of Engineering in Computer Systems Engineering, Massey University, Albany, New Zealand

    Get PDF
    Quality of Service (QoS) is becoming a key problem for Real Time (RT) traffic transmitted over Wireless Local Area Network (WLAN). In this project the recent proposals for enhanced QoS performance for RT multimedia is evaluated and analyzed. Two simulation models for EDCF and HCF protocols are explored using OPNET and NS-2 simulation packages respectively. From the results of the simulation, we have studied the limitations of the 802.1 le standard for RT multimedia communication and analysed the reasons of the limitations happened and proposed the solutions for improvement. Since RT multimedia communication encompasses time-sensitive traffic, the measure of quality of service generally is minimal delay (latency) and delay variation (jitter). 802.11 WLAN standard focuses on the PHY layer and the MAC layer. The transmitted data rate on PHY layer are increased on standards 802.1 lb, a, g, j, n by different code mapping technologies while 802.1 le is developed specially for the QoS performance of RT-traffics at the MAC layer. Enhancing the MAC layer protocols are the significant topic for guaranteeing the QoS performance of RT-traffics. The original MAC protocols of 802.11 are DCF (Distributed Coordination Function) and PCF (Point Coordinator Function). They cannot achieve the required QoS performance for the RT-traffic transmission. IEEE802.lle draft has developed EDCF and HCF instead. Simulation results of EDCF and HCF models that we explored by OPNET and NS-2, show that minimal latency and jitter can be achieved. However, the limitations of EDCF and HCF are identified from the simulation results. EDCF is not stable under the high network loading. The channel utilization is low by both protocols. Furthermore, the fairness index is very poor by the HCF. It means the low priority traffic should starve in the WLAN network. All these limitations are due to the priority mechanism of the protocols. We propose a future work to develop dynamic self-adaptive 802.11c protocol as practical research directions. Because of the uncertainly in the EDCF in the heavy loading, we can add some parameters to the traffic loading and channel condition efficiently. We provide indications for adding some parameters to increase the EDCF performance and channel utilization. Because all the limitations are due to the priority mechanism, the other direction is doing away with the priority rule for reasonable bandwidth allocation. We have established that the channel utilization can be increased and collision time can be reduced for RT-traffics over the EDCF protocol. These parameters can include loading rate, collision rate and total throughput saturation. Further simulation should look for optimum values for the parameters. Because of the huge polling-induced overheads, HCF has the unsatisfied tradeoff. This leads to poor fairness and poor throughput. By developing enhanced HCF it may be possible to enhance the RI polling interval and TXOP allocation mechanism to get better fairness index and channel utilization. From the simulation, we noticed that the traffics deployment could affect the total QoS performance, an indication to explore whether the classification of traffics deployments to different categories is a good idea. With different load-based traffic categories, QoS may be enhanced by appropriate bandwidth allocation Strategy

    Performance Study of Bandwidth Request Mechanisms in IEEE 802.16e Networks

    Get PDF
    WiMAX (Worldwide Interoperability for Microwave Access) is the IEEE 802.16 standards-based wireless technology that provides fixed and mobile Internet access for Metropolitan Area Networks (MAN). The IEEE 802.16 std. includes medium access control (MAC) and physical (PHY) layer pecifications and is consider to be a promising technology. Bandwidth reservation is employed to provide quality of service (QoS) to guarantee different services specified in the standard. A bandwidth request/grant scheme is defined in the IEEE 802.16 standard. There are two types of bandwidth request (BR) mechanisms, i.e., polling and contention resolution, which are defined in the standard. As specified, connections belonging to scheduling classes of extended real-time polling service, non-real-time polling service, and best effort have options to make BRs via both mechanisms, depending on the scheduling decision made by the base station (BS). This paper attempts the comparative study of BR mechanisms for different service classes defined in the standard

    Tournament MAC with Constant Size Congestion Window for WLAN

    Get PDF
    In the context of radio distributed networks, we present a generalized approach for the Medium Access Control (MAC) with fixed congestion window. Our protocol is quite simple to analyze and can be used in a lot of different situations. We give mathematical evidence showing that our performance is tight, in the sense that no protocol with fixed congestion window can do better. We also place ourselves in the WiFi/WiMAX framework, and show experimental results enlightening collision reduction of 14% to 21% compared to the best known other methods. We show channel capacity improvement, and fairness considerations
    • 

    corecore