9 research outputs found

    Extremal Colorings and Independent Sets

    Get PDF
    We consider several extremal problems of maximizing the number of colorings and independent sets in some graph families with fixed chromatic number and order. First, we address the problem of maximizing the number of colorings in the family of connected graphs with chromatic number k and order n where k≥4 role= presentation style= box-sizing: inherit; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 18px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3ek≥4k≥4. It was conjectured that extremal graphs are those which have clique number k and size (k2)+n−k role= presentation style= box-sizing: inherit; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 18px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3e(k2)+n−k(k2)+n−k. We affirm this conjecture for 4-chromatic claw-free graphs and for all k-chromatic line graphs with k≥4 role= presentation style= box-sizing: inherit; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 18px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3ek≥4k≥4. We also reduce this extremal problem to a finite family of graphs when restricted to claw-free graphs. Secondly, we determine the maximum number of independent sets of each size in the family of n-vertex k-chromatic graphs (respectively connected n-vertex k-chromatic graphs and n-vertex k-chromatic graphs with c components). We show that the unique extremal graph is Kk∪En−k role= presentation style= box-sizing: inherit; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 18px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3eKk∪En−kKk∪En−k, K1∨(Kk−1∪En−k) role= presentation style= box-sizing: inherit; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 18px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3eK1∨(Kk−1∪En−k)K1∨(Kk−1∪En−k) and (K1∨(Kk−1∪En−k−c+1))∪Ec−1 role= presentation style= box-sizing: inherit; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 18px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3e(K1∨(Kk−1∪En−k−c+1))∪Ec−1(K1∨(Kk−1∪En−k−c+1))∪Ec−1 respectively

    Some results on the maximal chromatic polynomials of 22-connected kk-chromatic graphs

    Full text link
    In 2015, Brown and Erey conjectured that every 22-connected graph GG on nn vertices with chromatic number k≥4k\geq 4 has at most (x−1)k−1((x−1)n−k+1+(−1)n−k)(x-1)_{k-1}\big((x-1)^{n-k+1}+(-1)^{n-k}\big) proper xx-colorings for all x≥kx\geq k. Engbers, Erey, Fox, and He proved this conjecture for x=kx=k. In this paper, we prove Brown and Erey's conjecture under the condition that either the clique number of GG is kk, or the independent number of GG is 22.Comment: 26 pages, 8 figures. Comments welcome

    Tomescu\u27s Graph Coloring Conjecture for -Connected Graphs

    Get PDF
    Let PG(k) be the number of proper k-colorings of a finite simple graph G. Tomescu\u27s conjecture, which was recently solved by Fox, He, and Manners, states that PG(k)k!(k-1)(n – k) for all connected graphs G on n vertices with chromatic number k≥4. In this paper, we study the same problem with the additional constraint that G is ℓ-connected. For 2-connected graphs G, we prove a tight bound PG(k)≤(k – 1)!((k – 1)(n – k+1) + ( - 1)n – k) and show that equality is only achieved if G is a k-clique with an ear attached. For ℓ≥3, we prove an asymptotically tight upper bound PG(k)≤k!(k-1)n-l-k+1+O((k – 2)n ) and provide a matching lower bound construction. For the ranges k≥ℓ or ℓ ≥ (k-2)(k-1)+ 1 we further find the unique graph maximizing . We also consider generalizing ℓ-connected graphs to connected graphs with minimum degree δ
    corecore